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Abstract

This dissertation presents the problem of estimating exact solutions for elliptic par-
tial differential equations, on the example of Poisson’s equation and its generalizations.
As it is known, PDEs (Partial Differential Equations) allow modeling of physical phe-
nomena, many scientific and engineering problems. If such equations cannot be, at least
in an easy way, solved If such equations cannot be, at least easily, solved analytically,
then we attempt to apply numerical methods. However results obtained by computer are
only approximate solutions. It should be noted that within such a broad field as par-
tial differential equations, analytical methods for their solution are still being developed.
The question of the existence of a solution to an equation is also extremely important
here – in many cases it may not exist. Thus, the problem itself must satisfy certain
conditions for the search for approximate solutions to be meaningful.
The interval methods presented in this paper belong to the class FDM (Finite Difference

Methods) and allow finding estimates of exact solutions for boundary problems defined
for selected PDEs elliptic. In total, methods based on five different differential schemes
are presented, for three types of PDEs, which are implemented in three types of arith-
metic, i.e., floating point arithmetic, ordinary interval arithmetic, and directed interval
arithmetic. The main research hypothesis is that the application of interval arithmetic
to the solution of the Poisson equation makes it possible to automatically account for var-
ious numerical errors inside the obtained interval solutions. Furthermore, it is shown that
the interval methods developed in the verification of this hypothesis can be generalised
for the case of linear elliptic PDEs of order two.
An attempt has also been made to refer to a method allowing strict verification of the

existence of solutions of the types of PDEs considered in the paper and finding their
estimates supported by a mathematical proof. Such a method for elliptic equations is
the Nakao method, which uses the FEM (Finite Element Methods) model. The results
obtained with both methods, i.e. the interval-based FDM methods proposed in this work
and the Nakao method which uses intervals (but not fully interval-based – as pointed
out in this work), were compared.
The results obtained allowed positive verification of the research hypothesis. For all

the developed methods it was presented how to estimate experimentally the errors
of the method. Computational examples, in turn, showed that the exact solution was
inside the interval solutions. An interesting prelude to further research seems to be the
use of existing VC (verified-computing) methods as a tool for initial error estimation, and
then the use of the method presented in this paper for the construction of fully interval
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methods (i.e. methods in which the entire computation, i.e. all arithmetic operations are
performed on the intervals). As a result, the obtained estimates of exact solutions could
not only be more accurate, but also, each time, supported by a mathematical proof –
resulting directly from the given VC method.



Abstract (PL)

W tej rozprawie przedstawiono problematykę szacowania rozwiązań dokładnych dla rów-
nań różniczkowych cząstkowych eliptycznych, na przykładzie równania Poissona i jego
uogólnień. Jak wiadomo równania różniczkowe cząstkowe umożliwiają modelowanie zja-
wisk fizycznych, wielu problemów naukowych i inżynierskich. Jeśli równania takie nie
mogą być, przynajmniej w łatwy sposób rozwiązane analitycznie, to wówczas podejmu-
jemy próbę zastosowania metod numerycznych. Jednakże otrzymywane komputerowo
wyniki stanowią jedynie rozwiązanie przybliżone. Należy zauważyć, że w obrębie tak
szerokiej dziedziny, jak równania różniczkowe cząstkowe, wciąż opracowywane są anali-
tyczne metody ich rozwiązywania. Niezwykle istotna jest tutaj również kwestia istnienia
rozwiązania dla danego równania – w wielu przypadkach może ono nie istnieć. Tak więc
już samo zagadnienie musi spełniać określone warunki, by poszukiwanie dla niego roz-
wiązań przybliżonych było sensowne.
Przedstawione w pracy metody przedziałowe należą do klasy FDM (z ang. finite differ-

ence methods) i pozwalają na znajdowanie oszacowań rozwiązań dokładnych dla zagad-
nień brzegowych określonych dla wybranych PDE (z ang. partial differential equations)
eliptycznych. Łącznie przedstawiono metody oparte na pięciu różnych schematach różni-
cowych, dla trzech typów PDE, które zostały zaimplementowane w trzech rodzajach
arytmetyki. tj. arytmetyce zmiennopozycyjnej, przedziałowej zwykłej, i przedziałowej
skierowanej. Główna hipoteza badawcza brzmi: zastosowanie arytmetyki przedziałowej
do rozwiązywania równania Poissona umożliwia automatyczne uwzględnienie różnych
błędów numerycznych wewnątrz otrzymanych rozwiązań przedziałowych. Ponadto wyka-
zano, że metody przedziałowe opracowane w ramach weryfikacji tej hipotezy można
uogólnić dla przypadku liniowych PDE eliptycznych rzędu drugiego.
Podjęto również próbę odniesienia się do metody pozwalającej na ścisłą weryfikację

istnienia rozwiązań rozważanych w pracy rodzajów PDE oraz znajdowania ich oszacow-
ania popartego dowodem matematycznym. Taką metodą dla równań eliptycznych jest
korzystająca z modelu FEM (z ang. finite element methods) metoda Nakao. Porównano
wyniki uzyskane obiema metodami, tj. zaproponowanymi w tej pracy przedziałowymi
metodami FDM oraz korzystającą z przedziałów (lecz nie w pełni przedziałową – na co
zwrócono uwagę w tej pracy) metodą Nakao.
Uzyskane wyniki pozwoliły na pozytywną weryfikację postawionej hipotezy badawczej.

Dla wszystkich opracowanych metod zaprezentowano sposób w jaki eksperymentalnie
można szacować błędy metody. Przykłady obliczeniowe z kolei pokazały, iż rozwiązanie
dokładne znajdowało się wewnątrz rozwiązań przedziałowych. Interesującym przedmio-
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tem dalszych badań wydaje się użycie istniejących metod VC (z ang. verified-computing)
jako narzędzia do wstępnego oszacowania błędów, a następnie wykorzystanie zaprezen-
towanego w tej pracy sposobu konstrukcji metod w pełni przedziałowych (tj. takich,
w których całe obliczenia, czyli wszystkie operacje arytmetyczne wykonywane są na prze-
działach). W efekcie uzyskiwane oszacowania rozwiązań dokładnych mogłyby być nie
tylko dokładniejsze, ale również, każdorazowo, poparte dowodemmatematycznym – wyni-
kającym bezpośrednio z danej metody VC.



1
Introduction

Many scientific and engineering problems are described by partial differential equations
[12,13]. They allow modeling of physical phenomena [93], many issues related to control
and automation [58], through process optimization [27], to economic issues [82]. If such
equations cannot be, at least in an easy way, solved analytically, then we attempt to apply
numerical methods [7,45]. The results obtained using them are approximate solutions [7,
38]. It should be noted that within such a broad domain as partial differential equations,
even just finding an approximate solution can be difficult, both due to the complexity of
the problem itself and the methods dedicated to it [33, 98]. The question of existence of
solution for the given equation is also important here - in many cases it may not exist [55],
so the problem itself must meet certain conditions to make the search for approximate
solutions meaningful. In the case of numerical methods, the time required to perform the
calculations and the required amount of memory are also crucial [45, 49].
From the mathematical point of view, the existence of solutions to the PDEs is still a

subject of research and for many classes of such equations, conditions have been defined
that they must satisfy to have a solution [12, 13]. On the other hand, in the case of
numerical methods, continuous technological development, lasting essentially since the
1950s, contributed significantly to the increase in both the size of operating memory and
computing power of computers [50]. This resulted in the development of numerical meth-
ods for solving complex mathematical problems, such as partial differential equations [3].
In numerical calculations, floating point arithmetic is most often used, which is defined
by IEEE-754 standards [34–36]. However, it has specific limitations [99]. The computer
memory stores the representation of a number in binary system with a strictly defined,
and thus limited, number of bytes to store it, hence it is necessary to use rounding to
be able to represent the real number in such a form, which results in representation
errors [7, 45]. Moreover, the result of each arithmetic operation is also rounded, thus
rounding errors accumulate during the calculation [15, 19]. Another type of errors are
those related to the method we use to solve the problem. Here, a broad issue of their
estimation arises, both a priori [46, 80] and a posteriori [44, 57]. Recently, an area of
intensive research is also the field involving attempts to construct methods of so-called
verified computing (VC). We should mention such works as [23], [75] and [96], but in
the author’s opinion, the book [81], is the most important, because it deals directly with
VC problems solved using interval arithmetic. It should also be emphasized that a very
similar term – verifiable computing – is used for some algorithms in cryptography [18],
but their subject is checking the authenticity (origin) of results, not the mathematical
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correctness or accuracy of obtained results, so they are in no way related to the methods
described in this paper.
Let us note that even in the situation when for a given problem and the chosen method

it is possible to determine the exact error estimate [77], during the computation unex-
pected problems may still arise, such as rounding-off effect [97]. A key and very interesting
issue, therefore, seems to be the attempt to find the answer to the question: is it possible
to develop such methods which would take into account all the previously mentioned
numerical errors already during the computation? Is it possible to estimate these errors
not only in general - by e.g. defining the order of the method or mathematical formula
for a certain constant constituting their estimation - but also in a detailed way - for a
given problem, a given representation of numbers, a given method and certain values of
its parameters? Interval arithmetic seems to meet these expectations. Although, as men-
tioned earlier, the application of this kind of arithmetic used to be too expensive in terms
of time complexity, nowadays it is becoming not only possible, but also effective [50].
According to the authors of the book [49],the first works on interval arithmetic date

back to 1914, but it was popularized as a model of computation by the work of R.
Moore [72] published in 1966. At that time, however, the subject was not widely taken
up by other researchers, although it is worth mentioning quite important works from that
period [2], [91] and [95]. This was probably due to the high complexity of the proposed
model of computation and the limited capabilities of computers at that time. However, in
recent years, this subject has been revisited, which is confirmed by the fact that it is more
and more often taken up in publications, for instance, such as [26], [49], [52], [81], [86], as
an effective tool extending the possibilities of floating-point arithmetic. The worldwide
interest in the topic is so great that in 2008 a separate IEEE group was formed to develop
a new standard for this arithmetic, and its work culminated in 2015 with the publication
of IEEE Standard 1788-2015 (for more on this topic, see [50], [51] and [84]). As for the
research conducted by Polish scientists dealing with interval arithmetic, it is worth noting
the items [59–61] and [65].

1.1. Scope of work and basic assumptions
The information presented above concerning computer arithmetic is important for the

problems covered by the subject of this dissertation. The author’s research focuses on
solving elliptic partial differential equations on the example of Poisson’s equation and
its generalized forms [29, 32]. They essentially concern methods from the class of finite
differences [4,59], which lead to systems of linear equations of a very large size. In prac-
tice, this raises two problems: first, concerning the optimization of memory usage, and
in particular the storage of sparse matrices in memory, and second, related to the need
to perform a significant number of arithmetic operations to obtain the results, which is
a source of numerical errors and may lead to an erroneous result. The problem of stor-
ing sparse matrices and limitations of memory usage is already well known and there
are many algorithms that effectively address this type of issue [21], [56] and [92], imple-
mented in a number of well-known libraries for numerical computing [6, 25]. As for the
second problem, concerning rounding errors, it was addressed from the theoretical angle
in Wilkinson’s book [99] and from the practical side in the work [23].In both cases, the
analytical approach is used, which makes it possible to mathematically estimate the error
in advance, with quite high imprecision. Therefore, an interesting research topic is the
problem of auto-mathematical error estimation, so that the obtained results accurately
inform about the accuracy of the performed calculations. Therefore, the author proposes
the use of interval arithmetic, which makes it possible to collect information about errors
arising during calculations.
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The preliminary assumptions of the work are defined by the following points.

1. Solving elliptic partial differential equations by methods from the class of finite
differences leads to large systems of linear equations the solution of which is subject
to the accumulation of rounding errors and the possibility of rounding-off effect.

2. The errors of the method as well as rounding errors are not directly taken into
account in calculations performed with the existing models of solving partial dif-
ferential equations in floating point arithmetic.

3. Interval arithmetic gives the possibility to automatically collect information about
all types of errors by taking them into account during the calculation.

The aim of the author’s research was to analyse the usefulness of the application of
interval arithmetic for calculations performed by methods belonging to the class of finite
differences within elliptic PDEs, with particular emphasis on Poisson’s equation and its
generalised forms.

1.2. Research hypothesis
Based on the assumptions listed in the previous section, the main research hypothesis

is:

(H1)
Application of interval arithmetic to solve the Poisson’s equation enables
automatic inclusion of numerical errors of various types inside the obtained
intervals - solutions.

he aim of this paper is to verify the hypothesis by attempting to develop a method for
solving Poisson’s equation, such as specified in hypothesis (H1). The research included
also generalizations of Poisson’s equation and a certain class of elliptic PDEs. The use
of different types of interval arithmetic was also considered. As a result, attempts were
made to verify the auxiliary hypotheses mentioned further.

(H2)
Methods for automatic solution estimation developed in verification of hy-
pothesis (H1) can be generalised for the case of linear elliptic PDEs of order
two.

(H3)The use of directed interval arithmetic in calculations allowsobtaining better
(more accurate) estimates than in the usual arithmetic interval metrics.

In general, the methods presented in this paper should be treated as heuristics, since
the development of a proof that exact solutions are contained in the resulting intervals
is a separate mathematical problem. It is taken up by researchers ealing with problems
on the borderline between advanced mathematics and numerical methods, and the most
important work, which is a very good summary of the current state of this research, is
the book [81]. A successful attempt to construct an interval method for verifying the
existence of solutions of partial differential equations, together with the proof of their
being contained in the obtained intervals, has so far been made by M. T. Nakao [76,77].
As a starting point, he took a method belonging to the class of finite element methods.
Due to the great importance of the method developed by him as a tool allowing to obtain
a guarantee of the correctness of the results, the author of this dissertation, within the
framework of his research, has attempted to reproduce these results and their application
to the class of equations considered by him.
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(H4)
The method for verifying the existence and for estimating solutions of ellip-
tic PDEs, using interval arithmetic and developed by M. T. Nakao, can be
successfully applied to the Poisson equation and its generalizations.

As part of the experimental portion of the dissertation:

• the errors of the method for equations, for which the exact solution is known, are
estimated in an analytical way and it is experimentally demonstrated that the exact
solution is contained in the resulting intervals,

• the results obtained in both considered interval arithmetic were compared,
• possible directions for further research were identified.

It is worth noting that M. T. Nakao limited his considerations only to equations of a
definite form. Such an approach enabled him to derive a mathematical proof, however, it
limited the area of applicability of the method proposed by him precisely to this class of
equations1. In this respect, the methods presented in this work seem to have an advantage
that, although they do not give a mathematical guarantee that the solutions will hold,
they have been shown experimentally to be effective for a much wider class of elliptic
partial differential equations. However, the development of mathematical proofs remains
an interesting subject for further research.

1We are talking about a certain class of elliptic partial differential equations. This class is described
more broadly in Chapter 4 on the Nakao method.



2
Boundary problem

for elliptic equations

This chapter describes the problem of the paper from the mathematical point of view.
At the beginning, more important information concerning partial differential equations is
presented1. Then, on the basis of the literature on the subject, basic definitions concerning
linear partial differential equations of the second order - their types and types of boundary
conditions - are collected. Special emphasis has been placed on PDEs of elliptic type with
Dirichlet boundary conditions. Forms of equations, for which methods of solution by
interval arithmetic are proposed in the following chapters, are defined. Other approaches
to the problem, including analytic ones, are mentioned. However, this has been done in
a very limited way and only in order to better define the area of applicability of the
numerical methods presented in the dissertation.

2.1. Basic definitions
In general, a partial differential equation is an equation involving an unknown function

of two or more variables and some of its partial derivatives. The classification of these
equations and the analytical methods to solve them are well known and widely described
in literature [12,14]. Therefore, we refer here only to the most important definitions and
terms, which will allow us to place the problem of this work within the broad field of
methods for solving PDEs.
Let us first define a general form of the PDE. This requires the introduction of the

auxiliary notion of multi-index) – it allows writing the partial derivatives in a simplified
way.

Definition 1. Let x̂ = (x1, x2, . . . xn) denote a point in the n–dimensional space Rn. We
call the vector α = (α1, α2, . . . , αn) with nonnegative integer components a multi-index of
length |α| =

∑n
i=1 αi. Then the set of all partial derivatives of the function u(x̂) : Rn 7→ R

defined by multi-indices of length |α| = k an be denoted by

Dku(x̂) := D|α|u(x̂) :=
{

∂|α|u(x̂)
∂x1α1∂x2α2 . . . ∂xnαn

}
.

Now, we can write down a general and most commonly used definition of PDEs, which
at the same time best illustrates how broad a set of issues they address.

1As an abbreviation we will use letters PDE (from: partial differential equations) or the word equation
– unless it is clear from the text that a different equation or type of equation is involved.
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Definition 2. Let k denote an integer satisfying the condition k ≥ 1, and let symbol Ω
— denote an open subset of the space Rn and let x̂ ∈ Ω. Then an equation of the form

L(Dku(x̂),Dk−1u(x̂), . . . ,Du(x̂), u(x̂), x̂) = 0, (x̂ ∈ Ω) (2.1)

is called the k-th order partial differential equation, where the form of the function

L : Rn
k

× Rn
k−1
× . . .× Rn × R× Ω 7→ R

is defined2, while u : Ω 7→ R denotes the unknown of the equation.

We include a separate definition of a solution, primarily due to the fact that this concept
is understood in different ways.

Definition 3. The solution of a partial differential equation in a general sense is called
the set of all functions u(x̂) satisfying equation (2.1).

Definition 4. The solution of a partial differential equation in the classical sense is
called the set of all functions u(x̂) satisfying equation (2.1) and continuous together with
partial derivatives up to and including order k in the region Ω ⊂ Rn.

From the above definitions, it is clear that both a general and the classical solution of a
partial differential equation consists of a set of functions. Most often, it is not possible to
obtain simple and explicit formulas for solutions of a given equation [12]. In such a case,
attempts are made to prove their existence or that they satisfy certain properties [81].
Finding one function which is a solution of the equation requires limiting the problem
by introducing additional conditions. Therefore, let us introduce the necessary terms.

Definition 5. A boundary value problem (BVP for short) for equation (2.1) is called the
problem of finding a function u(x̂)which on the boundary part of the region Ω = ∂Ω∪Ω —
et us denote it by Γ = ∂Ω — satisfies certain conditions u(x̂)|Γ, hereafter called boundary
conditions.

Definition 6. For problems where one of the independent variables is time t the concept
of initial value problems (IVP) is used, which is written u(t)|t=0. If the function u depends
also on spatial variables u = u(x̂, t) then initial conditions can be used in conjunction
with initial boundary value problems (IBVP).

After imposing the above restrictions on the function u(x̂) we speak of finding a solution
not for the equation itself, but for a particular boundary problem. The following types
of boundary conditions are most widely used in practice:

• Dirichlet, when we assume certain values for the function u(x̂) at the edge Γ, which
we denote as: u(x̂)|Γ = g(x, y), where g denotes the continuous function at the edge
given in the problem Γ,

• Neumann, when we assume certain values for the derivative of the function u(x̂) at
the edge Γ, i.e. ∂u(x̂)

∂~n |Γ = g(x, y), where ~n denotes the normal vector 3 external to
the area Ω,

• Robin, being the linear combination of the two previous conditions, which means,
that

(
a ∂u∂n + bu

)
|Γ = g(x, y), where a, b, like g, denote continuous functions on the

edge Γ.
2The notation Rnk may require some explanation. It results from the fact that all partial derivatives of

order k in the set Dku(x̂) are nk. For example, for n = 2 and k = 3 we have nk = 23 = 8 combinations
of independent variables: x3

1, x2
1x2, x2x2

1, x1x2x1, x2
2x1, x1x2

2, x2x1x2, x3
2, which determines 8 partial

derivatives of order three of the function u(x̂) = u(x1, x2).
3This is a normalized vector defined at any point p ∈ Γ, perpendicular to the plane tangent to the

surface at any point and pointing outside the region Ω.
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In this context, it is worth noting that not for every boundary problem there is an
unambiguous solution. That is why the concept of well posed boundary problems is used
in literature.

Definition 7. The boundary problem for the partial differential equation (2.1) is called
well posed if the following requirements are satisfied for it:

• under certain boundary conditions there is a solution for it,
• the solution is clear,
• the solution is stable, that is, it depends continuously on the boundary conditions.

In the methods presented in the further, experimental part of this work, we shall refer to
well posed problems for which an exact solution is known, as well as to such problems for
which we do not know the analytical solution and about which we have no guarantee that
they are well posed. We assume that well posed problems will serve us to demonstrate
the correctness of the methods presented next. Let us now look at techniques for solving
PDEs. The basic ones are the following (the list is based on the book [13]).

1. Variable separation method - a partial differential equation with n independent
variables is converted into n proper differential equations.

2. Integral transforms — an equation with n variables can be converted to an equation
with n−1 variables, and consequently equations with two variables can be reduced
to proper differential equations.

3. Changing the coordinate system - the equation can be simplified by, for example,
rotating the system axes or converting to polar coordinates.

4. Transformation of the dependent variable - the dependent variable is replaced by
a new variable, such one that the form of the equation is simplified.

5. Perturbation methods - a nonlinear equation is converted into a sequence of linear
equations that approximates it.

6. Conversion to integral equation - PDE is converted to integral form in which the
dependent variable is under the integral. It is then solved using integral equation
techniques

7. Impulse-response technique4 – the boundary and/or initial conditions are converted
into a series of simple impulses, then the response to each impulse is noted. The
total response is obtained by adding the component responses together.

8. Variational methods – inding solutions of an equation is presented as a minimization
problem (according to the so-called minimum energy principle5, in which solutions
for certain PDEs of elliptic type are shown to exist). It is then assumed that the
minimum of the expression equivalent to the equation simultaneously expresses its
solution.

9. Series expansion of eigenfunctions – the solution of the equation is written as the
sum of the eigenfunctions 6.

10. Numerical methods - there are many approaches to the numerical solution of
PDEs, the most important being finite differences methods (FDM for short) and
finite element methods (FEM for short) (see, e.g., [10] and [37]). Other well-known
approaches include spectral methods [5], meshless methods [11], and gradient dis-
cretization methods [1].

4A chapter on this technique can be found in [85].
5A more extensive description of such methods can be found in the works [53,100].
6Methods of this kind are discussed in [9].
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This dissertation focuses on boundary problems with Dirichlet conditions for second
order linear elliptic equations and their solution using numerical methods from the FDM
class.

2.2. Equation types analysed
We will describe here the classes of partial differential equations for which interval

methods have been designed – so the focus is only on equations of elliptic type. However,
we will begin by defining the most general form of linear PDEs of order two, since they
are the starting point for all classes of equations considered within this work.

Definition 8. Let us denote the partial derivatives as follow:

uxx = ∂2

∂x2u(x, y), uxy = ∂2

∂x∂y
u(x, y), uyy = ∂2

∂y2u(x, y),

ux = ∂

∂x
u(x, y), uy = ∂

∂y
u(x, y).

A linear partial differential equation of order two, defined at points(x, y) ∈ Ω ⊆ R2, is
called an equation of the form

a1uxx + buxy + a2uyy + dux + euy + cu = f, (2.2)

where

a1 = a1(x, y), a2 = a2(x, y), b = b(x, y), c = c(x, y),
d = d(x, y), e = e(x, y), f = f(x, y)

denote continuous functions of class C2 that are coefficients of the equation, and u =
u(x, y) denote a certain function, also continuous of class C2, of unknown form, whose
finding is the solution of the equation.

Note that only the derivative of uxy, is written in this equation, and there is no deriva-
tive of uyx. This is legitimate by virtue of Schwarz’s theorem 7 , which states that once
the function u = u(x, y) satisfy the continuity condition (as in the definition above),
there is the equality uxy = uyx.

Definition 9. Depending on the value of the determinant W = b2 − 4a1a2 we say that
equation (2.2) is elliptic if W < 0, parabolic if W = 0 and hyperbolic if W > 0.

The simplest and one of the most representative of the elliptic-type equations is Pois-
son’s equation, and interval methods were developed for it, which then were generalized
by constructing successive ones for wider and wider classes of equations. Below, the ones
for which tests were carried out are presented. Subsequent generalizations tend towards
the form (2.2), although this, the most general, form was not taken into account. For
all equations under consideration we assume that the ellipticity condition is satisfied.
All of them are considered on a rectangular region denoted as Ω = [α1, α2] × [β1, β2].
Furthermore, in this paper we restrict ourselves to the cases where b = 0∧ d = 0∧ e = 0.
The ellipticity condition then takes the form

− 4a1a2 < 0. (2.3)
7The theorem on the symmetry of partial derivatives of order two is sometimes called Clairaut’s

theorem. However, researchers of history of mathematics admit that the author of the first error–free
proof of this theorem is H. A. Schwartz (1843–1921). The proof and more information on this theorem
can be found in the work [71].
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For the sake of further notation, let us define two more auxiliary operators.

Definition 10. The Laplace operator for a function of n variables is defined as follows:

4u(x1, x2, . . . , xn) =
n∑
i=1

∂2u

∂x2
i

. (2.4)

Definition 11. The gradient of a function of n variables is defined as follows:

∇u(x1, x2, . . . , xn) =
(
∂u

x1
, . . . ,

∂u

xn

)T
. (2.5)

We may now proceed to define further elliptic equations analysed in this paper, starting
from their simplest form up to their generalised form. We will make use here of the
simplified notation introduced in Definition 8. As previously mentioned, the Poisson
Equation (PE) was the starting point for the methods developed.

Definition 12. Poisson’s equation is an equation of the form

uxx + uyy = f. (2.6)

Numerical methods were then prepared to solve a generalized form of the above equa-
tion, which we will abbreviate as GPE (Generalized Poisson Equation).

Definition 13. The generalized Poisson’s equation will be called an equation of the form

a1uxx + a2uyy = f. (2.7)

In the final stage of the research, the equations from the class of elliptic equations were
considered, for which the method (belonging to the FEM class) was presented by M. T.
Nakao [77]. These equations can be generally written in the form

4u+ b∇u+ cu = −f. (2.8)

In the above notation b = [bi(x1, . . . xn)] is a vector of functions being coefficients of
the equation. Let us note that equation (2.6) may also be presented using the Laplace
operator and then written in the form

4u = f in area Ω

resembles a simplified version of the equation from Nakao’s method, in which the coeffi-
cient b = 0 and c = 0. Thus it is possible to propose a hypothesis (see (H4)), that Nakao’s
method can be applied to Poisson’s equation – as it operates on more general equations.
It is one of the reasons for the implementation of this method, the results for the gen-
eral equations were reproduced, and then an attempt was made to apply this method
to the Poisson equation. The following sections describe the results of this research and
determine the applicability of Nakao’s method for the class of equations described in this
work, i.e. the Poisson equation and its generalised form.

Definition 14. An elliptic equation of the class Nakao will be called an equation of the
form

a1uxx + buxy + a2uyy + cu = f. (2.9)

For all the equation types described in this section, differential and interval schemes of
the finite difference method are presented later in this paper.
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2.3. Finite Difference Method
The theory related to the construction of differential schemes for PDEs is widely pre-

sented in papers such as [22], [54] and [94]. Among the studies of Polish authors we should
mention [38] and [16]. However, these papers deal with floating point arithmetic and in
this paper we refer only to the most important notions concerning the design of FDM
methods themselves. Let us also note that in order to organize the way the methods
themselves are constructed and to improve the subsequent verification of the results, we
restrict ourselves here only to two-dimensional problems defined on a rectangular domain
with Dirichlet boundary conditions. The problem under consideration can be formulated
as follows: find the function u = u(x, y) satisfying equation (2.2) together with Dirichlet
boundary conditions of the form

u(x, y) =


ϕ1(x), jeśli y = α1,

ϕ2(y), jeśli x = β1,

ϕ3(x), jeśli y = α2,

ϕ4(y), jeśli x = β2,

where (x, y) ∈ Ω = {(x, y) : α1 ≤ x ≤ α2 ∧ β1 ≤ y ≤ β2}.
Design of the finite difference method requires discretization of the problem. It consists

in covering the area Ω with a grid of isolated points, the so–called nodes [38, p. 159], and
then writing a differential problem for them. In the methods presented in this paper we
always assume a regular grid (see Fig. 2.1) with nodes distant by h and k from the x and
y axes, respectively.

Definition 15. Let n and m denote arbitrary integers. Then the grid of nodes Ωh,k is
called the set of points (xi, yj) such that

(xi, yj) = (ih, jk) ∈ Ω,

where h = (α2 − α1)/n, k = (β2 − β1)/m, with i = 0, 1, . . . , n, j = 0, 1, . . . ,m.

For the methods described in this work, we assumed a rectangular region Ω = [0, 1]×
×[0, 1] and a uniform grid where m = n, implying h = k.

Definition 16. Let us formulate any two-dimensional differential problem as follows:
determine the function u(x, y) defined in area Ω and satisfying the differential equation

Lu(x, y) = f(x, y), (x, y) ∈ Ω

and the boundary conditions

u(x, y) = ϕ(x, y), (x, y) ∈ Γ,

where f, ϕ are given functions, and the operator L can be nonlinear.

Definition 17. The differential problem from def. 16 can be represented in the form of
a differential approximation task defined as follows: find a function uh(x, y) defined in
area Ωh such that

Lhuh(x, y) = fh(x, y), (x, y) ∈ Ωh,
uh(x, y) = ϕh(x, y), (x, y) ∈ Γh,

where fh and ϕh are given functions approximating f and ϕ.
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Figure 2.1. The mesh grid 11 × 11 for the finite difference method.

Since we only analyse two-dimensional tasks, let us consider the following approxima-
tions of the partial derivatives of the function u(x, y) using central differences:

D2
xx = ∂2u

∂x2 (x, y) = u(x+ h, y)− 2u(x, y) + u(x− h, y)
h2 +O(h2),

D2
yy = ∂2u

∂y2 (x, y) = u(x, y + k)− 2u(x, y) + u(x, y − k)
k2 +O(k2).

For a given grid node (xi, yj) he central differences can be written in a simplified,
contracted form

σ2
xxuij = u(xi + h, yj)− 2u(xi, yj) + u(xi − h, yj)

h2 = ui+1,j − 2ui,j + ui−1,j

h2 ,

σ2
yyuij = u(xi, yj + k)− 2u(xi, yj) + u(xi, yj − k)

k2 = ui,j+1 − 2uij + ui,j+1)
k2 .

Note that the difference scheme based on the above two differences, is a five-point
scheme (see Fig. 2.1), zn principle, all the methods described in subsequent chapters
will operate on five-point schemes and only the central differences will be used. Using the
introduced notation, we can more easily write values of operators L and Lh. For example,
for the Poisson equation they will be of the form L = −(D2

xx+D2
yy) i Lh = −(σ2

xx+σ2
yy).

Transformation of a differential problem into a differential task leads — from the alge-
braic side — to obtaining the system of linear equations given by the formula

A~uh = ~fh (2.10)

where
~uh = [uh11, uh21, . . . , uh,m−1,1, uh12, . . . , uh,m−1,n−1]T ,

~fh = [fh11 + 1
k2ϕ10 + 1

h2ϕ01, . . . , fh22, . . . , fh,m−1,n−1 + 1
k2ϕm−1,n + 1

h2ϕm,n−1]T
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and
uhij = uh(ih, jk), fhij = fh(ih, jk), i = 1, 2 . . .m, j = 1, 2, . . . n.

In principle, the system of equations given by equation (2.10) can be solved by any
method. However, it should be noted that the matrix A is a sparse, banded matrix,
and the number of bands depends on the number of points considered in the differential
diagram, so for the diagram in Fig. 2.1 it will be a matrix with five bands. Moreover,
as the grid size increases, the size of the array matrix increases rapidly. If we assume
m = n, then we obtain a matrix of coefficients of the size expressed by the formula
(m−1)2×(m−1)2. For grids of the size m = n = 101 we have exactly 10 000 × 10 000 =
= 100 000 000 elements of matrix A. Storing such arrangements in computer memory
requires optimization of the way the matrix itself is stored as well as the use of appropriate
elimination methods.



3
Fundamentals of proper and

directed interval arithmetic

This chapter presents basic information about proper and interdigitated floating point
arithmetic. It also describes the types of numerical errors.

3.1. Floating-point arithmetic
The majority of computer calculations, which involve operations on real numbers, are

performed using the so-called floating point arithmetic (more information about this
arithmetic can be found, e.g., in [15], [19] and [74]).

Definition 18. Let some integer p ≥ 2 hereafter called a subbase, be fixed. Then, any
nonzero real number l can be uniquely represented by an ordered triple (s, e, d) chosen in
such a way that

l = s · d · pe, (3.1)

where s = +1 or −1 is the sign of the number l, e – lis an integer with a sign called the
feature or exponent, and the number d ∈ [1/p, 1) is called the mantissa.

In the general case numbers α and d may have infinitely many digits, e.g. when p = 10
and l = 1/3 or p = 2 and l = 1/10. However, for technical reasons, restrictions are
imposed on the number of digits of the mantissa d and on the size of the feature e. This
results in real numbers being represented in machine notation using their expansions of
the form (3.1), restricted to a finite number of digits.
When a real number, hereafter also called a floating point number, can be accurately

represented in a computer, we say that it is a machine number. Other real numbers are
rounded to machine numbers, provided their exponent e satisfies the constraint

emin ≤ e ≤ emax, (3.2)

whereby
emin ≤ 0 ≤ emax. (3.3)

If in calculations there occurs a number whose feature does not belong to the interval
defined by the non-equality (3.3), we speak about the emergence of surplus or deficit. This
problem rarely occurs in modern computers because the range of represented numbers is
so large that the occurrence of, e.g., an excess is rather the effect of an error in data or in
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the program. Let us denote by ω the smallest positive machine number. Let us assume

ω = p−tpemin ,

where t denotes the number of digits of the mantissa. We speak of an undershoot when,
during calculations, a number appears whose absolute value is smaller than ω.
The assignment of a number x ∈ R to its floating point representation fl(x) is usually

done by so-called rounding. In general, the following types of rounding are distinguished:

• to the nearest machine number or, in the case of equal distances,to the even number
(standard used),

• up (in the +∞ direction),
• down (in the −∞ direction),
• truncation (towards 0).

The floating-point arithmetic control unit [34–36] is responsible for the settings regarding
the type of rounding used.

Definition 19. Let a number x ∈ R and fl(x) denote its floating-point representation.
Then the accuracy of the floating-point arithmetic in which the number x has been ex-
pressed is given by the formula

u = maxdlogβ |x|e∈[emin,emax]
|x− fl(x)|
|x|

(based on [70]).

The standard rounding rule [35,42] states that if there is no overflow, then the floating
point representation of the number x is assumed to be

fl(x) = x(1 + δ),

with |δ| < u.
More on the representation of floating-point numbers can be found in IEEE-754 stan-

dards [34–36] available on the organization’s website at [34]. The implementation of the
methods presented in the following chapters was done in C++ language, and to represent
real numbers we chose long double type. It is the type which allows to store floating point
numbers, with the highest precision, available in C++ language standard. It should be
noted that there are libraries that allow storing numbers in any precision, i.e. limited
only by the size of available computer memory (see [17] and [41]). Table 3.1 provides
basic information about the data types for representing floating-point numbers in these
languages. It is worth noticing, see Table 3.1, that while for particular types the number
of bits used to represent the property and the mantissa is - theoretically - strictly de-
termined, i.e. compliant with the IEEE-754, standard, in practice - the number of bytes
used to store them in the computer’s memory depends both on the machine itself (specif-
ically, on the size of the so-called „word”,meaning the computer’s memory unit) and on
the compiler with which we build the program. This results from the fact that compilers
of various producers implement different solutions, see Table 3.2. These are important
points to pay attention to when creating and running a program.
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Table 3.1. Data types for floating-point number representation in C++
Język Typ danych Mantysa Cecha
C++ float 24 8

double 53 11
long double 64 16

Table 3.2. Number of bytes used to represent floating point numbers in C++ depending on the
compiler and the word size in the computer’s memory

Segment word size 16-bit 32-bit 64-bit
Compiler M

icrosoft

Borland

W
atcom

M
icrosoft

IntelW
indow

s

Borland

W
atcom

G
C
C

v.4.x

IntelLinux

M
icrosoft

IntelW
indow

s

G
C
C

IntelLinux

float 4 4 4 4 4 4 4 4 4 4 4 4 4
double 8 8 8 8 8 8 8 8 8 8 8 8 8

long double 10 10 8 8 16 10 8 12 12 8 16 16 16

3.2. Numerical errors
All inaccuracies arising during calculations on a digital machine are called numerical

errors. According to [16] three types of numerical errors can be distinguished:

a) representation errors,
b) truncation errors,
c) rounding errors,
d) input data errors.

Representation errors. The computer’s memory is limited, whereas the set of real
numbers is an infinite set. Moreover, a real number may have an infinite representation,
which often depends on the number system in which it is expressed. The exceptions are
infinitesimal numbers e.g.

√
2, π, e, which have an infinite representation in every system.

As a result, numbers entered as input data may have a representation in the computer’s
memory and registers that differs from their exact values. We refer to this situation as
representation errors.

Truncation errors. Often determining the exact solution would require an infinite
number of operations. It is then limited, causing so-called truncation errors. This happens
e.g. in the case of calculating the values of infinite sums, when one applies an approxi-
mation taking into account the sum of a finite number of components, sufficiently close
to the exact value.

Example 3.1. Calculating the expression ex can be reduced to the task of finding the
sum of the series

1 + x+ 1
2x

2 + . . .+ 1
n
xn + . . . .

For a sufficiently large value of n the sum

1 + x+ 1
2x

2 + . . .+ 1
n
xn
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could be equal to the pre-rounded ex, i.e. the misrepresentation. Due to the long com-
putation time of such sums, a restriction to a relatively small number of components is
applied and hence truncation errors arise.

Rounding errors. These errors occur during calculations and are generally difficult
to avoid. They result from the fact that the result of each arithmetic operation is rounded
to a machine value. They may be reduced by skillfully changing the order of operations.
A detailed analysis of rounding errors occurring during calculations on floating point
numbers was undertaken by J. H. Wilkinson in his work [99].

Input errors. Errors resulting from the difference between the value entered into
computer calculations and the exact value. They are most often caused by the inaccuracy
of the measuring equipment analysing specific physical parameters.

3.3. Proper interval arithmetic
In interval arithmetic, each number is represented as a pair - the lower and upper ends

of an interval. The issues connected with performing arithmetic operations and defining
functions operating on intervals are the subject of research in a separate field, the so-
called interval analysis. In this section, basic information about it is presented, which is
taken from the works [40,73].

Definition 20. Assuming that values a−, a+ ∈ R, the set of ordered pairs [a−, a+] defined
as follows:

A = [a−, a+] = {a ∈ R : a− ≤ x ≤ a+}

is called the set of proper intervals.

The following rounding off shall be used in calculating the ends of the interval:

• a− := Oa− – rounding down (in the −∞ direction),
• a+ :=M a+ – round up (in the +∞ direction).

Definition 21 (equality of intervals). Let X and Y denote the proper intervals. Then

X = Y ⇔ x− = y− ∧ x+ = y+.

Definition 22. The intersection of intervals is defined as follows:

X ∩ Y = {z : z ∈ X ∧ z ∈ Y } = [max{x−, y−},min{x+, y+}].

If y+ < x− ∨ x+ < y−, then
X ∩ Y = �.

Definition 23. The union of itervals is given by

X ∪ Y = {z ∈ R : z ∈ X ∨ z ∈ Y }.

In general, such a union is not a range, but a set. Therefore, in calculations, we use
union of the form

X∪Y = [min{x−, y−},max{x+, y+}].

There is therefore
X ∪ Y ⊆ X∪Y.

Example 3.2. Take the intervals X = [−1, 0] and Y = [1, 2]. Then X∪Y = [−1, 2],
while X ∪ Y = [−1, 2]− (0, 1).
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Intersection plays an important role in interval analysis. If we assume that two intervals
X and Y contain an exact solution, then the interval X ∩ Y , which may be narrower,
also contains a solution..

Example 3.3. Suppose that two experiments were performed independently to measure
the value of the acceleration of the Earth, and the results were r1 = 9.8 and r2 = 9.9,
both with error ε < 0.1. In the interval representation, we have R1 = [9.7, 9.9] and R2 =
[9.8, 10.0], respectively, so R1 ∩ R2 = [9.8, 9.9], which is a narrower interval than both
input intervals. If the intersection result was empty, it would mean that one of the
measurements may have been made incorrectly or the errors were estimated incorrectly.

The basic values which characterize the interval are

a) the width of the interval, denoted by w(X), defined as the difference

w(X) = x+ − x−,

b) the absolute value of |X| defined as

|X| = max{|x−|, |x+|},

c) the centre of the interval, denoted by m(X), given by

m(X) = 1
2(x− + x+).

Just as on numbers, arithmetic operations can be performed on intervals, but because
of the way intervals are specified, they are similar to operations on elements of sets.

Definition 24. Let � denote a binary arithmetic operation, while X i Y denote intervals.
Then

X � Y = {x� y : x ∈ X, y ∈ Y }. (3.4)

Based on the general definition (3.4) basic arithmetic operations and the ends of the
resulting intervals have the following forms:

a) addition
X + Y = {x+ y : x ∈ X, y ∈ Y } = [x− + y−, x+ + y+],

x− + y− ≤ x+ y ≤ x+ + y+,

b) subtraction

X − Y = {x− y : x ∈ X, y ∈ Y } = [x− − y+, x+ − y−],

x− − y+ ≤ x− y ≤ x+ − y−,

c) multiplication

X · Y = {x · y : x ∈ X, y ∈ Y } = [min S,max S],

where
S = {x−y−, x−y+, x+y−, x+y+},

d) division
X/Y = {x/y : x ∈ X, y ∈ Y } = X · (1/Y ),

1/Y = {1/y : y ∈ Y ∧ 0 /∈ Y } = [1/y+, 1/y−].
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Just as for floating-point numbers, functions can be defined for intervals.

Definition 25. Let a real function f of a real variable x and an interval X be given.
We define the interval function f(X) as follows:

f(X) = {f(x) : x ∈ X}.

Arithmetic operations should not be confused with operations on sets, because

X + Y 6= X ∪ Y,
X − Y 6= X\Y,
X · Y 6= X ∩ Y.

In the implementation of interval arithmetic, it is important that each action is performed
in the following order: setting the rounding down, computing the left end of the interval,
setting the rounding up, computing the right end of the interval.

3.4. Directed interval arithmetic
In this section, by directed interval arithmetic we mean the arithmetic described in the

works of E. Popova [86] and S. Markov [69].We present selected information from those
works, concerning the most important definitions, which turned out to be crucial for the
implementation of this arithmetic in the C++ language (made available as the Interval.h
module). From the theoretical point of view, the most important is that we generalise
here the notion of interval, allowing it to include also the situations where the left end is
greater than the right end.

Definition 26. The set H of all directed intervals is defined as follows:

H =
{

[a, b] : a, b ∈ R = IR ∪ IR, gdzie IR
}

=
{

[a−, a+] : a− ≤ a+ ∧ a−, a+ ∈ R
}

∪
{

[a−, a+] : a− > a+ ∧ a−, a+ ∈ R
}
.

Next, let us enter the set of intervals containing zero as well as the interval sign and
direction operators – they will be necessary to define arithmetic operations on directed
intervals.

Definition 27. The set of directed intervals containing zero is called the set

T =
{
A ∈ IR : a−a+ ≤ 0

}
∪
{
A ∈ IR : a−a+ ≤ 0

}
= Z ∪ Z.

Definition 28. For any directed interval A = [a−, a+] its sign is called the quantity

σ(A) =
{

+, jeżeli 0 ≤ a− · a+,

−, jeżeli a− · a+ ≤ 0, ale [a−, a+] 6= [0, 0].

Definition 29. The direction of the directed interval A = [a−, a+] is called the quantity

τ(A) =
{

+, jeżeli a− ≤ a+,

−, otherwise.

Let us now define basic arithmetic operations in directed interval arithmetic.

Definition 30. We define addition of directed intervals as follows:

A+B = [a− + b−, a+ + b+] dla A,B ∈ H.
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Definition 31. Multiplication of intervals is defined as

A×B =



[a−σ(B)b−σ(A), aσ(B)bσ(A)] dla A,B ∈ H\T,
[aσ(A)τ(B)b−σ(A), aσ(A)τ(B)bσ(A)] dla A ∈ H\T, B ∈ T,
[a−σ(B)bσ(B)τ(A), aσ(B)bσ(B)τ(A)] dla A ∈ T, B ∈ H\T,
[min{a−b+, a+b−},max{a−b−, a+b+}] dla A,B ∈ Z,
[min{a−b−, a+b+},max{a−b+, a+b−}] dla A,B ∈ Z,
0, dla A ∈ Z, B ∈ Z lub A ∈ Z, B ∈ Z.

From the definition of multiplication for an interval B ∈ H we obtain

(−1)×B = [−b+,−b−] = −B.

Hence, subtraction can be defined as

A−B = A+ (−B) = [a− − b+, a+ − b−], A,B ∈ H.

Note that any directed improper interval, i.e., A = [a−, a+], satisfying the conditions
a+ ≤ b ≤ a−, is contained in the point interval B = [b, b], A ⊆ B.

Definition 32. With respect to the operations of addition and multiplication, there are
opposite and inverse elements defined as follows:

−hA = [−a−,−a+] dla A ∈ H,
1/hA = [1/a−, 1/a+] dla A ∈ H\T.

For intervals A = [a−, a+] ∈ H\T there is also an operator

1/A = 1/hA_ = [1/a+, 1/a−],

where A_ = [a+, a−], with 1/h(1/A) = 1/(1/hA) = A_. The unary-argument operator
A_ is called a dual operator because of the following property:

A_ = [a+, a−] = −h(−A) = −(−hA).

Moreover, for A,B ∈ H the following properties occur:

A ⊂ B ⇐⇒ A_ ⊇ B_, (A ◦B)_ = A_ ◦B_, ◦ ∈ {+,−,×, /} .

Definition 33. We define division of directed intervals as follows:

A/B = A× (1/B) =
{

[a−σ(B)/bσ(A), aσ(B)/b−σ(A)] dla A,B ∈ H\T,
[a−σ(B)/b−σ(B)τ(A), aσ(B)/b−σ(B)τ(A)] dla A ∈ T, B ∈ H\T.

Note also that for each interval A = [a−, a+] ∈ H we can assign a proper interval using
the function

pro(A) =
{

[a−, a+], jeśli τ(A) = +,
[a+, a−], jeśli τ(A) = −.

3.5. Interval systems of linear equations
Solving systems of linear equations in interval arithmetic is a problem whose complexity

results from the very posing of the problem. Let us consider a system of linear equations
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of the form
Ax = b, gdzie A ∈ IRn×n, b,x ∈ IRn. (3.5)

Equation (3.5) defines the entire set of systems of linear equations defined as follows:

Ax = b, gdzie A ∈ A, b ∈ b oraz x ∈ x.

While for classical systems of linear equations we can verify the existence of a univariate
solution by the Kroneckera-Capellego1, for interval systems of equations this has been
shown to be an NP-hard problem in general (see [48], [87] and [88]). According to [28]
and [89] we can say that x ∈ Rn and at the same time x ∈ x is a solution which is:

• weak if ∃A ∈ A,∃b ∈ b : Ax = b,
• strong if ∀A ∈ A,∀b ∈ b : Ax = b,
• tolerable if ∀A ∈ A,∃b ∈ b : Ax = b,
• controllable if ∃A ∈ A,∀b ∈ b : Ax = b.

Crucial for the methods described in this paper, however, is the theorem given by
Moore and Kearfott (see p. 89 of theorem 7.1 in [73]), reproduced below.

Theorem 1. If the division by an interval containing zero occurs in no step of the
exact method used for solving the system of equations (3.5) and no overflow or underflow
exception arises, then for every matrix A ∈ A and for every vector b ∈ b there exists a
solution x ∈ x.

In the implementation of interval arithmetic, the Interval.h module takes into account
the situations mentioned in Theorem 1 by aborting the computation and raising a Run-
time Exception, with an appropriate message, whenever a given arithmetic operation
causes them. Therefore, we can assume that for the systems of linear equations consid-
ered in this work we obtain a strong solution, as long as the computation ends without
the above exceptions. However, this is not equivalent to finding solutions for the given
differential equations solved by finite difference methods. In order to be certain that the
resulting interval x contains the exact solution we would have to be guaranteed that we
have correctly estimated the error of the method. The error which, as described in the
following sections, we include in the vector b. Since this error, described in the following
sections, is estimated experimentally, all the proposed methods are heuristic in nature.
Let us note that if we were to obtain exact methods from the area of verified computing

– i.e., full automatic verification of existence of solutions to elliptic PDEs – using FDM
methods, then the existence of an exact solution to a given PDE within an interval x

requires a suitable mathematical proof, which in interval arithmetic is no trivial task, also
due to the fact that in general solving a system of equations resulting from a differential
scheme may itself be an NP-hard problem. It also involves the necessity of making many
assumptions about the form of the equation as well as about the function that is the so-
lution. The first non-heuristic interval method for verification of existence and estimation
of solutions for a family of elliptic equations was proposed by Nakao. However, it is based
on the theory of FEM methods and does not require solving interval systems of linear
equations, but only classical systems in floating point arithmetic. Only intermediate and
final solution estimates are written as intervals. The method is described in detail in the
next chapter.

1One of the basic theorems of elementary linear algebra – says that if the row of matrix A is equal
to the row of the same matrix extended by a vector of free expressions, i.e. [A|b] hen the solution of the
system of equations exists and is unambiguous (on the basis of [47])
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3.6. Implementation of interval arithmetic
Details of the implementation of directed interval arithmetic are presented in the works

[43], [69] and [86]. Basically, its implementation comes down to determining for intervals
A and B and each arithmetic operation ◦ ∈ {+,−,×, /} the resulting intervals of the
form

♦(A ◦B) = [∇(A ◦B)−,∆(A ◦B)+],

./ (A ◦B) = [∆(A ◦B)−,∇(A ◦B)+],

where the operator ♦ denotes a rounding to the outside and the operator ./ − denotes
a rounding to the inside. The symbol ∇ is used for rounding to −∞, and the symbol
∆ – for rounding in the +∞ direction. An example implementation of such specified
arithmetic operations in interval directed arithmetic is available in the PASCAL-XSC
and C-XSC languages supporting the IEEE-1788 standard for floating-point arithmetic,
described in detail in [34].
From the above formulas, it follows that during implementation we obtain two resultant

intervals for each of the arithmetic operations. Thus, there arises the problem of choosing
the interval which is to be used in further calculations. From the theoretical point of view,
we should also consider two more intervals as potential results of arithmetic operations:[

∇(A ◦B)−,∇(A ◦B)+] i
[
∆(A ◦B)−,∆(A ◦B)+] .

Let us define the way to determine the width w of the interval A = [a−, a+]. It will be
a starting point for the definitions given below.

Algorytm 3.1. Interval width
w := ∆ (a+ − a−)
if w < 0 then
w := −w

end if
w̄ := ∇ (a+ − a−)
if w̄ < 0 then
w̄ := −w̄

end if
if w < w̄ then
w := w̄

end if

The way addition and subtraction operations are implemented for the intervals A =
[a−, a+] and B = [b−, b+] is shown in pseudocode 3.2. and 3.3..

Algorytm 3.2. Execution of an addition operation in interval arithmetic
1: w := ∆ (a+ − a−)
2: if a− ≤ a+ and b− ≤ b+ (proper intervals) then
3: A+B := [∇ (a− + b−) ,∆ (a+ + b+)]
4: else
5: c− := ∇ (a− + b−) , c+ := ∆ (a+ + b+)
6: d− := ∆ (a− + b−) , d+ := ∇ (a+ + b+)
7: calculate the width w1 of [c−, c+]
8: calculate the width w2 of [d−, d+]
9: if w1 ≥ w2 then
10: A+B := [c−, c+]
11: else
12: A+B := [d−, d+]
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13: end if
14: end if

Algorytm 3.3. Realization of subtraction operations in interval arithmetic
1: if a− ≤ a+ and b− ≤ b+ then
2: A−B := [∇ (a− − b+) ,∆ (a+ − b−)]
3: else
4: c− := ∇ (a− − b+) , c+ := ∆ (a+ − b−)
5: d− := ∆ (a− − b+) , d+ := ∇ (a+ − b−)
6: calculate the width w1 of [c−, c+]
7: calculate the width w2 of [d−, d+]
8: if w1 ≥ w2 then
9: A−B := [c−, c+]
10: else
11: A−B := [d−, d+]
12: end if
13: end if

Note that among the possible resulting intervals, the widest one is always chosen.
Implementations of multiplication and addition operations are much more complicated,
and their realizations are presented below in algorithms 3.4. and 3.5..

Algorytm 3.4. Implementation of multiplication operations in interval arithmetic
1: if a− ≤ a+ and b− ≤ b+ (proper intervals) then
2: A×B = [min {∇ (a−b−) ,∇ (a−b+) ,∇ (a+b−) ,∇ (a+b+)}
3: max {∆ (a−, b−),∆ (a−b+) ,∆ (a+b−) ,∆ (a+b+)}]
4: else
5: if (a− < 0 and a+ < 0 or a− > 0 and a+ > 0) and (b− < 0 and b+ < 0 or

b− > 0 and b+ > 0) then
6: if a− > 0 and a+ > 0 and b− > 0 and b+ > 0 then
7: c− := ∇ (a−b−) , c+ := ∆ (a+b+)
8: d− := ∆ (a−b−) , d+ := ∇ (a+b+)
9: calculate C ×D
10: else
11: if a− > 0 and a+ > 0 and b− < 0 and b+ < 0 then
12: c− = ∇ (a+b−) , c+ := ∆ (a−b+)
13: d− := ∆ (a+b−) , d+ := ∇ (a−b+)
14: calculate C ×D
15: else
16: if a− < 0 and a+ < 0 and b− > 0 and b+ > 0 then
17: c− := ∇ (a−b+) , c+ := ∆ (a+b−)
18: d− := ∆ (a−b+) , d+ := ∇ (a+b−)
19: calculate C ×D
20: else
21: c− = ∇ (a+b+) , c+ := ∆ (a−b−)
22: d− := ∆ (a+b+) , d+ := ∇ (a−b−)
23: calculate C ×D
24: end if
25: end if
26: end if
27: else
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28: if (a− < 0 and a+ < 0 or a− > 0 and a+ > 0) and (b− ≤ 0 and b+ ≥ 0 or
b− ≥ 0 and b+ ≤ 0) then

29: if a− > 0 and a+ > 0 and b− ≤ b+ then
30: c− := ∇ (a+b−) , c+ := ∆ (a+b+)
31: d− := ∆ (a+b−) , d+ := ∇ (a+b+)
32: calculate C ×D
33: else
34: if a− > 0 and a+ > 0 and b− > b+ then
35: c− := ∇ (a−b−) , c+ := ∆ (a−b+)
36: d− := ∆ (a−b−) , d+ := ∇ (a−b+)
37: calculate C ×D
38: else
39: if a− < 0 and a+ < 0 and b− ≤ b+ then
40: c− := ∇ (a−b+) , c+ := ∆ (a−b−)
41: d− := ∆ (a−b+) , d+ := ∇ (a−b−)
42: calculate C ×D
43: else
44: c− := ∇ (a+b+) , c+ := ∆ (a+b−)
45: d− := ∆ (a+b+) , d+ := ∇ (a+b−)
46: calculate C ×D
47: end if
48: end if
49: end if
50: else
51: if (a− ≤ 0 and a+ ≥ 0 or a− ≥ 0 and a+ ≤ 0) and

(
b−1 < 0 and b+ < 0

or b− > 0 and b+ > 0) then
52: if a− ≤ a+ and b− > 0 and b+ > 0 then
53: c− := ∇ (a−b+) , c+ := ∆ (a+b+)
54: d− := ∆ (a−b+) , d+ := ∇ (a+b+)
55: calculate C ×D
56: else
57: if a− ≤ a+ and b− < 0 and b+ < 0 then
58: c− := ∇ (a+b−) , c+ := ∆ (a−b−)
59: d− := ∆ (a+b−) , d+ := ∇ (a−b−)
60: calculate C ×D
61: else
62: if a− > a+ and b− > 0 and b+ > 0 then
63: c− := ∇ (a−b−) , c+ := ∆ (a+b−)
64: d− := ∆ (a−b−) , d+ := ∇ (a+b−)
65: calculate C ×D
66: else
67: c+ := ∇ (a+b+) , c+ := ∆ (a−b+)
68: d− := ∆ (a+b+) , d+ := ∇ (a−b+)
69: calculate C ×D
70: end if
71: end if
72: end if
73: else
74: if a− ≥ 0 and a+ ≤ 0 and b− ≥ 0 and b+ ≤ 0 then
75: c21 := ∇ (a−b−) , c−2 := ∇ (a+b+)
76: if c−1 ≤ c

−
2 then
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77: c− := c−2
78: else
79: c− := c−1
80: c+1 := ∆ (a−b+) , c+2 := ∆ (a+b−)
81: end if
82: if c+1 ≤ c

+
2 then

83: c+ := c+1
84: else
85: c+ := c+2
86: d−1 := ∆ (a−b−) , d−2 := ∆ (a+b+)
87: end if
88: if d−1 ≤ d

−
2 then

89: d− := d−2
90: else
91: d− := d−1
92: d+

1 := ∇ (a−b+) , d+
2 := ∇ (a+b−)

93: end if
94: if d+

1 ≤ d
+
2 then

95: d+ := d+
1

96: else
97: d+ := d+

2
98: calculate C ×D
99: end if
100: else
101: A×B := [0, 0]
102: end if
103: end if
104: end if
105: end if
106: end if
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Algorytm 3.5. Execution of division operations in interval arithmetic
1: if a− ≤ a+ and b− ≤ b+ (proper intervals) then
2: A/B := [min {∇ (a−/b−) ,∇ (a−/b+) ,∇ (a+/b−) ,∇ (a+/b+)}
3: max {∆ (a−/b−) ,∆ (a−/b+) ,∆ (a+/b−) ,∆ (a+/b+)}]
4: else
5: if (a− < 0 and a+ < 0 or a− > 0 and a+ > 0) and (b− < 0 and b∗ < 0 or

b− > 0 and b+ > 0) then
6: if a− > 0 and a+ > 0 and b− > 0 and b+ > 0 then
7: c− := ∇ (a−/b+) , c+ := ∆ (a+/b−)
8: d− := ∆ (a−/b+) , d+ := ∇ (a+/b−)
9: calculate C/D
10: else
11: if a− > 0 and a+ > 0 and b− < 0 and b+ < 0 then
12: c− := ∇ (a+/b+) , c+ := ∆ (a−/b−)
13: d− := ∆ (a+/b+) , d+ := ∇ (a−/b−)
14: calculate C/D
15: else
16: if a− < 0 and a+ < 0 and b− > 0 and b+ > 0 then
17: c− := ∇ (a−/b−) , c+ := ∆ (a+/b+)
18: d− := ∆ (a−/b−) , d+ := ∇ (a+/b+)
19: calculate C/D
20: else
21: c− := ∇ (a+/b−) , c+ := ∆ (a−/b+)
22: d− := ∆ (a+/b−) , d+ := ∇ (a−/b+)
23: calculate C/D
24: end if
25: end if
26: end if
27: else
28: if (a− ≤ 0 and a+ ≥ 0 or a− ≥ 0 and a+ ≤ 0) and (b− < 0 and b+ < 0 or

b− > 0 and b+ > 0) then
29: if a− ≤ a+ and b− > 0 and b+ > 0 then
30: c− = ∇ (a−/b−) , c+ := ∆ (a+/b−)
31: d− := ∆ (a−/b−) , d+ := ∇ (a+/b−)
32: calculate C/D
33: else
34: if a− ≤ a+ and b− < 0 and b+ < 0 then
35: c− := ∇ (a+/b+) , c+ := ∆ (a−/b+)
36: d− := ∆ (a+/b+) , d+ := ∇ (a−/b+)
37: calculate C/D
38: else
39: if a− > a+ and b− > 0 and b+ > 0 then
40: c− := ∇ (a−/b+) , c+ := ∆ (a+/b+)
41: d− := ∆ (a−/b+) , d+ := ∇ (a+/b+)
42: calculate C/D
43: else
44: c− := ∇ (a+/b−) , c+ := ∆ (a−/b−)
45: d− := ∆ (a+/b−) , d+ := ∇ (a−/b−)
46: calculate C/D
47: end if
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48: end if
49: end if
50: else
51: error "division by interval containing zero"
52: end if
53: end if
54: end if

It is worth noting that the implementation of proper interval arithmetic, based on
algorithms 3.1. do 3.5. is consistent with the later IEEE-1788 standard and related pub-
lications such as [51] and [84]. It should be noted, however, that in the developed module
Interval.h it is not possible to divide by the intervals containing zero, they are handled
in a different way than presented in [51], because, instead of the resulting interval with
one or both ends equal to +/ −∞ the execution time exception is returned (see [62]).
This is closely related to the fact that the computation takes into account Theorem 1
(Rump) of Section 3.5.



4
Nakao’s method

In his works, M. T. Nakao presented numerical methods of verifying the existence of
solutions for selected types of partial differential equations. These methods are based on
the theory related to the finite element method. Thus, they belong to a different class of
methods than those presented within this work. The chapter is limited to the description
of those that deal with linear elliptic PDEs.

4.1. Theoretical assumptions
Let us represent second order linear PDEs in the following form:

−
n∑

i,j=1

∂

∂xj

(
aij(x) ∂u

∂xi

)
+

n∑
i=1

bi(x) ∂u
∂xi

+ c(x)u = f(x), x ∈ Ω, (4.1)

where Ω denotes the bounded open set in the space Rn, and the coefficients aij(x), bi(x)
and c(x) and the function f(x) satisfy the following conditions:

aij(x) ∈ C1(Ω), i, j = 1, 2 . . . , n,
bi(x) ∈ C(Ω), i = 1, 2 . . . , n,
c(x) ∈ C(Ω), f(x) ∈ C(Ω)

(4.2)

and
n∑

i,j=1
aijξiξj ≥ c̃

n∑
i=1

ξ2
i , ∀ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, x ∈ Ω,

where c̃ denotes a positive constant independent of x and ξ, while Ω denotes the closure
of the set Ω, and C(Ω) the space of continuous functions on the set Ω, C1(Ω) the space
of continuous functions together with first order derivatives on the same set. As already
mentioned in Chapter 2, finding solutions of such equations is not a trivial task; very
often it is not possible to find their analytic form.
Therefore, in his papers, Nakao simplifies the problem and restricts himself to con-

sidering a certain case of this type of equation with Dirichlet boundary conditions. The
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problem under consideration is then written as follows:

−
n∑

i,j=1

∂

∂xj

(
aij(x) ∂u

∂xi

)
+

n∑
i=1

bi(x) ∂u
∂xi

+ c(x)u = f(x), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(4.3)

This problem has an explicit classical solution if the functions aij(x), bi(x), c(x) and
f(x) and the edge ∂Ω are sufficiently smooth. However, these requirements and the
requirements for the differentiability of the function u can be reduced by introducing the
notion of a weak solution. For this purpose, we need to cite the necessary notions from
functional analysis1. Let L2(Ω) denote the space of integrable functions with square in
the set Ω, i.e.

L2(Ω) =

f :
∫
Ω

|f(x)|2 dx <∞

 .

The norm and the product in this space are defined by the formulas

‖f‖L2(Ω) =
√√√√∫

Ω

|f(x)|2 dx and (f, g) =
∫
Ω

f(x)g(x)dx.

By L∞(Ω) we will denote the space of functions bounded almost everywhere with norm2

‖f‖ = ess sup
x∈Ω

|f(x)|.

Let us further define the space denoted by H1
0(Ω) as follows:

H1
0(Ω) =

{
u ∈ L2(Ω) : ∂u

∂xi
∈ L2(Ω)(i = 1, 2, . . . , n), u = 0 na brzegu ∂Ω

}
.

In this dissertation we will consider only two-dimensional problems. For the rectangular
region Ω = [0, 1] × [0, 1] the equation with Dirichlet homogeneous boundary condition
has the form

− ∂

∂x

(
a11(x, y)∂u

∂x

)
− ∂

∂x

(
a12(x, y)∂u

∂y

)
− ∂

∂y

(
a21(x, y)∂u

∂x

)
− ∂

∂y

(
a22(x, y)∂u

∂y

)

+b1(x, y)∂u
∂x

+ b2(x, y)∂u
∂y

+ c(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω, (4.4)

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, (x, y) ∈ ∂Ω,

where individual functions belong to the following classes:

aij , bi(x, y), c(x, y) ∈ C(Ω), f(x, y) ∈ L2(Ω)

and aij(x, y) ≥ c̃ > 0 for i, j = 1, 2 and (x, y) ∈ Ω. In contrast, in the papers [76], [78]
and [79], to which we are going to refer, a boundary problem of the form

4u+ b∇u+ cu = −f in the Ω region,
u = 0 at the edge ∂Ω,

(4.5)

1That is, the branch of mathematics concerned with the study of the properties of function spaces.
2The notation ess sup denotes the supremum of the function f(x) for x ∈ Ω except for a finite number

of points xi ∈ Ω, where i = 1, 2, . . . N .
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where, in general, Ω denotes a bounded convex set in the space Rn(1 ≤ n ≤ 3)) with
piecewise smooth edges, u = u(x̂), and b denotes the vector of functions that are coeffi-
cients of the equation, which we write as b = (bi)(1 ≤ n ≤ 3) where bi = bi(x̂), c = c(x̂)
and f = f(x̂) for elements x̂ ∈ Rn.
The following sections present the two basic steps of Nakao’s method. Step one, which

is the Galerkin approximation from which we obtain an initial approximation of the
solution, and step two, the iterative method of estimating the interval containing the
exact solution of the problem. the exact problem.

4.2. Galerkin approximation
Let us consider a boundary problem of the form

− ∂u

∂x2 −
∂u

∂y2 + c(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, x, y ∈ {0, 1} ,
where Ω = (0, 1)× (0, 1).

(4.6)

According to the Galerkin approximation, this problem can be defined as the problem of
finding such a real function u(x, y) ∈ H1

0(Ω), that

1∫
0

1∫
0

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

)
dxdy +

1∫
0

1∫
0

c(x, y)u(x, y)v(x, y)dxdy

=
1∫

0

1∫
0

f(x, y)v(x, y)dxdy

(4.7)

for each function v(x, y) ∈ H1
0(Ω).

We will use this approximation for equation (4.5). Thus, in a weak form, the problem
can be formulated as follows: find a real function u(x) ∈ H1

0(Ω), such that

(∇u,∇ϕ) = (b∇u+ cu, ϕ) + (f, ϕ), (4.8)

where (·, ·) denotes the scalar product in L2(Ω) space defined as follows:

(u, v) =
∫
Ω

u(x, y)v(x, y)dxdy.

Note that equations (4.5) and (4.8) are not the same. Unification requires taking the
function −c(x, y) from equation (4.5) as the function c(x, y) in the Galerkin approxima-
tion. Hence, in fact, using the coefficients from the Nakao equations, we will consider an
equation of the form

1∫
0

1∫
0

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

)
dxdy −

1∫
0

1∫
0

c(x, y)u(x, y)v(x, y)dxdy

=
1∫

0

1∫
0

f(x, y)v(x, y)dxdy.

(4.9)

To construct a finite element-based approximation for the rectangular region Ω =
[0, 1]×[0, 1], we divide each interval [0, 1] into n subintervals, i.e.into subintervals [xi, xi+1]
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and [yj , yj+1] with points xi = ih (i = 0, 1, . . . , n) and yj = jh (j = 0, 1, . . . , n). The
nodes thus defined form a so-called stretched grid over the area Ω. On this mesh we
can define the key finite elements for the method described. In Nakao’s work, triangular
elements were chosen. Such a triangulation for area Ω is shown in Fig. 4.1.

yn = 1

yn−1

yj+1

yj

yj−1

y1

y0 = 0

x0 = 0
x1 xn−1 xn = 1xi−1 xi xi+1

Figure 4.1. Triangulation in the Galerkin approximation for the area Ω = [0, 1]×[0, 1]

(xi−1, yj+1) (xi, yj+1)

(xi−1, yj)
(xi, yj)

(xi+1, yj)

(xi, yj−1) (xi+1, yj−1)

Tij1

Tij2

Tij3

Tij4

Tij5

Tij6

Figure 4.2. Triangulation for node (xi, yj), mesh with neighboring nodes

For each node (xi, yj) the surrounding areas T ijk (k = 1, 2, . . . , 6) are defined as follows:

T ij1 = {(x, y) : ih ≤ x ≤ (i+ 1)h, jh ≤ y ≤ (i+ j + 1)h− x} ,
T ij2 = {(x, y) : (i− 1)h ≤ x ≤ ih, (i+ j)h− x ≤ y ≤ (j + 1)h} ,
T ij3 = {(x, y) : (i− 1)h ≤ x ≤ ih, jh ≤ y ≤ (i+ j)h− x} ,
T ij4 = {(x, y) : (i− 1)h ≤ x ≤ ih, (i+ j − 1)h− x ≤ y ≤ jh} ,
T ij5 = {(x, y) : ih ≤ x ≤ (i+ 1)h, (j − 1)h ≤ y ≤ (i+ j)h− x} ,
T ij6 = {(x, y) : ih ≤ x ≤ (i+ 1)h, (i+ j)h− x ≤ y ≤ jh} .
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(xi, yj)

ϕ(xi, yj)

(xi+1, yj)

(xi−1, yj)

(xi−1, yj+1)

(xi, yj+1)

(xi, yj−1) (xi+1, yj−1)
Figure 4.3. Pyramidal basis function ϕij defined for node (xi, yj)

We will approximate the weak solution u ∈ H1
0(Ω) by a linear combination of continuous

functions on the set Ω,which are linear in each of the resulting triangles. These functions
with indices i and j are pyramidal and take value 1 at each node (xi, yj) and value 0 at
the other nodes. They are defined as follows:

ϕij =



1− x−xi
h − y−yj

h , (x, y) ∈ T ij1 ,

1− y−yj
h , (x, y) ∈ T ij2 ,

1− xi−x
h , (x, y) ∈ T ij3 ,

1− xi−x
h − yj−y

h , (x, y) ∈ T ij4 ,

1− yj−y
h , (x, y) ∈ T ij5 ,

1− x−xi
h , (x, y) ∈ T ij6 ,

0, in other cases.

(4.10)

The functions ϕij are elements of the space H1
0(Ω). Due to their shape, they can be called

pyramidal (Fig. 4.3).
The partial derivatives of the basis functions ϕij , defined in equation (4.10), can be

easily determined. They are given by the following formulas:

∂ϕij(x, y)
∂x

=



− 1
h , (x, y) ∈ T ij1 ,

0, (x, y) ∈ T ij2 ,
1
h , (x, y) ∈ T ij3 ,
1
h , (x, y) ∈ T ij4 ,

0, (x, y) ∈ T ij5 ,

− 1
h , (x, y) ∈ T ij6 ,

0, in other cases,

(4.11)

∂ϕij(x, y)
∂y

=



− 1
h , (x, y) ∈ T ij1 ,

− 1
h , (x, y) ∈ T ij2 ,

0, (x, y) ∈ T ij3 ,
1
h , (x, y) ∈ T ij4 ,
1
h , (x, y) ∈ T ij5 ,

0, (x, y) ∈ T ij6 ,

0, in other cases.

(4.12)

Definition 34. Let Vh denote any set which is a linear combination of ϕij functions,
that is, Vh = spanϕij. Then, the Galerkin approximation of the problem (4.8) is called
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the problem of finding a function uh ∈ Vh, such that

1∫
0

1∫
0

u′h(x, y)v′h(x, y)dxdy −
1∫

0

1∫
0

c(x, y)uh(x, y)vh(x, y)dxdy =

=
1∫

0

1∫
0

f(x, y)vh(x, y)dxdy,

(4.13)

for each function vh ∈ Vh.

Note that the function uh ∈ Vh can be written as

uh(x, y) =
n−1∑
i=1

n−1∑
j=1

uijϕij(x, y). (4.14)

After substituting equation (4.14) into equation (4.13) we obtain the equivalent problem:
find a vector ~u = (u1,1, . . . u1,n−1, . . . , un−1,1, . . . un−1,n−1)T , such that

n−1∑
i=1

n−1∑
j=1

uij

 1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕkl
∂x

+ ∂ϕij
∂y

∂ϕkl
∂y

)
dxdy

+
1∫

0

1∫
0

c(x, y)ϕij(x, y)ϕkl(x, y)dxdy

 =
1∫

0

1∫
0

f(x, y)ϕkl(x, y)dxdy,

k, l = 1, 2 . . . , n− 1.

(4.15)

The indices k and l are the indices of the internal elements of the triangulated area (see
Fig. 4.1). We write equation (4.15) for each node (xk, yl) and then obtain a system of
(n− 1)(n− 1) equations. The integrals on the left hand side define the coefficient matrix
A = {akl}, where its individual elements are defined as follows:

aij =
n−1∑
i=1

n−1∑
j=1

 1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕkl
∂x

+ ∂ϕij
∂y

∂ϕkl
∂y

)
dxdy

+
1∫

0

1∫
0

c(x, y)ϕij(x, y)ϕkl(x, y)dxdy

 .
(4.16)

Determining the integrals on the left-hand side of equation (4.15), and consequently
finding the values of the coefficients aij , requires consideration of several cases given
below.

• k = i and l = j, then the first integral occurring in formula (4.16) is definied as
follows:

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕij
∂x

+ ∂ϕij
∂y

∂ϕij
∂y

)
dxdy =

1∫
0

1∫
0

(
∂ϕij
∂x

)2
dxdy+

1∫
0

1∫
0

(
∂ϕij
∂y

)2
dxdy.
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Determining each of the two component integrals comes down to the following
calculations:

1∫
0

1∫
0

(
∂ϕij
∂x

)2
dxdy =

∫∫
(x,y)∈T ij1

(
∂ϕij
∂x

)2
dxdy +

∫∫
(x,y)∈T ij3

(
∂ϕij
∂x

)2
dxdy

+
∫∫

(x,y)∈T ij4

(
∂ϕij
∂x

)2
dxdy +

∫∫
(x,y)∈T ij6

(
∂ϕij
∂x

)2
dxdy =

∫∫
(x,y)∈T ij1

(
1
h2

)2
dxdy

+
∫∫

(x,y)∈T ij3

(
1
h2

)2
dxdy +

∫∫
(x,y)∈T ij4

(
1
h2

)2
dxdy +

∫∫
(x,y)∈T ij6

(
1
h2

)2
dxdy

= 1
h2

 (i+1)h∫
ih

(i+j+1)h−x∫
jh

dydx+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

dydx+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

dydx

 = 2

and similarly

1∫
0

1∫
0

(
∂ϕij
∂y

)2
dxdy =

∫∫
(x,y)∈T ij1

(
∂ϕij
∂y

)2
dxdy +

∫∫
(x,y)∈T ij2

(
∂ϕij
∂y

)2
dxdy

+
∫∫

(x,y)∈T ij4

(
∂ϕij
∂y

)2
dxdy +

∫∫
(x,y)∈T ij5

(
∂ϕij
∂y

)2
dxdy = 2,

from where
1∫

0

1∫
0

(
∂ϕij
∂x

∂ϕij
∂x

+ ∂ϕij
∂y

∂ϕij
∂y

)
dxdy = 2 + 2 = 4.
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The second integral in equation (4.16) has the form

Ic1 =
1∫

0

1∫
0

c(x, y)ϕij(x, y)ϕij(x, y)dxdy

=
1∫

0

1∫
0

c(x, y)ϕ2
ij(x, y)dydx =

(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
[
1 + i+ j − 1

h
(x+ y)

]2
dydx

+
ih∫

(i−1)h

c(x, y)
(i+j)h∫

(j+1)h−x

(
1 + j − y

h

)2
dydx+

ih∫
(i−1)h

(i+j)h∫
jh

c(x, y)
(

1− i+ x

h

)2
dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c(x, y)
[
1− i− j + 1

h
(x+ y)

]2
dxdy

+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c(x, y)
(

1− j + y

h

)2
dydx+

(i+1)h∫
ih

jh∫
(i+j)h−x

c(x, y)
(

1 + i− x

h

)2
dydx.

Although the most accurate method is finding the analytic form of individual inte-
grals, due to the fact that the function c(x, y), which is a parameter of the equation,
may take a complicated form, an effective solution may be finding the value of the
integral Ic1 numerically. This remark also applies to the integrals Ic2 , Ic3 , . . . , Ic7 de-
scribed further on.

• i = k and j = l + 1 (areas 4 and 2’ and 5 and 1’ overlap - see Fig. 4.4)

(xi−1, yj+1) (xi, yj+1)

(xi−1, yj)
(xi, yj)

(xi+1, yj)

(xi, yj−1)
(xi+1, yj−1)(xi−1, yj−1)

(xi, yj−2) (xi+1, yj−2)

1

2

3

4

5

6

5′
4′

3′

2′

1′

6′

Figure 4.4. Triangles surrounding the nodes (xi, yj) and (xi, yj−1)
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(xi−1, yj+1)
(xi, yj+1)

(xi−1, yj)
(xi, yj)

(xi+1, yj)

(xi, yj−1) (xi+1, yj−1)

(xi−1, yj+2) (xi, yj+2)

(xi+1, yj+1)

1

2

3

4

5

6

5′
4′

3′
2′

1′

6′

Figure 4.5. Triangles surrounding the nodes (xi, yj) and (xi, yj+1)

After substituting k = i and l = j − 1 into formula (4.16) we obtain

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi,j−1

∂x
+ ∂ϕij

∂y

∂ϕi,j−1

∂y

)
dxdy

=
ih∫

(i−1)h

jh∫
(i+j−1)h−x

(
1
h
· 0 + 1

h

(
− 1
h

))
dydx

+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

(
0 ·
(
− 1
h

)
+ 1
h

(
− 1
h

))
dydx

= − 1
h2

 ih∫
(i−1)h

jh∫
(i+j−1)h−x

dydx+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

dydx

 = −1,

and

Ic2 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi,j−1 (x, y) dxdy

=
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c(x, y)
[
1− i− j + 1

h
(x+ y)

](
j − y

h

)
dydx

+
(i+1)h∫
ih

(i+j)h∫
(j−1)h

c(x, y)
(

1− j + y

h

)[
i+ j − 1

h
(x+ y)

]
dxdy

= Ii,j−1
1 + Ii,j−1

2 .

• i = k and j = l − 1, i.e. k = i and l = j + 1 (areas 1 and 5’ and 2 and 4’ overlap
– see Fig. 4.5)
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(xi−1, yj+1) (xi, yj+1)

(xi−1, yj) (xi, yj)
(xi+1, yj)

(xi, yj−1) (xi+1, yj−1)

(xi−2, yj+1)

(xi−2, yj)

(xi−1, yj−1)

1

2

3

4

5

6

5′
4′

3′
2′

1′

6′

Figure 4.6. Triangles surrounding the nodes (xi, yj) and (xi−1, yj)

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi,j+1

∂x
+ ∂ϕij

∂y

∂ϕi,j+1

∂y

)
dxdy

=
(i+1)h∫
ih

(i+j+1)h−x∫
jh

((
− 1
h

)
· 0 +

(
− 1
h

)
1
h

)
dydx

+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

(
0 · 1

h
x+

(
− 1
h

)
1
h

)
dydx = . . . = −1,

Ic3 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi,j+1 (x, y) dxdy

=
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
[
1 + i+ j − 1

h
(x+ y)

](
−j + y

h

)
dydx

+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c(x, y)
(

1 + j − y

h

)[
−i− j + 1

h
(x+ y)

]
dydx.

• i = k + 1 and j = l, i.e. k = i − 1 and l = j (areas 3 and 1’ and 4 and 6’ overlap
– see Fig. 4.6)

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi−1,j

∂x
+ ∂ϕij

∂y

∂ϕi−1,j

∂y

)
dxdy =

=
ih∫

(i−1)h

(i+j)h∫
jh

(
1
h

(
− 1
h

)
+ 0 ·

(
− 1
h

))
dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

(
1
h

(
− 1
h

)
+ 1
h
· 0
)
dydx = 1,
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Ic4 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi−1,j (x, y) dydx

=
ih∫

(i−1)h

(i+j)h∫
jh

c(x, y)
(

1− i+ x

h

)[
i+ j − 1

h
(x+ y)

]
dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c(x, y)
[
1− i− j + 1

h
(x+ y)

](
i− x

h

)
dydx.

• i = k − 1 and j = l, i.e. k = i + 1 and l = j (areas 1 and 3’ and 6 and 4’ overlap
– see Fig. 4.7)

(xi−1, yj+1) (xi, yj+1)

(xi−1, yj)
(xi, yj) (xi+1, yj)

(xi, yj−1) (xi+1, yj−1)

(xi+2, yj)

(xi+1, yj+1)

(xi+2, yj−1)

1

2

3

4

5

6

5′
4′

3′
2′

1′

6′

Figure 4.7. Triangles surrounding the nodes (xi, yj) and (xi+1, yj)

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi+1,j

∂x
+ ∂ϕij

∂y

∂ϕi+1,j

∂y

)
dydx

=
(i+1)h∫
ih

(i+j+1)h−x∫
jh

((
− 1
h

)
1
h

+
(
− 1
h

)
· 0
)
dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

((
− 1
h

)
1
h

+ 0 · 1
h

)
dydx = −1,
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Ic5 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi+1,j (x, y) dxdy

=
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
[
1 + i+ j − 1

h
(x+ y)

](
−i+ x

h

)
dydx

+
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
(

1 + i− x

h

)[
−i− j + 1

h
(x+ y)

]
dydx.

• i = k + 1 and j = l − 1, i.e. k = i − 1 and l = j + 1 (areas 2 and 6’ and 3 and 5’
overlap – see Fig. 4.8)

(xi−1, yj+1)
(xi, yj+1)

(xi−1, yj)
(xi, yj)

(xi+1, yj)

(xi, yj−1) (xi+1, yj−1)

(xi−2, yj+2) (xi−1, yj+2)

(xi−2, yj+1)

1

2

3

4

5

6

5′
4′

3′
2′

1′

6′

Figure 4.8. Triangles surrounding the nodes (xi, yj) and (xi−1, yj+1)

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi−1,j+1

∂x
+ ∂ϕij

∂y

∂ϕi−1,j+1

∂y

)
dxdy

=
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

(
0 ·
(
− 1
h

)
+
(
− 1
h

)
· 0
)
dydx +

+
ih∫

(i−1)h

(i+j)h−x∫
jh

(
1
h
· 0 + 0 · 1

h

)
dydx = 0,
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Ic6 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi−1,j+1 (x, y) dydx

=
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c(x, y)
(

1 + j − y

h

)(
i− x

h

)
dydx

+
ih∫

(i−1)h

(i+j)h−x∫
jh

c(x, y)
(

1− i+ x

h

)(
−j + y

h

)
dydx.

• i = k − 1 and j = l + 1, i.e. k = i + 1 and l = j − 1 (areas 5 and 3’ and 6 and 2’
overlaps – see Fig. 4.9)

(xi−1, yj+1) (xi, yj+1)

(xi−1, yj)
(xi, yj)

(xi+1, yj)

(xi, yj−1)
(xi+1, yj−1)

(xi+2, yj−1)

(xi+2, yj−2)(xi+1, yj−2)

1

2

3

4

5

6

5′
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Figure 4.9. Triangles surrounding the nodes (xi, yj) and (xi+1, yj−1)

1∫
0

1∫
0

(
∂ϕij
∂x

∂ϕi+1,j−1

∂x
+ ∂ϕij

∂y

∂ϕi+1,j−1

∂y

)
dxdy

=
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

(
0 · 1

h
+ 1
h
· 0
)
dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

((
− 1
h

)
· 0 + 0 ·

(
− 1
h

))
dydx = 0,
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Ic7 =
1∫

0

1∫
0

c(x, y)ϕij (x, y)ϕi+1,j−1 (x, y) dydx

=
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c(x, y)
(

1− j + y

h

)(
−i+ x

h

)
dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

c(x, y)
(

1 + i− x

h

)(
j − y

h

)
dydx.

It follows from the above equations that, in order to determine the exact values
of the coefficients aij , given by equation (4.16), the following integrals must be
calculated (in different limits) for each task:∫ ∫

c(x, y)dydx,
∫
x

∫
c(x, y)dydx,

∫ ∫
yc(x, y)dydx,∫

x

∫
yc(x, y)dydx,

∫
x2
∫
c(x, y)dydx,

∫ ∫
y2c(x, y)dydx.

For other values of k and l all considered integrals are 0.
For the integral on the right-hand side of the system of equations (4.15) we have

(k = i, l = j)

1∫
0

1∫
0

f (x, y)ϕij (x, y) dxdy

=
(i+1)h∫
ih

(i+j+1)h−x∫
jh

f (x, y)
(

1 + i+ j − 1
h

(x+ y)
)
dydx

+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

f (x, y)
(

1 + j − y

h

)
dydx

+
ih∫

(i−1)h

(i+j)h−x∫
jh

f (x, y)
(

1− i+ x

h

)
dydx

+
ih∫

(i−1)h

(jh∫
(i+j−1)h−x

f (x, y)
(

1− i− j + 1
h

(x+ y)
)
dydx

+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

f (x, y)
(

1− j + y

h

)
dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

f (x, y)
(

1 + i− x

h

)
dydx

= If1 + If2 + If3 + If4 + If5 + If6 .
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The integrals of Ifk for k = 1, 2, . . . 6 are shown below.

If1 =
(i+1)h∫
ih

(i+j+1)h−x∫
jh

f (x, y)
(

1 + i+ j − 1
h

(x+ y)
)
dydx

= (1 + i+ j)
(i+1)h∫
ih

(i+j+1)h−x∫
jh

f (x, y) dydx

− 1
h

 (i+1)h∫
ih

x

(i+j+1)h−x∫
jh

f (x, y) dydx+
(i+1)h∫
ih

(i+j+1)h−x∫
jh

yf (x, y) dydx

 ,

If2 =
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

f (x, y)
(

1 + j − y

h

)
dydx

= (1 + j)
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

f (x, y) dydx− 1
h

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

yf (x, y) dydx,

If3 =
ih∫

(i−1)h

(i+j)h−x∫
jh

f (x, y)
(

1− i+ x

h

)
dydx

= (1− i)
ih∫

(i−1)h

(i+j)h−x∫
jh

f (x, y) dydx+ 1
h

ih∫
(i−1)h

x

(i+j)h−x∫
jh

f (x, y) dydx,

If4 =
ih∫

(i−1)h

jh∫
(i+j−1)h−x

f (x, y)
(

1− i− j + 1
h

(x+ y)
)
dydx

= (1− i− j)
ih∫

(i−1)h

jh∫
(i+j−1)h−x

f (x, y) dydx

+ 1
h

 ih∫
(i−1)h

x

jh∫
(i+j−1)h−x

f (x, y) dydx+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

yf (x, y) dydx

 ,

If5 =
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

f (x, y)
(

1− j + y

h

)
dydx

= (1− j)
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

f (x, y) dydx+ 1
h

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

yf (x, y) dydx,
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If6 =
(i+1)h∫
ih

jh∫
(i+j)h−x

f (x, y)
(

1 + i− x

h

)
dydx

= (1 + i)
(i+1)h∫
ih

jh∫
(i+j)h−x

f (x, y) dydx− 1
h

(i+1)h∫
ih

x

jh∫
(i+j)h−x

f (x, y) dydx.

It follows from the above formulas that for each task, the following three integrals
must also be calculated (in different limits):∫ ∫

f (x, y) dydx,
∫
x

∫
f (x, y) dydx,

∫ ∫
yf (x, y) dydx.

In general, the above integrals are calculated using quadratures. This introduces
an additional error (quadrature error). Therefore, it is recommended, if possible,
to determine these integrals analytically.
In summary, the system of equations (4.15) has the form

(4− Ic1)u11 − (1 + Ic3)u12 − (1 + Ic5)u21 = f11,

− (1 + Ic2)u1,j−1 + (4− Ic1)u1j − (1 + Ic3)u1,j+1 − Ic7u2,j−1

− (1 + Ic5)u2j = f1j , j = 2, 3, . . . , n− 2,

− (1 + Ic2)u1,n−2 + (4− Ic1)u1,n−1 − Ic7u2,n−2 − (1 + Ic5)u2,n−1 = f1,n−1,

− (1 + Ic4)ui−1,1 − Ic6ui−1,2 + (4− Ic1)ui1 − (1 + Ic3)ui2
− (1 + Ic5)ui+1,1 = fi1, i = 2, 3, . . . , n− 2,

− (1 + Ic4)ui−1,j − Ic6ui−1,j+1 − (1 + Ic2)ui,j−1 + (4− Ic1)uij
− (1 + Ic3)ui,j+1 − Ic7ui+1,j−1 − (1 + Ic5)ui+1,j = fij ,

i = 2, 3, . . . , n− 2, j = 2, 3, . . . , n− 2.
− (1 + Ic4)ui−1,n−1 − (1 + Ic2)ui,n−2 + (4− Ic1)ui,n−1

−Ic7ui+1,n−2 − (1 + Ic5)ui+1,n−1 = fi,n−1, i = 2, 3, . . . , n− 2,

− (1 + Ic4)un−2,1 − Ic6un−2,2 + (4− Ic1)un−1,1

− (1 + Ic3)un−1,2 = fn−1,1,

− (1 + Ic4)un−2,j − Ic6un−2,j+1 − (1 + Ic2)un−1,j−1

+ (4 + Ic1)un−1,j − (1 + Ic3)un−1,j+1 = fn−1,j ,

j = 2, 3, . . . , n− 2,

− (1 + Ic4)un−2,n−1 − (1 + Ic2)un−1,n−2 + (4− Ic1)un−1,n−1 = fn−1,n−1,

where fij =
1∫
0

1∫
0
f (x, y)ϕij (x, y) dxdy.
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After dividing both sides of the above equations by h2 we get the following a
system of equations:

A B 0 . . . 0 0 0
B̂ A B . . . 0 0 0

0 B̂ A
. . . 0 0 0

...
... . . . . . . . . . ...

...

0 0 0
. . . A B 0

0 0 0 . . . B̂ A B
0 0 0 . . . 0 B̂ A





u1

u2

u3
...

un−3

un−2

un−1


=



d1

d2

d3
...

dn−3

dn−2

dn−1


, (4.17)

where

A =



a a+ 0 · · · 0 0 0
a− a a+ · · · 0 0 0

0 a− a
... 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . a a+ 0
0 0 0 · · · a− a a+

0 0 0 · · · 0 a− a


,

B =



b 0 0 · · · 0 0 0
b− b 0 · · · 0 0 0

0 b− b
... 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . b 0 0
0 0 0 · · · b− b 0
0 0 0 · · · 0 b− b


,

B̂ =



b̂ b̂+ 0 · · · 0 0 0
0 b̂ b̂+ · · · 0 0 0

0 0 b̂
... 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . b̂ b̂+ 0
0 0 0 · · · 0 b̂ b̂+

0 0 0 · · · 0 0 b̂


,
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ui =


ui1

ui2
...

ui,n−1

, di =


di1

di2
...

di,n−1

, i = 1, 2, . . . , n− 1

whereby

a = 1
h2 (4− Ic1) , a− = − 1

h2 (1 + Ic2) , a+ = − 1
h2 (1 + Ic3) ,

b = − 1
h2 (1 + Ic5) , b− = − 1

h2 I
c
7 , b̂ = − 1

h2 (1 + Ic4) , b̂+ = − 1
h2 I

c
6 ,

dij = 1
h2 fij , i, j = 1, 2, . . . , n− 1.

The system can be solved using an exact method, e.g. the Gaussian elimination
method (without choosing a fundamental element, since such an element is located
in every place of the main diagonal) or the Cholesky method (since the system
matrix is positively determined). Since the array matrix is sparse, it will be advis-
able to use algorithms which reduce its occupancy in computer memory (regularly
spaced elements with value 0 should be omitted in this notation).

4.3. Iterative solution verification
procedure

Nakao’s method is an iterative method for determining the intervals containing the
exact solution. In [76] he proved that for a problem which is a weak form of equation
(4.6), i.e.

(∇u,∇ϕ) = (b∇u+ cu, ϕ) + (f, ϕ) , ϕ ∈ H1
0 (Ω) ,

if there exists an unambiguous solution, which is the function u(x), then it lies in the set
uh + [α], where

[α] = {ϕ ∈ H1
0 (Ω) :

∥∥ϕ∥∥
H1

0 (Ω) ≤ α,
∥∥ϕ∥∥

L2(Ω) ≤ Chα},

where α > 0 and C denotes some constant independent of h. The quantities uh and α are
determined iteratively. In the case where Ω denotes a two-dimensional region, Nakao’s
method is based on the following formulas (due to the examples considered in Sec. 7, we
assume b = 0):(

∇u(k)
h ,∇ϕij

)
=
(
cu

(k−1)
h + f, ϕij

)
+ [−1, 1]Chα(k−1)∥∥ϕij∥∥L2(Ω),

α(k) = Ch

(∥∥∥cu(k−1)
h + f

∥∥∥
L2(Ω)

+ Ch
∥∥c∥∥

L∞(Ω)α
(k−1)

)
.

Then, the solution u(0)
h obtained from the Galerkin approximation is taken as the initial

approximation, i.e.(
∇u(0)

h ,∇ϕij
)

=
(
cu

(0)
h + f, ϕij

)
, i, j = 1, 2, . . . , n− 1,
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and vector α(0) =
(
α

(0)
11 , α

(0)
12 , . . . , α

(0)
n−1,n−1

)T
= (0, 0, . . . , 0)T . In practice, the usual

assumption C = 1 (see [79, p. 327]), so in the two-dimensional case for the area Ω =
(0, 1)× (0, 1) method can be written in the form(

∇u(k)
h ,∇ϕij

)
=
(
cu

(k−1)
h + f, ϕij

)
+ [−1, 1]hα(k−1)∥∥ϕij∥∥L2(0,1)×(0,1),

α(k) = h

(∥∥∥cu(k−1)
h + f

∥∥∥
L2(0,1)×(0,1)

+ h
∥∥c∥∥

L∞(0,1)×(0,1)α
(k−1)

)
.

(4.18)

In the method (4.18) the quantities u(k)
h =

n−1∑
i=1

n−1∑
j=1

u
(k)
ij ϕij(x, y) are intervals because the

coefficient u(k)
ij are the intervals

(
u

(k)
ij = [A(k)

ij , A
(k)
ij ]
)
, and α(k) is a vector with compo-

nents that are real numbers.

Let us determine the norm appearing in the first formula (4.18). We have

∥∥ϕij‖L2(0,1)×(0,1) =

√√√√√ 1∫
0

1∫
0

ϕ2
ij(x, y)dxdy =

√
Iij1 + Iij2 + Iij3 + Iij4 + Iij5 + Iij6 =

√
h2

2 ,

where the integrals Iijp , p = 1, 2, . . . , 6, occurring under the root were calculated in the
article [63, str. 13–26]. Finally, we have

∥∥ϕij∥∥L2(0,1)×(0,1) =
√

2
2 h.

Equation (4.18) therefore represents a system of equations of the form (cf. system of
equations (4.17))

4u(k)
11 − u

(k)
12 − u

(k)
21 = Ic1u

(k−1)
11 + Ic3u

(k−1)
12 + Ic5u

(k−1)
21 + f11 + [−1, 1]h2

√
2

2 α
(k−1)
11 ,

−u(k)
1,j−1 + 4u(k)

1j − u
(k)
1,j+1 − u

(k)
2j = Ic2u

(k−1)
1,j−1 + Ic1u

(k−1)
1j + Ic3u

(k−1)
1,j+1

+Ic7u
(k−1)
2,j−1 + Ic5u

(k−1)
2j + f1j + [−1, 1]h2

√
2

2 α
(k−1)
1j ,

j = 2, 3, . . . , n− 2,

−u(k)
1,n−2 + 4u(k)

1,n−1 − u
(k)
2,n−1 = Ic2u

(k)
1,n−2 + Ic1u

(k−1)
1,n−1 + Ic7u

(k−1)
2,n−2 + Ic5u

(k−1)
2,n−1

+f1,n−1 + [−1, 1]h2
√

2
2 α

(k−1)
1,n−1,

−u(k)
i−1,1 + 4u(k)

i1 − u
(k)
i2 − u

(k)
i+1,2 = Ic4u

(k−1)
i−1,1 + Ic6u

(k−1)
i−1,2 + Ic1u

(k−1)
i1 + Ic3u

(k−1)
i2

+Ic5ui+1,1 + fi1 + [−1, 1]h2
√

2
2 α

(k−1)
i1 ,

i = 2, 3, . . . , n− 2,

−u(k)
i−1,j − u

(k)
i,j+1 + 4u(k)

ij − u
(k)
i,j+1 − u

(k)
i+1,j = Ic4u

(k−1)
i−1,j + Ic6u

(k−1)
i−1,j+1 + Ic2u

(k−1)
i,j−1

+Ic1u
(k−1)
ij + Ic3u

(k−1)
i,j+1 + Ic7u

(k−1)
i+1,j−1 + Ic5u

(k−1)
i+1,j + fij + [−1, 1]h2α

(k−1)
ij ,

i = 2, 3, . . . , n− 2, j = 2, 3, . . . , n− 2,
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−u(k)
i−1,n−1 − u

(k)
i,n−2 + 4u(k)

i,n−1 − u
(k)
i+1,n−1 = Ic4u

(k−1)
i−1,n−1 + Ic2u

(k−1)
i,n−2 + Ic1u

(k−1)
i,n−1

+Ic7u
(k−1)
i+1,n−2 + Ic5u

(k−1)
i+1,n−1 + fi,n−1 + [−1, 1]h2α

(k−1)
i,n−1 ,

i = 2, 3, . . . , n− 2,

−u(k)
n−2,1 + 4u(k)

n−1,1 − u
(k)
n−1,2 = Ic4u

(k−1)
n−2,1 + Ic6u

(k−1)
n−2,2 + Ic1u

(k−1)
n−1,1 + Ic3u

(k−1)
n−1,2

+fn−1,1 + [−1, 1]h2
√

2
2 α

(k−1)
n−1,1,

−u(k)
n−2,j − u

(k)
n−1,j−1 + 4u(k)

n−1,j − u
(k)
n−1,j+1 = Ic4u

(k−1)
n−2,j + Ic6u

(k−1)
n−2,j+1

+Ic2u
(k−1)
n−1,j−1 + Ic1u

(k−1)
n−1,j + Ic3u

(k−1)
n−1,j+1 + fn−1,j + [−1, 1]h2

√
2

2 α
(k−1)
n−1,j ,

j = 2, 3, . . . , n− 2,

−u(k)
n−2,n−1 − u

(k)
n−1,n−2 + 4u(k)

n−1,n−1 = Ic4u
(k−1)
n−2,n−1 + Ic2u

(k−1)
n−1,n−2 + Ic1u

(k−1)
n−1,n−1

+fn−1,n−1 + [−1, 1]h2
√

2
2 α

(k−1)
n−1,n−1.

After dividing both sides of these equations by h2 we get the following notation of the
system of equations in matrix form:

A′ B′ 0 . . . 0 0 0
B′ A′ B′ . . . 0 0 0

0 B′ A′
. . . 0 0 0

...
... . . . . . . . . . ...

...

0 0 0
. . . A′ B′ 0

0 0 0 . . . B′ A′ B′

0 0 0
. . . 0 B′ A′





u(k)
1

u(k)
2

u(k)
3
...

u(k)
n−3

u(k)
n−2

u(k)
n−1


=



d(k)
1

d(k)
2

d(k)
3
...

d(k)
n−3

d(k)
n−2

d(k)
n−1


, (4.19)

where

A′ =



a′ b′ 0 · · · 0 0 0
b′ a′ b′ · · · 0 0 0

0 b′ a′
... 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . a′ b′ 0
0 0 0 · · · b′ a′ b′

0 0 0 · · · 0 b′ a′


, B′ =



b′ 0 · · · 0 0
0 b′ · · · 0 0
...

... . . . ...
...

0 0 · · · b′ 0
0 0 · · · 0 b′


,
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u(k)
i =


u

(k)
i1

u
(k)
i2
...

u
(k)
i,n−1

, d(k)
i =


d

(k)
i1

d
(k)
i2
...

d
(k)
i,n−1

, i = 1, 2, . . . , n− 1,

whereby
a′ = 4

h2 , b
′ = − 1

h2 ,

d
(k)
ij = Ic4u

(k−1)
i−1,j + Ic6u

(k−1)
i−1,j+1 + Ic2u

(k−1)
i,j−1 + Ic1u

(k−1)
ij + Ic3u

(k−1)
i,j+1

+Ic7u
(k−1)
i+1,j−1 + Ic5u

(k−1)
i+1,j + 1

h2 fij + [−1, 1]
√

2
2 α

(k−1)
ij ,

i, j = 1, 2, . . . , n− 1

(4.20)

and u
(k−1)
0j = u

(k−1)
nj = u

(k−1)
i0 = u

(k−1)
in = 0. The system of equations (4.19) is solved

by one of the known exact methods taking into account the fact that the matrix of this
system is a sparse matrix.

There are two norms in the formula for the quantity α(k) The first one has the form

∥∥∥cu(k−1)
h + f

∥∥∥
L2(0,1)×(0,1)

=

√√√√√ 1∫
0

1∫
0

(
cu

(k−1)
h + f (x, y)

)2
dxdy.

This norm should be calculated for each value of i and j, since

α(k) =



α
(k)
11
...

α
(k)
1,n−1
...

α
(k)
n−1,1
...

α
(k)
n−1,n−1


.

Denoting for each value of i and j the expression under the integral by βij and taking
into account that

u
(k−1)
h =

n−1∑
i=1

n−1∑
j=1

u
(k−1)
ij ϕij(x, y)
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we have

βij =
1∫

0

1∫
0

[
c2(x, y)

(
u

(k−1)
h

)2
+ 2c(x, y)u(k−1)

h f(x, y) + f2(x, y)
]
dxdy

=
1∫

0

1∫
0

c2(x, y)
(
u

(k−1)
h

)2
dxdy + 2

1∫
0

1∫
0

c(x, y)u(k−1)
h f(x, y)dxdy

+
1∫

0

1∫
0

f2(x, y)dxdy

= β
(1)
ij + 2β(2)

ij +
1∫

0

1∫
0

f2(x, y)dxdy,

(4.21)

where

β
(1)
ij =

(
u

(k−1)
ij

)2

 (i+1)h∫
ih

(i+j+1)h−x∫
jh

c2(x, y)
(

1 + i+ j − 1
h

(x+ y)
)2

dydx

+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c2(x, y)
(

1 + j − y

h

)2
dydx

+
ih∫

(i−1)h

(i+j)h−x∫
jh

c2(x, y)
(

1− i+ x

h

)2
dydx

+
ih∫

(i−1)h

jh∫
(i+j+1)h−x

c2(x, y)
(

1− i− j − 1
h

(x+ y)
)2

dydx

+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h−x

c2(x, y)
(

1− j − y

h

)2
dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

c2(x, y)
(

1 + i− x

h

)2
dydx


=
(
u

(k−1)
ij

)2 (
Icβ1 + Icβ2 + Icβ3 + Icβ4 + Icβ5 + Icβ6

)
,
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whereby

Icβ1 =
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c2(x, y)
(

1 + i+ j − 1
h

(x+ y)
)2

dydx

= (1 + i+ j)2
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c2(x, y)dydx

− 2
h

(1 + i+ j)

 (i+1)h∫
ih

x

(i+j+1)h−x∫
jh

c2(x, y)dydx

+
(i+1)h∫
ih

(i+j+1)h−x∫
jh

yc2(x, y)dydx


+ 1
h2

 (i+1)h∫
ih

x2

(i+j+1)h−x∫
jh

c2(x, y)dydx+ 2
(i+1)h∫
ih

x

(i+j+1)h−x∫
jh

yc2(x, y)dydx

+
(i+1)h∫
ih

(i+j+1)h−x∫
jh

y2c2(x, y)dydx

 ,

Icβ2 =
ih∫

(i−1)h

(i+j)h∫
(i+j)h−x

c2(x, y)
(

1 + j − y

h

)2
dydx

= (1 + j)2
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c2(x, y)dydx− 2
h

(1 + j)
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

yc2(x, y)dydx

+ 1
h2

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

y2c2(x, y)dydx,

Icβ3 =
ih∫

(i−1)h

(i+j)h−x∫
jh

c2(x, y)
(

1− i+ x

h

)2
dydx

= (1− i)2
ih∫

(i−1)h

(i+j)h−x∫
jh

c2(x, y)dydx+ 2
h

(1− i)
ih∫

(i−1)h

x

(i+j)h−x∫
jh

c2(x, y)dydx

+ 1
h2

ih∫
(i−1)h

x2

(i+j)h−x∫
jh

c2(x, y)dydx,



58 4. Nakao’s method

Icβ4 =
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c2(x, y)
(

1− i− j + 1
h

(x+ y)
)2

dydx

= (1− i− j)2
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c2(x, y)dydx+ 2
h

(1− i− j)

 ih∫
(i−1)h

x

jh∫
(i+j−1)h−x

c2(x, y)dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

yc2(x, y)dydx


+ 1
h2

 ih∫
(i−1)h

x2
jh∫

(i+j−1)h−x

c2(x, y)dydx+ 2
ih∫

(i−1)h

x

jh∫
(i+j−1)h−x

yc2(x, y)dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

y2c2(x, y)dydx

 ,

Icβ5 =
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c2(x, y)
(

1− j + y

h

)2
dydx

= (1− j)2
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c2(x, y)dydx+ 2
h

(1− j)
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

yc2(x, y)dydx

+ 1
h2

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

y2c2(x, y)dydx,

Icβ6 =
(i+1)h∫
ih

jh∫
(i+j)h−x

c2(x, y)
(

1 + i− x

h

)2
dydx

= (1 + i)2
(i+1)h∫
ih

jh∫
(i+j)h−x

c2(x, y)dydx− 2
h

(1 + i)
(i+1)h∫
ih

x

jh∫
(i+j)h−x

c2(x, y)dydx

+ 1
h2

(i+1)h∫
ih

x2
jh∫

(i+j)h−x

c2(x, y)dydx
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and

β
(2)
ij =

1∫
0

1∫
0

c(x, y)u(k−1)
h f(x, y)dxdy

= u
(k−1)
ij

 (i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
(

1 + i+ j − 1
h

(x+ y)
)
f(x, y)dydx

+
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c(x, y)
(

1 + j − y

h

)
f(x, y)dydx

+
ih∫

(i−1)h

(i+j)h−x∫
jh

c(x, y)
(

1− i+ x

h

)
f(x, y)dydx

+
ih∫

(i−1)h

jh∫
(i+j+1)h−x

c(x, y)
(

1− i− j − 1
h

(x+ y)
)
f(x, y)dydx

+
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h−x

c(x, y)
(

1− j − y

h

)
f(x, y)dydx

+
(i+1)h∫
ih

jh∫
(i+j)h−x

c(x, y)
(

1 + i− x

h

)
f(x, y)dydx


= u

(k−1)
ij

(
Icfβ1 + Icfβ2 + Icfβ3 + Icfβ4 + Icfβ5 + Icfβ6

)
,

whereby

Icfβ1 =
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)
(

1 + i+ j − 1
h

(x+ y)
)
f(x, y)dydx

= (1 + i+ j)
(i+1)h∫
ih

(i+j+1)h−x∫
jh

c(x, y)f(x, y)dydx

− 1
h

 (i+1)h∫
ih

x

(i+j+1)h−x∫
jh

c(x, y)f(x, y)dydx

+
(i+1)h∫
ih

(i+j+1)h−x∫
jh

yc(x, y)f(x, y)dydx

 ,
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Icfβ2 =
ih∫

(i−1)h

(i+j)h∫
(i+j)h−x

c(x, y)
(

1 + j − y

h

)
f(x, y)dydx

= (1 + j)
ih∫

(i−1)h

(j+1)h∫
(i+j)h−x

c(x, y)f(x, y)dydx

− 1
h

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

yc(x, y)f(x, y)dydx

+ 1
h2

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

y2c2(x, y)dydx,

Icfβ3 =
ih∫

(i−1)h

(i+j)h−x∫
jh

c(x, y)
(

1− i+ x

h

)
f(x, y)dydx

= (1− i)
ih∫

(i−1)h

(i+j)h−x∫
jh

c(x, y)f(x, y)dydx

+ 1
h

ih∫
(i−1)h

x

(i+j)h−x∫
jh

(x, y)f(x, y)dydx,

Icfβ4 =
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c(x, y)
(

1− i− j + 1
h

(x+ y)
)
f(x, y)dydx

= (1− i− j)
ih∫

(i−1)h

jh∫
(i+j−1)h−x

c(x, y)f(x, y)dydx

+ 1
h

 ih∫
(i−1)h

x

jh∫
(i+j−1)h−x

c(x, y)f(x, y)dydx

+
ih∫

(i−1)h

jh∫
(i+j−1)h−x

yc(x, y)f(x, y)dydx

 ,
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Icfβ5 =
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c(x, y)
(

1− j + y

h

)
f(x, y)dydx

= (1− j)
(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c(x, y)f(x, y)dydx

+ 1
h

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

yc(x, y)f(x, y)dydx,

Icfβ6 =
(i+1)h∫
ih

jh∫
(i+j)h−x

c(x, y)
(

1 + i− x

h

)
f(x, y)dydx

= (1 + i)
(i+1)h∫
ih

jh∫
(i+j)h−x

c(x, y)f(x, y)dydx

− 1
h

(i+1)h∫
ih

x

jh∫
(i+j)h−x

c(x, y)f(x, y)dydx.

The second norm appearing in the formula for the quantity α(k), namely∥∥c∥∥
L∞(0,1)×(0,1) =

∥∥c(x, y)
∥∥
L∞(0,1)×(0,1) = ess sup(x,y)∈(0,1)×(0,1) |c(x, y)| ,

depends solely on the function c(x, y) and should be calculated for each problem. There-
fore, for the components of the vector α(k)

ij we obtain

α
(k)
ij = h

(√
βij + h · ess sup(x,y)∈(0,1)×(0,1) |c(x, y)| · α(k−1)

ij

)
,

where the quantities βij are given by formula (4.21). The process of iterative determina-
tion of u(k)

h i α(k) terminates after N iterations when the following conditions hold:∥∥∥u(N)
h − u(N−1)

h

∥∥∥ < ε, (4.22)

where ∥∥∥u(N)
h − u(N−1)

h

∥∥∥ = max
i,j=1,2,...,n−1

{∣∣∣A(N)
ij −A

(N−1)
ij

∣∣∣ , ∣∣∣A(N)
ij −A

(N−1)
ij

∣∣∣}
and ∣∣∣α(N) − α(N−1)

∣∣∣ < ε, (4.23)
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where ε denotes the required accuracy. The last inequality should hold for each component
of the vector α(k), which means that the foloowing inequality is satisfied:

max
i,j=1,2,...,n−1

∣∣∣α(N)
ij − α

(N−1)
ij

∣∣∣ < ε. (4.24)

Then, the so-called δ-extension of the obtained solution defined as follows is introduced:

ũ
(N)
h =

n−1∑
i=1

n−1∑
j=1

Ã
(N)
ij ϕij(x, y), α̃(N) = α(N) + δ, (4.25)

where Ã(N)
ij =

[
A

(N)
ij − δ, A

(N)
ij + δ

]
.

Nakao’s main theorem given in [76] states that if we further determine the quantities
uh and α in relation (4.18), in which u(k)

h and α(k) are replaced by uh and α, respectively,
and u(k−1)

h and α(k−1) are replaced by ũ(N)
h and α̃(N), respectively, then when

uh ⊂ ũ(N)
h i α < α̃(N),

then there exists an unambiguous solution u of the problem (4.5) lying in the set uh+[α].
The complete algorithm of Nakao’s method is presented in the form of pseudocode

below. The results obtained as a result of its implementation can be found in Chapter 7
in Examples 5 and 6.

Algorytm 4.6. Nakao’s method for verification and estimation of elliptic PDE solutions
1: {Details of GalerkinApprox(f, ϕ, n) can be found in Section 4.2}
2: u(0)

h := GalerkinApprox(f, ϕ, n)
3: k := 1
4: {EndCondition(u(k)

h , u
(k−1)
h ) function checks condtions (4.22)–(4.24)}

5: while not EndCondition(u(k)
h , u

(k−1)
h ) do

6:
(
∇u(k)

h ,∇ϕij
)

:=
(
cu

(k−1)
h + f, ϕij

)
+ [−1, 1]hα(k−1)

∥∥ϕij∥∥L2(0,1)×(0,1),

7: α(k) := h

(∥∥∥cu(k−1)
h + f

∥∥∥
L2(0,1)×(0,1)

+ h
∥∥c∥∥

L∞(0,1)×(0,1)α
(k−1)

)
8: k := k + 1
9: end while
10: {function DeltaExtension(u(k)

h ) implements formula (4.25)}
11: u(k)

h := DeltaExtension(u(k)
h )

12: return u
(k)
h

In Algorithm 4.6. it should be noted that only the intermediate results and the final
result are represented as intervals, while all calculations - starting from the Galerkin
approximation to numerical integration and determination of norms for functions - are
performed in classical floating point arithmetic. Therefore, Nakao’s method is not a
typical interval method, i.e. one where all calculations are performed in interval arithmetic
(according to appropriate definitions for particular arithmetic operations), but only uses
interval arithmetic to store the results of calculations and to verify the stop condition.



5
Second-order interval

methods

In this chapter and the next, a set of methods belonging to the FDM class is presented
for the different forms of the Poisson equation (see Section p. 2.2). Each method was first
designed for floating point arithmetic and then extended for interval arithmetic. The
interval methods differ from the corresponding classical methods in that they include an
estimate of the method error resulting, in the case of FDM methods, from truncation of
the number of words in the Taylor series. For the purpose of further analyses and com-
parisons all the methods presented in this paper have been designated by abbreviations
depending on the form of the equation for which they have been designed, the order
of error as well as the type of arithmetic applied. These designations are derived from
acronyms of names of particular classes of equations which were presented in Section 2.2.
All designations are summarized in Table 5.1.

Table 5.1. Designation of second-order methods presented in this paper according to the form of
the equation and type of arithmetic

Equation
Arithmetic type

floating-point interval proper interval directed

PE (2.6) PE2 IPE2 DIPE2
GPE (2.7) GPE2 IGPE2 DIGPE2

This chapter covers the description of four second-order interval FDM methods. Two of
them are classical methods for floating point arithmetic, and two more are their interval
counterparts. Higher order methods are presented in the next chapter.
Each method leads to a system of linear equations and requires finding its solutions.

In general, such a system can be solved by any of the known numerical algorithms
dedicated to this problem. However, for the author of this paper it was interesting to
compare the proposed FDM methods with one another and not the very problem of
efficient solution of the system of linear equations. Only the correctness of the solutions
was important. Therefore, for the purpose of this work, the Gauss–Jordan method with
full selection of the basis element (see [66, p. 110]) was used and consistently applied
while implementing the solution of systems of equations obtained for each of the methods
described in Chapters 5 and 6.
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5.1. Methods for the elementary form
of the Poisson equation

The method presented in this section together with the numerical results obtained has
been published in papers [29] and [32]. Here, the method’s construction is described and
the most relevant formulas are given.

5.1.1. Classical method
We assume that in each of the grid points under consideration there exist partial deriva-

tives of the function u up to and including order four. We discretize the area Ω in the
way described in Section 2.3. We obtain a m × n grid of nodes. Then, for each of the
nodes lying inside the area Ω we use the Taylor series expansion of the function u with
respect to the variable x in the neighbourhood of the point xi and with respect to the
variable y in the neighbourhood of the point yj . Then

∂2u

∂x2 (xi, yj) = u (xi+1, yj)− 2u (xi, yj) + u (xi−1, yj)
h2

−h
2

12
∂4u

∂x4 (ξi, yj) ,

where ξi ∈ (xi−1, xi+1) oraz

∂2u

∂x2 (xi, yj) = u (xi, yj+1)− 2u (xi, yj) + u (xi, yj−1)
k2

−k
2

12
∂4u

∂y4 (xi, ηj) ,

where ηj ∈ (yj−1, yj+1). Using these formulas allows us to express the Poisson equation
at the points (xi, yj) in the form

u (xi+1, yj)− 2u (xi, yj) + u (xi−1, yj)
h2

+u (xi, yj+1)− 2u (xi, yj) + u (xi, yj−1)
k2

= f(xi, yj) + h2

12
∂4u

∂x4 (ξi, yj) + k2

12
∂4u

∂y4 (xi, ηj)

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1.

(5.1)

If we write the central differences in a simplified way, i.e.

δ2
xuij = ui+1,j − 2uij + ui−1,j

h2 , δ2
yuij = ui,j+1 − 2uij + ui,j−1

k2 , (5.2)

where uij = u(xi, yj), fij = f(xi, yj) and where ξi ∈ (xi−1, xi+1), ηi ∈ (yi−1, yi+1) denote
intermediate points, then equation (5.1) can be written in the form

δ2
xuij + δ2

yuij −
h2

12
∂4u

∂x4 (ξi, yj)−
k2

12
∂4u

∂y4 (xi, ηj) = fij . (5.3)

Let us notice that omission of partial derivatives in the formula (5.3) causes simplification
of the method notation to the form

δ2
xuij + δ2

yuij = fij . (5.4)
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The boundary conditions are given by the following formulas::

u0j = u(0, yj) = ϕ1(yj) dla j = 0, 1, . . . ,m,
ui0 = u(xi, 0) = ϕ2(xi) dla i = 1, 2, . . . , n− 1,
unj = u(α, yj) = ϕ3(yj) dla j = 0, 1, . . . ,m,
uim = u(xi, β) = ϕ4(xi) dla i = 1, 2, . . . , n− 1.

(5.5)

PE2 Method. If in equation (5.1) we omit the error components, i.e., the partial
derivatives of ∂4u

∂x4 (ξi, yj) and ∂4u
∂y4 (xi, ηj), hen we obtain explicit formulas for the classical

5-point method of central differences of the form

k2ui−1,j + h2ui,j−1 − 2
(
h2 + k2)uij

+k2ui+1,j + h2ui,j+1 = h2k2fij ,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1.
(5.6)

As one can see, equations (5.4) together with conditions (5.5) lead to equations (5.6),
which define a system of (n− 1)(m− 1) linear equations with (n− 1)(m− 1) unknowns
uij which are approximations of the quantities u(xi, yj), i.e., the sought values of the
function u for the nodes lying inside the mesh. his system can be solved by one of the
known methods for solving systems of linear equations – an exact or iterative one. The
resulting method is characterized by a truncation error of order O(h2 + k2) (see [7]
and [45]). The method is denoted by the abbreviation PE2 (see Table 5.1).

5.1.2. Interval methods
The following central differences result from the Taylor series expansion of the real

function u w in the neighbourhood of the point (x, y):

∂2u

∂x2 = u(x− h, y)− 2u(x, y) + u(x+ h, y)
h2

−h
2

12
∂4u

∂x4 (ξ, y), ξ ∈ (x− h, x+ h),

∂2u

∂y2 = u(x, y − k)− 2u(x, y) + u(x, y + k)
k2

−h
2

12
∂4u

∂y4 (x, η), η ∈ (y − k, y + k).

(5.7)

We can find intervals that estimate the values ∂4u
∂x4 (ξ, y) and ∂4u

∂y4 (x, η).

Let us suppose first that there exists a constant M , such that∣∣∣∣ ∂4u

∂x2∂y2

∣∣∣∣ ≤M for all values 0 ≤ x ≤ α and 0 ≤ y ≤ β

and let
∂4u

∂2x∂2y
(x, y) = ∂4u

∂2y∂2x
(x, y).
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It follows directly from Poisson’s equation (2.6)that

∂4u

∂x4 (x, y) = ∂2f

∂x2 −
∂4u

∂x2∂y2 (x, y),

∂4u

∂y4 (x, y) = ∂2f

∂y2 −
∂4u

∂y2∂x2 (x, y).

We shall try to estimate ∂4u
∂x4 and ∂4u

∂y4 . The function f is a known parameter of the equa-
tion, on the right hand side, ∂4u

∂x2∂y2 and ∂4u
∂y2∂x2 remain unknown. Using formulas (5.7)

we obtain

∂2

∂y2

(
∂2u

∂x2

)
=

= u(x− h, y − k)− 2u(x− h, y) + u(x− h, y + k)
h2k2

−2u(x, y − k)− 2u(x, y) + u(x, y + k)
h2k2

+u(x+ h, y − k)− 2u(x+ h, y) + u(x+ h, y + k)
h2k2

− k2

12h2

[
∂4u

∂y4 (x− h, η1) + ∂4u

∂y4 (x, η2) + ∂4u

∂y4 (x+ h, η3)
]

−h
2

12
∂2

∂y2

[
∂4u

∂x4 (ξ, y)
]

and

∂2

∂x2

(
∂2u

∂y2

)
=

= u(x− h, y − k)− 2u(x, y − k) + u(x+ h, y − k)
h2k2

−2u(x− h, y)− 2u(x, y) + u(x+ h, y)
h2k2

+u(x− h, y + k)− 2u(x, y + k) + u(x+ h, y + k)
h2k2

− h2

12k2

[
∂4u

∂x4 (ξ1, y − k) + ∂4u

∂x4 (ξ2, y) + ∂4u

∂x4 (ξ3, y + k)
]

−k
2

12
∂2

∂x2

[
∂4u

∂y4 (x, η)
]
,

where ξ, ξ1, ξ2, ξ3 ∈ (x−h, x+h), η, η1, η2, η3 ∈ (y−k, y+k). If the values of h and k are
sufficiently small and the fourth order partial derivatives are not very large, it follows
from the above equations that

∂2

∂y2

(
∂2u

∂x2

)
≈

≈ u(x− h, y − k)− 2u(x− h, y) + u(x− h, y + k)
h2k2

−2u(x, y − k)− 2u(x, y) + u(x, y + k)
h2k2

+u(x+ h, y − k)− 2u(x+ h, y) + u(x+ h, y + k)
h2k2

and
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∂2

∂x2

(
∂2u

∂y2

)
≈

≈ u(x− h, y − k)− 2u(x, y − k) + u(x+ h, y − k)
h2k2

−2u(x− h, y)− 2u(x, y) + u(x+ h, y)
h2k2

+u(x− h, y + k)− 2u(x, y + k) + u(x+ h, y + k)
h2k2 .

Note that the right-hand sides of the above approximations are equal, so we propose to
estimate the constant M as follows:

M ≈ 1, 5
h2k2 max

i=1,2,...,n−1
j=1,2,...,m−1

|4uij

−2(ui−1,j + ui,j−1 + ui,j+1 + ui+1,j),
+ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1|,

(5.8)

where the values of uij are obtained by the classical central difference method (5.5) –
– (5.6), a factor of 1.5 (instead of 1.0) indicates that we are taking a value 50% larger.
Thus

∂4u

∂x4 (ξ, y) ∈ Ψ(X + [−h, h], Y ) + [−M,M ],

∂4u

∂x4 (x, η) ∈ Ω(X,Y + [−k, k]) + [−M,M ],

for each value ξ ∈ (x−h, x+h) and each value η ∈ (y−k, y+k), where X and Y denote
the interval extensions of x and y, respectively, and Ψ(X,Y ) and Ω(X,Y ) denote the
interval extensions of the functions ∂2f

∂x2 (x, y) and ∂2f
∂y2 (x, y), respectively.

IPE2 Method. If we now return to the Poisson equation defined at the grid points,
i.e. equation (5.3),and write the partial derivatives in it on the right hand side, then we
obtain an interval analogue for this equation. Assuming that all interval expansions are
proper intervals1, we have

k2Ui−1,j + h2Ui,j−1 − 2(h2 + k2)Ui,j + k2Ui+1,j + h2Ui,j+1

= h2k2
(
Fi,j + 1

12
(
h2Ψ(Xi + [−h, h], Yj) + k2Ω(Xi, Yj + [−k, k])

+(h2 + k2)[−M,M ]
))
,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1,

(5.9)

where Fij = F (Xi, Yj) and where

U0j = Φ1(Yj), Ui0 = Φ2(Xi), Unj = Φ3(Yj), Uim = Φ4(Xi)
dla j = 0, 1, . . . ,m oraz i = 1, 2, . . . , n− 1,

(5.10)

while Φ1(Y ),Φ2(X),Φ3(Y ) and Φ4(X) denote the interval expansions of the functions
ϕ1(y), ϕ2(x), ϕ3(y) i ϕ4(x), respectively. The system of linear equations (5.9) – (5.10),
hereafter abbreviated IPE2, can be solved using ordinary (proper) variable interval arith-
metic since all the intervals defined here are proper intervals.

1i.e., those on which we operate in ordinary interval arithmetic, see Chapter 3, def. 20.
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DIPE2 Method. Note that in interval form, equation (5.3) can also be written as
follows:

k2Ui−1,j + h2Ui,j−1 − 2(h2 + k2)Uij + k2Ui+1,j + h2Ui,j+1

−h
2k2

12
(
h2Ψ(Xi + [−h, h], Yj) + k2Ω(Xi, Yj + [−k, k])

+(h2 + k2)[−M,M ]
)

= h2k2Fi,j ,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1.

Using directed interval arithmetic, we can add elements on both sides of equation (5.3)
opposite to the elements associated with the error components. Then, we obtain

k2Ui−1,j + h2Ui,j−1 − 2(h2 + k2)Ui,j + k2Ui+1,j + h2Ui,j+1

= h2k2
(
Fi,j + 1

12
(
h2Ψ(Xi + [−h, h], Yj) + k2Ω(Xi, Yj + [−k, k])

+(h2 + k2)[M,−M ]
))
,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1.

(5.11)

Equation (5.11) differs from equation (5.9) only by the last expression on the right-
hand side, i.e., [M,−M ], which is an improper interval. Using directed variable interval
arithmetic, we can solve the system of equations (5.11) (together with the boundary
conditions (5.10)). We will denote this method by the abbreviation IDPE2. If the interval
solutions of this system are in the form of improper intervals, then in order to obtain
proper intervals one can apply the so-called interval projection, i.e., transform every
interval [a−, a+], for which a+ < a−, to the interval [a+, a−].
We should also add a remark concerning the constant M .In general, when the exact

solution is not known and no conclusions can be drawn as for the value of this constant
on the basis of physical or technical properties or the characteristics of the problem under
consideration, we propose to find this constant using the formula

∂4u

∂x2∂y2 (xi, yj) = lim
h→0

lim
k→0

(
ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

h2k2

+ 4ui,j − 2(ui−1,j + ui,j−1) + ui,j+1 + ui+1,j

h2k2

)
.

We can calculate the quantities

Mnm = 1
h2k2 max

i,j
|ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

+4uij − 2(ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)|

for i = 1, 2, . . . , n−1, j = 1, 2, ...,m−1, where the values uij are obtained in the classical
way for different values of n and m, let us assume n = m = 10, 20, . . . , N and where
the number N is sufficiently large. We can then plot a curve of values of Mnm against
different values of n = m, as long as there is no execution time exception during the
computation due to handling the conditions in Theorem 1 (Rump). The constant M can
be easily determined from the resulting graph, since the inequality lim

n→∞
lim
m→∞

Mnm ≤M .

Using such a constructed method for the Poisson equation, we can expect that at all
interior grid points where we approximate the values of the function u by its interval
expansions taking into account the intervals containing the error estimate of the method,
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u(xi, yj) ∈ Uij where i = 0, 1, . . . , n and j = 0, 1, . . . ,m. The computational experiments
presented in the next section confirm that for all grid points the exact solution is within
the range of the obtained interval solution. Let us emphasize again that in the presented
interval method, very important is the component

1
12
[
h2Ψ(Xi + [−h, h], Yj)

+k2Ω(Xi, Yj + [−k, k]) + (h2 + k2)[−M,M ]
]
,

because it guarantees that the error of the method is taken into account in the obtained
interval solution.

To find solutions at interior points of the grid, we need to solve the system (n−1)(m−1)
interval linear equations (5.11). This system may be written in the form

AU = Q, (5.12)

where

A =



B C 0 . . . 0 0 0
C B C . . . 0 0 0

0 C B
. . . 0 0 0

...
... . . . . . . . . . ...

...

0 0 0
. . . B C 0

0 0 0 . . . C B C
0 0 0 . . . 0 C B


,

U =



U1

U2

U3
...

Un−3

Un−2

Un−1


, Q =



Q1

Q2

Q3
...

Qn−3

Qn−2

Qn−1


,

Ui =


Ui,1

Ui,2
...

Ui,m−1

 , Q =


Qi,1

Qi,2
...

Qi,m−1

 ,
i = 1, 2, . . . , n− 1,
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B =



γ h2 0 . . . 0 0 0
h2 γ h2 . . . 0 0 0

0 h2 γ
. . . 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . γ h2 0
0 0 0 . . . h2 γ h2

0 0 0 . . . 0 h2 γ


,

γ = −2(h2 + k2),

C =



k2 0 . . . 0 0
0 k2 . . . 0 0
...

... . . . ...
...

0 0 . . . k2 0
0 0 . . . 0 k2


,

dim B = dim C = (m− 1)× (m− 1),

Q1,1 = Λ1,1 − k2Φ1([k, k])− h2Φ2([h, h]),
Q1,j = Λ1,j − k2Φ1([jk, jk]),

j = 2, 3, . . . ,m− 2,
Q1,m−1 = Λ1,m−1 − k2Φ1([(m− 1)k, (m− 1)k])

−h2Φ4([h, h]),
Qi,1 = Λi,1 − h2Φ2([ih, ih]),

i = 2, 3, . . . , n− 2,
Qi,j = Λi,j ,

i = 2, 3, . . . , n− 2, j = 2, 3, . . . ,m− 2,

Qi,m−1 = Λi,m−1 − h2Φ4([ih, ih]),
i = 2, 3, . . . , n− 2,

Qn−1,1 = Λn−1,1 − h2Φ2([(n− 1)h, (n− 1)h])− k2Φ3([k, k]),
Qn−1,j = Λn−1,j − k2Φ3([jk, jk]),

j = 2, 3, . . . ,m− 2,
Qn−1,m−1 = Λn−1,m−1 − k2Φ3([(m− 1)k, (m− 1)k])

−h2Φ4([(n− 1)h, (n− 1)h]),
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and where

Λi,j = h2k2

{
Fi,j + 1

12
[
h2Ψ(Xi + [−h, h], Yj)

+k2Ω(Xi, Yj) + [−k, k] + (h2 + k2)[−M,M ]
]}

.

5.2. Methods for the generalised form
of the Poisson equation

This section presents methods for finding solutions to equations of the form

a(x, y)∂
2u

∂x2 (x, y) + b(x, y)∂
2u

∂y2 (x, y) = f(x, y), (5.13)

where
a(x, y) · b(x, y) > 0,

with Dirichlet boundary conditions defined as follows:

u(x, y) = ϕ(x, y), for all (x, y) ∈ Γ,
Γ = {(x, y) : (x = α1, α2 ∧ β1 ≤ y ≤ β2)

∨ (α1 ≤ x ≤ α2 ∧ y = β1, β2)},
(5.14)

where

u|Γ = ϕ(x, y) =


ϕ1(y) for x = α1,

ϕ2(x) for y = β1,

ϕ3(y) for x = α1,

ϕ4(x) for y = β2.

Let us point out that they were a step towards developing methods for the equations
considered in Section 6.2 and, together with numerical results, were published in the
paper [30].

5.2.1. Classical method
Analogously to earlier situation (see Section 2.3) we shall define a grid of nodes de-

fined on a rectangular region, with Dirichlet boundary conditions given by the general
formula (5.14). Next, assuming that at each interior point of the grid there exist partial
derivatives of the function u = u(x, y) up to and including the fourth order, using the
expansions of the function u at the point (xi, yj) in a Taylor series with respect to x and
y we obtain

a(xi, yj) ·
[
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj))

h2 − h2

12
∂4u

∂x4 (ξi, yj)
]

+b(xi, yj) ·
[
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1))

k2 − k2

12
∂4u

∂y4 (xi, ηj)
]

= f(xi, yj),

(5.15)
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where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1). As for the values of the function u lying on
the edge of Γ they can be written in the form

u0j = u(α1, yj) = ϕ1(yj) dla j = 0, 1, . . . ,m,
ui0 = u(xi, β1) = ϕ2(xi) dla i = 1, 2, . . . , n− 1,
unj = u(α2, yj) = ϕ3(yj) dla j = 0, 1, . . . ,m,
uim = u(xi, β2) = ϕ4(xi) dla i = 1, 2, . . . , n− 1.

(5.16)

GPE2 Method. If in equation (5.15) we omit the components containing partial
derivatives and simplify the notation by taking uij = u(xi, yj), aij = a(xi, yj) and bij =
= b(xi, yj), then we obtain, defining the classical method of central differences, the for-
mula of the following form:

aij ·
(
ui+1,j − 2uij + ui−1,j

h2

)
+ bij ·

(
ui,j+1 − 2uij + ui,j+1

k2

)
= fij . (5.17)

The values of uij , for each i = 1, 2, . . .m − 1 and j = 1, 2, . . . n − 1, are obtained by
solving the system (m− 1)(n− 1) of linear equations defined by equation (5.17).

5.2.2. Interval methods
As in Section 5.1.2, here also we take into account the error of the method in the ob-

tained interval solutions. For this purpose, we transform equation (5.15) to the following
form:

a(xi, yj) ·
[
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj))

h2

]
+b(xi, yj) ·

[
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1))

k2

]
−a(xi, yj) ·

h2

12
∂4u

∂x4 (ξi, yj)− b(xi, yj) ·
k2

12
∂4u

∂y4 (xi, ηj) = f(xi, yj).

(5.18)

If we place the error components on the right hand side, then we obtain the formula

a(xi, yj) ·
[
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj))

h2

]
+b(xi, yj) ·

[
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1))

k2

]
= f(xi, yj) + a(xi, yj) ·

h2

12
∂4u

∂x4 (ξi, yj) + b(xi, yj) ·
k2

12
∂4u

∂y4 (xi, ηj).

(5.19)

For the estimation of the error components, let us assume that there exist constants
M and N , such that ∣∣∣∣∂4u

∂x4 (x, y)
∣∣∣∣ ≤M oraz

∣∣∣∣∂4u

∂y4 (x, y)
∣∣∣∣ ≤ N (5.20)

for all points (x, y), such that α1 ≤ x ≤ α2 and β1 ≤ y ≤ β2. We propose to determine
the values of these constants using the approximation of derivatives of order four by
central differences. Thus, if we denote

Mh = max
ij

6uij − 4ui−1,j − 4ui+1,j + ui−2,j + ui+2,j

h4 ,

Nk = max
ij

6uij − 4ui,j−1 − 4ui,j+1 + ui,j−2 + ui,j+2

k4 ,

(5.21)
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where the values of uij can be obtained by the classical method defined by equation
(5.17), then the values of the constants M and N can be determined as the following
limits:

M = lim
h→0

Mh,

N = lim
k→0

Nh.
(5.22)

Clearly h→ 0, when m→∞, and k → 0, when n→∞. This means that by increasing
the grid size we can determine M and N experimentally.

IGPE2 Method. Let A(X,Y ), B(X,Y ) and U(X,Y ) denote the interval expansions
of the functions a(x, y), b(x, y) and u(x, y) respectively. To simplify the notation let us
assume

Aij = A(Xi, Yj),
Bij = B(Xi, Yj),
Uij = U(Xi, Yj).

Then, using equation (5.19) and values of constants M and N determined experimen-
tally, we can write the following formula determining the method in ordinary interval
arithmetic:

k2AijUi+1,j + h2BijUi,j+1 − 2(k2Aij + h2Bij)Uij + k2AijUi−1,j + h2BijUi,j−1

= h2k2
{
Fij + h2Aij

12 [−M,M ] + k2Bij
12 [−N,N ]

}
.

(5.23)

DIGPE2 Method. As it is well known, there are opposite elements in directed interval
arithmetic. In interval form, equation (5.18) can also be written as follows:

k2AijUi+1,j + h2BijUi,j+1 − 2(k2Aij + h2Bij)Uij

+k2AijUi−1,j + h2BijUi,j−1 −
h4Aij

12 [−M,M ]− k4Bij
12 [−N,N ]

= h2k2Fij .

If we add to both sides of the above equation the components opposite to those associated
with the method error, then we get

k2AijUi+1,j + h2BijUi,j+1 − 2(k2Aij + h2Bij)Uij + k2AijUi−1,j + h2BijUi,j−1

= h2k2
{
Fij + h2Aij

12 [M,−M ] + k2Bij
12 [N,−N ]

}
.

(5.24)

Note that equation (5.24) differs from equation (5.23) only in that the error components
of the method are written as directed intervals [M,−M ] and [N,−N ].
The other methods that were developed within this thesis are orders of magnitude

higher than the second one and are therefore placed in a separate chapter. The next
one.





6
Higher order interval methods

In this chapter, finite difference methods of higher (than second) orders are described,
the methods which allow finding interval solutions for the generalized Poisson equation
(GPE) and for elliptic equations of the form a∆u + cu = f (NE). The designations of
the different methods described in this chapter are given in Table 6.1.

Table 6.1. Designations of higher order methods presented in the paper according to the form of
Eq, order of method and type of arithmetic

Equation Order of the method
Arithmetic type

flaoting-point interval proper interval directed

PE (2.6) 4 PE4 IPE4 DIPE4
NE (2.8) 3 NE3 INE3 DINE3
NE (2.8) 3 NE5C INE5C DINE5C

6.1. Methods for the elementary form
of the Poisson equation

6.1.1. Classical method
Using Taylor series, we can write the Poisson equation (2.6) in terms of (xi, yj) of the

form
δ2
xuij + δ2

yuij + 1
12(h2 + k2)δ2

xδ
2
yuij

− 1
240

(
h4 ∂6u

∂x4∂y2 (ξi, yj) + k4 ∂6u

∂x2∂y4 (xi, ηj)
)

− h2k2

144

(
∂6u

∂x4∂y2 (ξi, ηj) + ∂6u

∂x2∂y4 (ξi, ηj)
)

= fij + 1
12(h2δ2

x + k2δ2
y)fij

− 1
240

(
h4 ∂

4f

∂x4 (ξi, yj) + k4 ∂
4u

∂y4 (xi, ηj)
)
.

(6.1)
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PE4 Method. If we neglect the partial derivatives in equation (6.1) we obtain the
following classical fourth order finite difference method [24,101]:

δ2
xuij + δ2

yuij + 1
12(h2 + k2)δ2

xδ
2
yuij = fij + 1

12(h2δ2
x + k2δ2

y)fij . (6.2)

6.1.2. Interval methods
Based on the method defined in the previous section, two interval methods can be

derived, for ordinary and directed interval arithmetic – we will denote them by the
abbreviations IPE4 and DIPE4, respectively. Together with example numerical results,
they have been published in [67].
Let Θ(X,Y ) and Ξ(X,Y ) denote the interval expansions of the functions ∂4f

∂x4 and ∂4f
∂y4

respectively, and let us suppose that∣∣∣∣ ∂6u

∂x4∂y2

∣∣∣∣ ≤ P i
∣∣∣∣ ∂6u

∂x2∂y4

∣∣∣∣ ≤ Q dla 0 ≤ x ≤ α i 0 ≤ y ≤ β.

It is clear that

∂4f

∂x4 (ξ, y) ∈ Θ(X + [−h, h], Y ), ∂
4f

∂y4 (x, η) ∈ Ξ(X,Y + [−k, k]),

∂6u

∂x4∂y2 ∈ [−P, P ] ∂6

∂x2∂y4 ∈ [−Q,Q].

IPE4 Method. If we write all partial derivatives on the right-hand side in equation
(6.1), it is easy obtain an interval analogy for this equation. Thus, we have

(h2 + k2)(Ui−1,j−1) + Ui−1,j+1 + Ui+1,j−1 + Ui+1,j+1)
+ 2(5k2 − h2)(Ui−1,j + Ui+1,j) + 2(5h2 − k2)(Ui,j−1 + Ui,j+1)
− 20(h2 + k2)Ui,j

= h2k2
(
Fi−1,j + Fi+1,j + 8Fi,j + Fi,j−1 + Fi,j+1)

− 1
20
(
h4Θ(Xi + [−h, h], Yj) + k4Ξ(Xi, Yj + [−k, k])

)
+ 1

20
(
h4[−P, P ] + k4[−Q,Q]

)
+ h2k2

12 [−P −Q,P +Q]
)
.

(6.3)

DIPE4 Method. On the other hand, if we leave the partial derivatives on the left-hand
side in equation (6.1)write down the interval analogy for this equation, and then add the
corresponding interval counter elements (they exist only in directed interval arithmetic),
then we obtain

(h2 + k2)(Ui−1,j−1) + Ui−1,j+1 + Ui+1,j−1 + Ui+1,j+1)
+ 2(5k2 − h2)(Ui−1,j + Ui+1,j) + 2(5h2 − k2)(Ui,j−1 + Ui,j+1)
− 20(h2 + k2)Ui,j

= h2k2
(
Fi−1,j + Fi+1,j + 8Fi,j + Fi,j−1 + Fi,j+1)

− 1
20
(
h4Θ(Xi + [−h, h], Yj) + k4Ξ(Xi, Yj + [−k, k])

)
+ 1

20
(
h4[−P, P ] + k4[−Q,Q]

)
+ h2k2

12 [P +Q,−P −Q]
)
.

(6.4)
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The difference between equations (6.3) i (6.4) occurs only in the last line. If, for the
problem under consideration, we have no information about the constants P and Q, we
can determine them using the relation

Pnm = 1
h4k2 max

i,j
|ui−2,j−1 + ui−2,j+1 + ui+2,j−1 + ui+2,j+1 − 2(ui−2,j + ui+2,j)

− 4(ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1)
+8(ui−1,j + ui+1,j) + 6(ui,j−1 + ui,j+1)− 12uij | ,

Qnm = 1
h2k4 max

i,j
|ui−1,j−2 + ui+1,j−2 + ui−1,j+2 + ui+1,j+2 − 2(ui−2,j + ui+2,j)

− 4(ui−1,j−1 + ui+1,j−1 + ui−1,j+1 + ui+1,j+1)
+8(ui−1,j + ui,j+1) + 6(ui−1,j + ui+1,j)− 12uij |

for i = 2, 3, . . . , n − 2, j = 2, 3, . . . ,m − 2, where the values of uij are obtained by the
classical method (in floating point arithmetic) for different values of n and m. Then, the
values of the constants P and Q can be estimated from the fact that lim

n→∞
lim
m→∞

Pnm ≤ P
and lim

n→∞
lim
m→∞

Qnm ≤ Q.

6.2. Methods for equations of the form a∆u+
+cu = f

This and the next section describe the methods for the elliptic equations considered by
Nakao, i.e. of the form given by equation (2.8). Let us consider equation

a(x, y)∂
2u

∂x2 + b(x, y)∂
2u

∂y2 + c(x, y)u = f(x, y), (6.5)

where

a(x, y)b(x, y) > 0

inside the rectangle Ω.

6.2.1. Classical method
The third order method described in this subsection was published in [68]. For the

purpose of further references and comparisons, we denote it by the abbreviation NGPE3.
Assuming that there exist partial derivatives of order four of the function u and ap-

plying the Taylor series for the variable x in the neighbourhood of point xi and for
the variable yin the neighbourhood of point yj , we can express equation (6.5) in points
(xi, yj) in the form

aij

[
δ2
xuij −

h2

12
∂4u

∂x4 (ξi, yj)
]

+ bij

[
δ2
yuij −

k2

12
∂4u

∂y4 (xi, ηj)
]

+ cijuij = fij , (6.6)

where
δ2
xuij = ui+1,j − 2uij + ui−1,j

h2 , δ2
yuij = ui,j+1 − 2uij + ui,j−1

k2 ,

i = 1, 2, . . . , n − 1; j = 1, 2, . . . ,m − 1, uij = u(xi, yj), aij = a(xi, yj), bij = b(xi, yj).
Furthermore, cij = c(xi, yj), fij = f(xi, yj), where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1)
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denote the intermediate points and the boundary conditions take the following form:

u(0, yj) = ϕ1(yj) dla j = 0, 1, . . . ,m,
u(xi, 0) = ϕ2(xi) dla i = 0, 1, . . . , n− 1,
u(α, yj) = ϕ3(yj) dla j = 0, 1, . . . ,m,
u(xi, β) = ϕ4(xi) dla i = 0, 1, . . . , n− 1.

(6.7)

Directly from equation (6.5) we obtain

a
∂3u

∂x3 = ∂f

∂x
− ∂a

∂x

∂2u

∂x2 −
∂b

∂x

∂2u

∂y2 − b
∂3u

∂x∂y2 −
∂c

∂x
u− c∂u

∂x
,

b
∂3u

∂y3 = ∂f

∂y
− ∂a

∂y

∂2u

∂x2 − a
∂3u

∂x2∂y
− ∂b

∂y

∂2u

∂y2 −
∂c

∂y
u− c∂u

∂y

(6.8)

and

a
∂4u

∂x4 = ∂2f

∂x2 −
∂2a

∂x2
∂2u

∂x2 − 2∂a
∂x

∂3u

∂x3 −
∂2b

∂x2
∂2u

∂y2 − 2 ∂b
∂x

∂3u

∂x∂y2 − b
∂4u

∂x2∂y2

− ∂
2c

∂x2u− 2 ∂c
∂x

∂u

∂x
− c∂

2u

∂x2 ,

b
∂4u

∂y4 = ∂2f

∂y2 −
∂2a

∂y2
∂2u

∂x2 − 2∂a
∂y

∂3u

∂x2∂y
− a ∂4u

∂x2∂y2 −
∂2b

∂y2
∂2u

∂y2 − 2b ∂b
∂y

∂3u

∂y3

− ∂
2c

∂y2u− 2 ∂c
∂y

∂u

∂y
− c∂

2u

∂y2 .

(6.9)

Taking into account equality (6.9) in equation (6.8), we have

a
∂4u

∂x4 = ∂2f

∂x2 −
2
a

∂a

∂x

∂f

∂x

−

[
∂2a

∂x2 −
2
a

(
∂a

∂x

)2
+ c

]
∂2u

∂x2 −
(
∂2b

∂x2 −
2
a

∂a

∂x

∂b

∂x

)
∂2u

∂y2

−2
(
∂b

∂x
− b

a

∂a

∂x

)
∂3u

∂x∂y2 − b
∂4u

∂x2∂y2

−
(
∂2c

∂x2 −
2
a

∂a

∂x

∂c

∂x

)
u− 2

(
∂c

∂x
− c

a

∂a

∂x

)
∂u

∂x

(6.10)

and
b
∂4u

∂y4 = ∂2f

∂y2 −
2
b

∂b

∂y

∂f

∂y

−
(
∂2a

∂y2 −
2
b

∂a

∂y

∂b

∂y

)
∂2u

∂x2 −

[
∂2b

∂y2 −
2
b

(
∂b

∂y

)2
+ c

]
∂2u

∂y2

−2
(
∂a

∂y
− a

b

∂b

∂y

)
∂3u

∂x2∂y
− a ∂4u

∂x2∂y2

−
(
∂2c

∂y2 −
2
b

∂b

∂y

∂c

∂y

)
u− 2

(
∂c

∂y
− c

b

∂b

∂y

)
∂u

∂y
.

(6.11)
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Equation (6.10) should be considered at the intermediate point (ξi, yj) and equation
(6.11) at the intermediate point ((xi, ηj). It is known that

b(ξi, yj) = bij +O(h), c(ξi, yj) = cij +O(h), 1
a(ξi, yj)

= 1
aij

+O(h),

∂pν

∂xp
(ξi, yj) = ∂pν

∂xp
(xi, yj) +O(h) = ∂pνij

∂xp
+O(h),

a(xi, ηj) = aij +O(k), c(xi, ηj) = cij +O(k), 1
b(xi, ηj)

= 1
bij

+O(k),

∂pν

∂yp
(xi, ηj) = ∂pν

∂yp
(xi, yj) +O(k) = ∂pνij

∂xp
+O(k)

(6.12)

for p = 1, 2 i ν = a, b, c. Moreover, we have

∂u

∂x
(ξi, yj) = ∂u

∂x
(xi, yj) +O(h) = δxuij +O(h),

∂2u

∂x2 (ξi, yj) = ∂2u

∂x2 (xi, yj) +O(h) = δ2
xuij +O(h),

∂2u

∂y2 (ξi, yj) = ∂2u

∂y2 (xi, yj) +O(h) = δ2
yuij +O(k2) +O(h),

∂u

∂y
(xi, ηj) = ∂u

∂y
(xi, yj) +O(k) = δyuij +O(k),

∂2u

∂y2 (xi, ηj) = ∂2u

∂y2 (xi, yj) +O(k) = δ2
yuij +O(k),

∂2u

∂x2 (xi, ηj) = ∂2u

∂x2 (xi, yj) +O(h) = δ2
xuij +O(h2) +O(k),

(6.13)

where
δxuij = ui+1,j − ui−1,j

2h , δyuij = ui,j+1 − ui,j−1

2k .

NE3C Method. Substituting equations (6.12) and (6.13) into equations (6.10) and
(6.11), and then substituting the obtained results into equation (6.6), after simple trans-
formations we obtain(w1ij

h2 −
w3ij

2h

)
ui−1,j +

(w2ij

k2 −
w4ij

2k

)
ui,j−1

−
(

2w1ij

h2 + 2w2ij

k2 − w5ij − w6ij − cij
)
uij

+
(w2ij

k2 + w4ij

2k

)
ui,j+1 +

(w1ij

h2 + w3ij

2h

)
ui+1,j

= fij + w7ij +O(h3) +O(k3) +O(h2k2),

(6.14)

where

w1ij = aij + h2

12

[
∂2aij
∂x2 −

2
aij

(
∂aij
∂x

)2
+ cij

]
+ k2

12

(
∂2aij
∂y2 −

2
bij

∂aij
∂y

∂bij
∂y

)
,

w2ij = bij + h2

12

(
∂2bij
∂x2 −

2
aij

∂aij
∂x

∂bij
∂x

)
+ k2

12

[
∂2bij
∂y2 −

2
bij

(
∂bij
∂y

)2
+ cij

]
,

w3ij = h2

6

(
∂cij
∂x
− cij
aij

∂aij
∂x

)
, w4ij = k2

6

(
∂cij
∂y
− cij
bij

∂bij
∂y

)
,
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w5ij = h2

12

(
∂2cij
∂x2 −

2
aij

∂aij
∂x

∂cij
∂x

)
, w6ij = k2

12

(
∂2cij
∂y2 −

2
bij

∂bij
∂y

∂cij
∂y

)
,

w7ij = h2

12

[
∂2f

∂x2 (ξi, yj)−
2
aij

∂aij
∂x

∂f

∂x
(ξi, yj)

−2
(
∂bij
∂x
− bij
aij

∂aij
∂x

)
∂3u

∂x∂y2 (ξi, yj)− bij
∂4u

∂x2∂y2 (ξi, yj)
]

+k2

12

[
∂2f

∂y2 (xi, ηj)−
2
bij

∂bij
∂y

∂f

∂y
(xi, ηj)

−2
(
∂aij
∂y
− aij
bij

∂bij
∂y

)
∂3u

∂x2∂y
(xi, ηj)− aij

∂4u

∂x2∂y2 (xi, ηj)
]
.

6.2.2. Interval methods
The methods described in this section are an extension of the classical method presented

in the previous section. They are designed for ordinary and directed interval arithmetic,
and for the purpose of further references are denoted by the abbreviations INE3 and
DINE3, respectively.
From equation (6.14) we can obtain the interval method. Suppose that∣∣∣∣ ∂4u

∂x2∂y2 (x, y)
∣∣∣∣ ≤M,

∣∣∣∣ ∂3u

∂x2∂y
(x, y)

∣∣∣∣ ≤ P, ∣∣∣∣ ∂3u

∂x∂y2 (x, y)
∣∣∣∣ ≤ Q

for all points (x, y) lying in area Ω and let Ψ1(X,Y ), Ψ2(X,Y ), Ξ1(X,Y ), Ξ2(X,Y )
denote the interval expansions of the functions ∂f

∂x (x, y), ∂2f
∂x2 (x, y), ∂f

∂y (x, y), ∂2f
∂y2 (x, y),

respectively. Then

∂4u

∂x2∂y2 (x, y) ∈ [−M,M ], ∂3u

∂x2∂y
(x, y) ∈ [−P, P ], ∂3u

∂x∂y2 (x, y) ∈ [−Q,Q]

for each point (x, y) and

∂f

∂x
(ξi, yj) ∈ Ψ1 (Xi + [−h, h], Yj) ,

∂2f

∂x2 ∈ Ψ2 (Xi + [−h, h], Yj) ,

∂f

∂y
(xi, ηj) ∈ Ξ1 (Xi, Yj + [−k, k]) , ∂2f

∂y2 ∈ Ξ2 (Xi, Yj + [−k, k]) ,

since ξi ∈ (xi − h, xi + h) and ηj ∈ (yj − k, yj + k). Thus, we have w7ij ∈W7ij , where

W7ij = h2

12

{
Ψ2(Xi + [−h, h], Yj)−

2
Aij

DxAijΨ1(Xi + [−h, h], Yj)

−2
(
DxBij −

Bij
Aij

DxAij

)
[−P, P ]−Bij [−M,M ]

}
+k2

12

{
Ξ2(Xi, Yj + [−k, k])− 2

Bij
DyBijΞ1(Xi, Yj + [−k, k])

−2
(
DyAij −

Aij
Bij

DyBij

)
[−Q,Q]−Aij [−M,M ]

}
(6.15)

and where Vij and DzVij for V = A,B and z = x, y denote the interval expansions of
the quantities νij and ∂νij

∂z for ν = a, b, respectively.

INE3C Method. If we denote the interval expansions of the quantities cij and wpij
by Cij and Wpij , (p = 1, 2, . . . , 6), then from the above considerations, as well as from
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relation (6.14), an interval method of the form(
W1ij

h2 −
W3ij

2h

)
Ui−1,j +

(
W2ij

k2 − W4ij

2k

)
Ui,j−1

−
(

2W1ij

h2 + 2W2ij

k2 −W5ij −W6ij − Cij
)
Uij

+
(
W2ij

k2 + W4ij

2k

)
Ui,j+1 +

(
W1ij

h2 + W3ij

2h

)
Ui+1,j

= Fij +W7ij + [−δ, δ], i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1,

(6.16)

where the interval [−δ, δ], called δ-extension, is represented by the expression O(h3)+
+O(k3) +O(h2k2) and where

U0j = Φ1(Yj), Ui0 = Φ2(Xi), Unj = Φ3(Yj), Uim = Φ4(Xi),
j = 0, 1, . . . ,m, i = 1, 2, . . . , n− 1.

(6.17)

Here by Φ1(Y ),Φ2(Y ),Φ3(Y ) and Φ4(Y ) we denote the interval expansions for the func-
tions ϕ1(y), ϕ2(y), ϕ3(y) and ϕ4(y), respectively. The interval system of linear equations
arising from formulas (6.16) and (6.17) can be solved using ordinary (proper) interval
arithmetic since all intervals are proper.

DINE3C Method. The method in directed interval arithmetic differs only in the co-
efficient W7ij , which in this case is written using the element opposite to [−M,M ], i.e.:

W 7ij = h2

12

{
Ψ2(Xi + [−h, h], Yj)−

2
Aij

DxAijΨ1(Xi + [−h, h], Yj)

−2
(
DxBij −

Bij
Aij

DxAij

)
[−P, P ] +Bij [M,−M ]

}
+k2

12

{
Ξ2(Xi, Yj + [−k, k])− 2

Bij
DyBijΞ1(Xi, Yj + [−k, k])

−2
(
DyAij −

Aij
Bij

DyBij

)
[−Q,Q] +Aij [M,−M ]

}
(6.18)

It should also be noted that if no conclusions can be drawn about the values of M ,
P and Q based on the physical, mechanical properties or features of the problem under
consideration, we propose to find these constants taking into account that

∂4u

∂x2∂y2 (xi, yj) = lim
h→0

lim
k→0

(
ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

h2k2

+4uij − 2(ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)
h2k2

)
,

∂3u

∂x2∂y
= lim
h→0

lim
k→0

(
ui−1,j+1 − ui−1,j−1 − 2(ui1,j+1 − ui1,j−1) + ui+1,j+1 − ui+1,j−1

2h2k

)
,

∂3u

∂x∂y2 = lim
h→0

lim
k→0

(
ui+1,j−1 − ui−1,j−1 − 2(ui+1,j − ui−1,j) + ui+1,j+1 − ui−1,j+1

2hk2

)
.



82 6. Higher order interval methods

We can calculate

Mnm = 1
h2k2 max

i=1,2,...,n−1
j=1,2,...,m−1

|ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

−4uij − 2(ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)| ,

Pnm = 1
2h2k

max
i=1,2,...,n−1
j=1,2,...,m−1

|ui−1,j+1 − ui−1,j−1 − 2(ui,j+1 − ui,j−1)

+ui+1,j+1 − ui+1,j−1| ,

Qnm = 1
2hk2 max

i=1,2,...,n−1
j=1,2,...,m−1

|ui+1,j−1 − ui−1,j−1 − 2(ui+1,j − ui−1,j)

+ui+1,j+1 − ui−1,j+1| ,

where the quantities uij were obtained using the classical method for different values of n
and m. Then, we can plot the quantities Mnm, Pnm and Qnm as a function of the values
of n and m. The constants M , P and Q can be easily determined from the obtained
graphs, since

lim
n→∞
m→∞

Mnm ≤M, lim
n→∞
m→∞

Pnm ≤ P, lim
n→∞
m→∞

Qnm ≤ Q.

6.3. Methods for equations of the form
a∆u + cu = f with a larger number
of error estimating constants

This section presents alternative interval methods for finding solutions of elliptic PDEs
of the form expressed by equation (6.5). The methods described earlier were distinguished
by the fact that in the construction of differential schemes attention was paid to mini-
mizing the number of constants estimating the error of the method. However, one may
ask the question whether increasing the number of constants estimating the error of the
method has a significant influence on the obtained interval results? Hence, it was under-
taken to develop a differential scheme, where more constants were used in the interval
expansion than previously. The results of comparing the methods described here with
methods with fewer error estimating constants are given in Chapter 7.

6.3.1. Classical method
Consider the equation

a
∂2u

∂x2 + b
∂2u

∂y2 + c · u = f. (6.19)

Constructing the differential scheme for the third order method requires obtaining ap-
proximations of the expressions a∂4u

∂x4 and b∂4u
∂y4 . As in Section 5.1.1we will use the sim-

plified notation for partial derivatives (see Equation (5.2)). If we include the error com-
ponents, we can write the following formulas:

∂2u

∂x2 (xi, yj) = δ2
x −

h2

12
∂4u

∂x4 (xi, yj)−
h4

360
∂6u

∂x6 (xi, yj) +O(h6),

∂2u

∂y2 (xi, yj) = δ2
y −

k2

12
∂4u

∂y4 (xi, yj)−
k4

360
∂6u

∂y6 (xi, yj) +O(k6).
(6.20)
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In order to simplify the notation in determining the differential diagram, we decided
to omit the arguments (x, y) for each function. Taking into account formulas (6.20) in
equation (6.5) we have

a

[
δ2
x −

h2

12
∂4u

∂x4 −
h4

360
∂6u

∂x6 +O(h6)
]

+b
[
δ2
y −

k2

12
∂4u

∂y4 −
k4

360
∂6u

∂y6 +O(k6)
]

+ c · u = f.

(6.21)

After the first differentiation of formula (6.19) we obtain

∂a

∂x
· ∂

2u

∂x2 + a
∂3u

∂x3 + ∂b

∂x
· ∂

2u

∂y2 + b
∂3u

∂y2∂x
+ ∂c

∂x
· u+ c · ∂u

∂x
= ∂f

∂x
.

Differentiating again, we have

∂2a

∂x2 ·
∂2u

∂x2 +∂a

∂x
· ∂

3u

∂x3 + ∂a

∂x

∂3u

∂x3 + a
∂4u

∂x4

+ ∂2b

∂x2 ·
∂2u

∂y2 + ∂b

∂x
· ∂3u

∂y2∂x
+ ∂b

∂x

∂3u

∂y2∂x
+ b

∂4u

∂y2∂x2

+ ∂2c

∂x2 · u+ ∂c

∂x
· ∂u
∂x

+ ∂c

∂x
· ∂u
∂x

+ c · ∂
2u

∂x2 = ∂2f

∂x2 .

So

∂2f

∂x2 = ∂2a

∂x2 ·
∂2u

∂x2 + 2∂a
∂x
· ∂

3u

∂x3 + a
∂4u

∂x4

+ ∂2b

∂x2 ·
∂2u

∂y2 + 2 ∂b
∂x
· ∂3u

∂y2∂x
+ b

∂4u

∂y2∂x2

+ ∂2c

∂x2 · u+ 2 ∂c
∂x
· ∂u
∂x

+ c · ∂
2u

∂x2

Proceeding similarly for the variable y we obtain

∂2f

∂y2 = ∂2a

∂y2 ·
∂2u

∂x2 + 2∂a
∂y
· ∂3u

∂x2∂y
+ a

∂4u

∂x2∂y2

+ ∂2b

∂y2 ·
∂2u

∂y2 + 2 ∂b
∂y
· ∂

3u

∂y3 + b
∂4u

∂y4

+ ∂2c

∂y2 · u+ 2 ∂c
∂y
· ∂u
∂y

+ c · ∂
2u

∂y2

Hence,

a
∂4u

∂x4 = ∂2f

∂x2 −
∂2a

∂x2 ·
∂2u

∂x2 − 2∂a
∂x
· ∂

3u

∂x3

− ∂2b

∂x2 ·
∂2u

∂y2 − 2 ∂b
∂x
· ∂3u

∂y2∂x
− b ∂4u

∂y2∂x2

− ∂2c

∂x2 · u− 2 ∂c
∂x
· ∂u
∂x
− c · ∂

2u

∂x2 ,

(6.22)

b
∂4u

∂y4 = ∂2f

∂y2 −
∂2a

∂y2 ·
∂2u

∂x2 − 2∂a
∂y
· ∂3u

∂x2∂y

− ∂2b

∂y2 ·
∂2u

∂y2 − 2 ∂b
∂y
· ∂

3u

∂y3 − a
∂4u

∂x2∂y2

− ∂2c

∂y2 · u− 2 ∂c
∂y
· ∂u
∂y
− c · ∂

2u

∂y2 .

(6.23)
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Using equations (6.22) oraz (6.23) in equation (6.21) and taking into account the upper
error limits, based on relation (6.13), we obtain

aδ2
xu−

h2

12

[
∂2f

∂x2 −
∂2a

∂x2 δ
2
xu− 2∂a

∂x
δ3
xu

− ∂2b

∂x2 δ
2
yu− 2 ∂b

∂x
δ2
yδxu− bδ2

yδ
2
xu

− ∂2c

∂x2u− 2 ∂c
∂x
δxu− cδ2

xu+O(h)
]

+

+bδ2
yu−

k2

12

[
∂2f

∂y2 −
∂2a

∂y2 δ
2
xu− 2∂a

∂y
δ2
xδyu− aδ2

xδ
2
yu

− ∂2b

∂y2 δ
2
yu− 2 ∂b

∂y
δ3
xu

− ∂2c

∂y2u− 2 ∂c
∂y
δyu− cδ2

yu+O(k)
]

+ cu = f.

After further transformations we obtain the formula(
a
h2

12
∂2a

∂x2 + h2

12 c+ k2

12
∂2a

∂y2

)
δ2
xu

+
(
b+ k2

12
∂2b

∂y2 + k2

12c+ h2

12
∂2b

∂x2

)
δ2
yu

+
(
h2

6
∂a

∂x
+ k2

6
∂b

∂y

)
δ3
xu

+h2

6
∂b

∂x
δ2
yδxu+ k2

6
∂a

∂y
δ2
xδyu

−
(
h2

12 b+ k2

12a
)
δ2
xδ

2
yu

+k2

6
∂c

∂x
δxu+ k2

6
∂c

∂y
δyu+ c · u

=f + h2

12
∂2f

∂x2 + k2

12
∂2f

∂y2 +O(h3) +O(k3).

(6.24)

NE5C Method. Let us move the mixed derivative approximations to the right-hand
side of equation (6.24), to include them as components of the method error. We obtain(

a
h2

12
∂2a

∂x2 + h2

12 c+ k2

12
∂2a

∂y2

)
δ2
xu+

(
b+ k2

12
∂2b

∂y2 + k2

12c+ h2

12
∂2b

∂x2

)
δ2
yu

+k2

6
∂c

∂x
δxu+ k2

6
∂x

∂y
δyu+ c · u = f + h2

12
∂2f

∂x2 − 2h
2

12
∂a

∂x
δ3
xu− 2h

2

12
∂b

∂x
δ2
yδxu

+h2

12 bδ
2
xδ

2
yu+ k2

12
∂2f

∂y2 − 2k
2

12
∂b

∂y
δ3
yu− 2k

2

12
∂a

∂y
δ2
xδyu

+k2

12aδ
2
xδ

2
yu+O(h3) +O(k3).

(6.25)
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We will use the above equation in the next section to derive an interval method that
takes into account the truncation error. Let us define the following auxiliary coefficients:

w1 = a+ h2

12
∂2a

∂x2 + h2

12 c+ k2

12
∂2a

∂y2 ,

w2 = b+ k2

12
∂2b

∂y2 + k2

12c+ h2

12
∂2a

∂x2 ,

w3 = h2

6
∂c

∂x
,

w4 = k2

6
∂c

∂y
,

w5 = h2

12
∂2f

∂x2 − 2h
2

12
∂a

∂x
δ3
xu− 2h

2

12
∂b

∂x
δ2
yδxu

+ h2

12 bδ
2
xδ

2
yu+ k2

12
∂2f

∂y2 − 2k
2

12
∂b

∂y
δ3
yu− 2k

2

12
∂a

∂y
δ2
xδyu+ k2

12aδ
2
xδ

2
yu

Then equation (6.25) at the grid point (xi, yj) can be written in the form

w1δ
2
xuij + w2δ

2
yuij + w3δxuij + w4δyuij + cij · uij = fij + w5ij +O(h3) +O(k3),

which, considering equation (5.2), gives

w1

(
ui+1,j − 2uij + ui−1,j

h2

)
+ w2

(
ui,j+1 − 2uij + ui,j−1

k2

)
+ w3

(
ui+1,j + ui−1,j

2h

)
+ w4

(
ui,j+1 + ui,j−1

2k

)
+ cij · uij = fij + w5ij +O(h3) +O(k3).

(6.26)

Finally, the form of the third order scheme for equation (6.19) is as follows:(
ci,j −

2w1

h2 −
2w2

k2

)
uij +

(w1

h2 + w3

2h

)
ui+1,j +

(w1

h2 −
w3

2h

)
ui−1,j

+
(w2

k2 + w4

2k

)
ui,j+1 +

(w2

k2 −
w4

2k

)
ui,j−1 = fij + w5ij +O(h3) +O(k3).

(6.27)

6.3.2. Interval methods
Let us introduce the following constants, which are estimates for the errors:

P = lim
h→0

lim
k→0
|δ2
xδyu|,

Q = lim
k→0

lim
h→0
|δ2
yδxu|,

R = lim
h→0
|δ3
xu|,

S = lim
h→0
|δ3
yu|,

T = lim
h→0

lim
k→0
|δ2
xδ

2
yu|.

As in Section 6.2.2, let us make the assumptions that∣∣∣∣ ∂3u

∂x2∂y
(x, y)

∣∣∣∣ ≤ P, ∣∣∣∣ ∂3u

∂x∂y2 (x, y)
∣∣∣∣ ≤ Q, ∣∣∣∣ ∂4u

∂x2∂y2 (x, y)
∣∣∣∣ ≤ T,∣∣∣∣∂3u

∂x3 (x, y)
∣∣∣∣ ≤ R, ∣∣∣∣∂3u

∂y3 (x, y)
∣∣∣∣ ≤ S
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for all points (x, y) lying in area Ω and let Ψ(X,Y ), Ξ(X,Y ), denote the interval expan-
sions of the functions ∂2f

∂x2 (x, y) and ∂2f
∂y2 (x, y). Then

∂3u

∂x2∂y
(x, y) ∈ [−P, P ], ∂3u

∂x∂y2 (x, y) ∈ [−Q,Q], ∂4u

∂x2∂y2 (x, y) ∈ [−T, T ]

∂3u

∂x3 (x, y) ∈ [−R,R], ∂3u

∂y3 (x, y) ∈ [−S, S]

for each point (x, y) ∈ Ω and

∂2f

∂x2 ∈ Ψ (Xi + [−h, h], Yj) ,
∂2f

∂y2 ∈ Ξ (Xi, Yj + [−k, k]) ,

since ξi ∈ (xi − h, xi + h) oraz ηj ∈ (yj − k, yj + k). Thus, we have w5ij ∈W5ij , where

W5ij = h2

12Ψ (Xi + [−h, h], Yj)− 2h
2

12DxAij [−R,R]− 2h
2

12DxBij [−Q,Q] + h2

6 Bij [−T, T ]

+k2

12Ξ (Xi, Yj + [−k, k])− 2k
2

12DyBij [−S, S]− 2k
2

12DyAij [−P, P ].
(6.28)

and where Vij and DzVij for V = A,B and z = x, y enote the interval expansions of the
quantities νij and ∂νij

∂z for ν = a, b, respectively.

INE5C Method. Let us denote the interval expansions of the quantities cij , vzij and
wzij by Cij , Vzij and Wpij , (z = x, y), respectively. Then, considering relation (6.14), we
obtain the form of the scheme of order three for equation (6.5). It is as follows:(

Ci,j −
2W1ij

h2 − 2W2ij

k2

)
Ui,j +

(
W1ij

h2 + W3ij

2h

)
Ui+1,j +

(
W1ij

h2 −
W3ij

2h

)
ui−1,j

+
(
W2ij

k2 + W4ij

2k

)
ui,j+1 +

(
W2ij

k2 − W4ij

2k

)
ui,j−1 = Fij +Wij +O(h3) +O(k3).

(6.29)
where

U0j = Φ1(Yj), Ui0 = Φ2(Xi), Unj = Φ3(Yj), Uim = Φ4(Xi),
j = 0, 1, . . . ,m, i = 1, 2, . . . , n− 1.

(6.30)

Here by Φ1(Y ),Φ2(Y ),Φ3(Y ) and Φ4(Y ) we denote the interval expansions for the func-
tions ϕ1(y), ϕ2(y), ϕ3(y) and ϕ4(y), respectively. The interval system of linear equations
arising from formulas (6.16) and (6.30) can be solved by ordinary (proper) interval arith-
metic, since all intervals are proper.

DINE5C Method. he FDM method in directed interval arithmetic differs only in
the coefficient Wij , which we replace, using the existence of opposite elements, by the
coefficient

W ij = h2

12Ψ (Xi + [−h, h], Yj)− 2h
2

12DxAij [R,−R]− 2h
2

12DxBij [Q,−Q] + h2

6 Bij [T,−T ]

+k2

12Ξ (Xi, Yj + [−k, k])− 2k
2

12DyBij [S,−S]− 2k
2

12DyAij [P,−P ].

All methods described in Chapters 5 and 6 were tested and compared with one other,
wherever possible, in Chapter 7.



7
Computational experiments

This chapter presents results obtained by means of the interval methods described
earlier. The individual examples start from the simplest, classical form of the Poisson
equation, through its generalization, up to a certain class of elliptic equations of the
form a∆u + cu = f . The first and second examples show the application of interval
methods of second (IPE, DIPE) and fourth (IPE4, DIPE4) order to finding estimates
for solutions of the Poisson equation. The third example presents the interval methods
for the generalized form of Poisson’s equation (IGPE, DIGPE methods). Then, in the
fourth example it is shown that for this type of equation interval methods developed for
the mentioned class of equations can be used (assuming the relevant parameters). The
results obtained by these methods are compared with the methods of the third example.
The last two examples are intended to compare the methods described in Chapters 5 and
6 with the method proposed by Nakao - described in Chapter 4. They are referred to here
for two reasons: first, to show that Nakao’s method is not applicable to equations such
as the Poisson equation (PE) and the generalized Poisson equation (GPE). Second, to
show that the interval methods constructed in the manner described in this work make it
possible to efficiently find correct estimates for the equations considered by Nakao (NE)
and, what is more, that these estimates are more accurate than those we can obtain with
Nakao’s interval method.

Table 7.1. Running environment parameters

Parameter Value
Operating system Debian GNU/Linux 10 (buster)
Processor Intel Xeon E312xx 2.0 [GHz] x 10
RAM 64 [GB]
Compiler GCC v. 8.3.0
Version of the .boost 1.60
MPFR++ library version 3.6.8

In each example, the errors of the method were estimated experimentally using con-
stants and their designations are summarized in Table 7.2.
All the examples given here use the implementation of interval arithmetic in C++ [64].

The exception is example 4, for which results are presented directly from the publication
of the author of this paper (see [30]), and whose implementation was performed using
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Table 7.2. Designation of error estimation constants for each method.

Method Order of the method Constants for estimating errors

PE 2 M ≥
∣∣∣ ∂4u
∂x2∂y2

∣∣∣
GPE 2 M ≥

∣∣∣∂4u
∂x4

∣∣∣, N ≥ ∣∣∣∂4u
∂y4

∣∣∣
PE4 4 P ≥

∣∣∣ ∂6u
∂x4∂y2

∣∣∣, Q ≥ ∣∣∣ ∂6u
∂x2∂y4

∣∣∣
NE3C 4 M ≥

∣∣∣ ∂4u
∂xx∂y2

∣∣∣, P ≥ ∣∣∣ ∂3u
∂x2∂y

∣∣∣, Q ≥ ∣∣∣ ∂3u
∂x∂y2

∣∣∣
NE5C 4 P ≥

∣∣∣ ∂3u
∂x2∂y

∣∣∣, Q ≥ ∣∣∣ ∂3u
∂x∂y2

∣∣∣, R ≥ ∣∣∣∂3u
∂x3

∣∣∣, S ≥ ∣∣∣∂3u
∂y3

∣∣∣, T ≥ ∣∣∣ ∂4u
∂xx∂y2

∣∣∣
the IntervalArithmetic module (see [62]). The parameters of the runtime environment
are shown in Table 7.1.
Each of the interval methods presented in the thesis was tested according to the al-

gorithm 7.7. Since the purpose of the experiments was only to compare the quality of
the results obtained, depending on the method and type of arithmetic, therefore in the
implementation of the procedure SolveIntervalSystem(A, b) only one, the same algo-
rithm for solving the system of linear equations was used. The Gauss-Jordan elimination
method with full selection of the basis element was chosen (see [66]). However, there is
no obstacle to the use of other known methods for solving systems of linear equations.
Nevertheless, for comparing the effectiveness of the different methods it is crucial that it
is the same procedure for all of them.

Algorytm 7.7. Interval methods - test procedure
1: {the function f = f(x, y) is on the right side of each equation}
2: {variable params stores the vector of functions that are the parameters of the equa-

tion, located on the left-hand side, depending on the example includes the functions:
a1 = a1(x, y), a2 = a2(x, y) and c = c(x, y)}

3: {parameter bcstores the boundary conditions for the given BVP problem}
4: f, params, bc := GetInitialDataForGivenExample(exampleId)
5: {variable errorContants stores error estimation constants for the method, see Table

7.2}
6: errorContants := GetErrorBoundsForMethod(methodId,m, f, params, bc)
7: results← []
8: for m := 10, 20 . . . , 100 do
9: A, b := BuildIntervalSystem(methodId, f, bc, errorConstants)
10: tmp← SolveIntervalSystem(A, b)
11: results← Append(results, tmp)
12: end for
13: {the result is a set of results for a given method and different grid sizes}
14: return results
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Example 1
Consider the following boundary issue:

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u|Γ(x, y) = ϕ(x, y) =


ϕ1(y) = cos(3y) dla x = 0,
ϕ2(x) = exp(3x) dla y = 0,
ϕ3(y) = exp(3) cos(3y) dla x = 1,
ϕ4(x) = exp(3x) cos(3) dla y = 1.

(7.1)

This is the so-called Laplace equation and it is the simplest example of an elliptic equation
of the form (2.6), denoted in this paper by the abbreviation PE. The exact solution has
the form u(x, y) = exp(3x) cos(3y).

X 0.00.20.40.60.81.0
Y

0.0
0.2

0.4
0.6

0.8
1.0

Z

0.00
2.22
4.44
6.67
8.89
11.11
13.33
15.56
17.78
20.00

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 7.1. Exact solution for problem (7.1)

Figure 7.2. Approximations of the constant M nd its exact value in the methods of
order two for problem (7.1)
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Table 7.3. Interval solutions and interval widths obtained by IPE and IPE4 methods in proper (Up)
and by DIPE and DIPE4 methods in directed (Ud) interval arithmetic for problem (7.1) at point
(0.5, 0.5), uexact(0.5, 0.5) ≈ 0.31702214358044366

m = n Up(0.5, 0.5) Szerokość Ud(0.5, 0.5) Szerokość
20
(PE) [0.26795781801796551,

0.36764778128690462]
0.099689963 [0.26795781801796628,

0.36764778128690385]
0.099689963

20
(PE4) [0.31687231501883790,

0.31717197371330709]
0.000299659 [0.31687231501883870,

0.31717197371330630]
0.000299659

60
(PE) [0.31156101681974879,

0.32265704145441798]
0.011096024 [0.31156101681975913,

0.32265704145440782]
0.011096024

60
(PE4) [0.31702029383932179,

0.31702399332372090]
0.000003700 [0.31702029383933359,

0.31702399332370710]
0.000003699

100
(PE) [0.31505586246198510,

0.31905099073825598]
0.003995128 [0.31505586246202793,

0.31905099073821316]
0.003995128

100
(PE4) [0.31702190385388648,

0.31702238330710142]
0.000000048 [0.31702212784104150,

0.31702215931994640]
0.000000031

Figure 7.3. Approximations of the constant P and Q and their exact values adopted
in fourth order methods for problem (7.1)

The use of adequate interval methods (IPE, IPE4, DIPE, DIPE4) to address this issue
requires an initial estimate of the method errors for each method. As proposed in Section
5.1.2 this can be done experimentally. The fact that we know the exact solution, and thus
can determine the exact value of the estimate, will be used to verify the approximations
obtained. This is shown in Figures 7.2 and 7.3. In the second-order methods, we assumed
M = 1627 – this value was obtained from the known exact solution, but note that a
similar value (estimate) of this constant can be obtained from the graph shown in Figure
7.2. In the fourth-order methods, we assumed P = Q = 14643. W In this case, the
experimental estimation method can also be used, as can be seen in Figure 7.3.
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Conclusions. Table 7.3 shows the results obtained by second and fourth order meth-
ods in ordinary and directed interval arithmetic. In the example considered, the benefits
of using directed interval arithmetic were very limited, as the differences in the width of
the resulting intervals obtained, for a given grid size, were insignificant, even negligible.
There was a noticeable benefit from increasing the order of the method - clearly better
results for IPE4 than for IPE and DIPE4 than for DIPE. As can be seen in Figs. 7.2 and
7.3 the experimental estimation technique is effective here and the approximations of the
constants (i.e. approxM , approxQ, approxP ) converge to the exact values obtained ana-
lytically. In principle, if the estimates of M , P and Q cannot be obtained from any data
on the problem under consideration, we can use the technique presented here – determine
the estimates from the values obtained in floating point arithmetic. Let us also note that
for both methods, the exact solution is contained in the obtained interval solutions. �

Example 2
As a second example, consider the following problem:

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) = −2π2 sin(πx) sin(πy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u|Γ(x, y) = 0
(7.2)

with exact solution u(x, y) = sin(πx) sin(πy).
Note that the problem 7.2, like the previous one, belongs to elliptic equations of the

form PE, i.e. equations given by the general formula (2.6). However, in comparison with
the previous example, the right-hand side of the equation has changed – the function
f = f(x, y) constitutes here a new parameter of the equation. The resulting interval
solution is shown in Table 7.4.
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0.8

1.0

Figure 7.4. Exact solution for problem (7.2)
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Table 7.4. Interval solutions and interval widths obtained by IPE and IPE4 methods in proper (Up)
and by DIPE and DIPE4 methods in directed (Ud) interval arithmetic for problem (7.2) at point
(0.5, 0.5) (uexact(0.5, 0.5) = 1)

m = n Up(0.5, 0.5) Szerokość Ud(0.5, 0.5) Szerokość

20
(PE) [0.9943031722943299,

1.0032966998827956]
0.008993528 [0.9972920186287353,

1.0003078535483902]
0.003015835

20
(PE4) [0.9999825795708284,

1.0000059858600965]
0.000023406 [0.9999863114853876,

1.0000022539455373]
0.000015942

60
(PE) [0.9993877757476903,

1.0001910675167757]
0.000803292 [0.9995227144656405,

1.0000561287988255]
0.000533414

60
(PE4) [0.9999997879937084,

1.0000000498551452]
0.000000262 [0.9999998069620024,

1.0000000308868512]
0.000000217

100
(PE) [0.9997852097215218,

1.0000562138028589]
0.000259718 [0.9998155730093303,

1.0000258505150504]
0.000210278

100
(PE4) [0.9999999728030543,

1.0000000058410797]
0.000000033 [0.9999999743621285,

1.0000000042820054]
0.000000030

Figure 7.5. Approximations of the constants P and Q and their exact values assumed
in fourth-order methods for problem (7.2)
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Figure 7.6. Approximations of the constant M and its exact value assumed in the
methods of order two for problem (7.2)

Table 7.5. Interval solutions and interval widths obtained by IPE and IPE4 methods in proper (Up)
and by DIPE and DIPE4 methods in directed (Ud) interval arithmetic for problem (7.2) at point
(0.5, 0.5) for M = 100 i P = Q = 1000

m = n Up(0.5, 0.5) Width(Up) Ud(0.5, 0.5) Width(Ud)
20
(PE) [0.9942265819722118,

1.0033732902049137]
0.009146708 [0.9972460644354644,

1.0003538077416611]
0.003107743

20
(PE4) [0.9999821846099048,

1.0000063808210200]
0.000024196 [0.9999859165244640,

1.0000026489064608]
0.000016732

60
(PE) [0.9993792508363238,

1.0001995924281422]
0.000820342 [0.9995175995188206,

1.0000612437456454]
0.000543644

60
(PE4) [0.9999997831176551,

1.0000000547311985]
0.000000264 [0.9999998020859490,

1.0000000357629046]
0.000000234

100
(PE) [0.9997821403236452,

1.0000592832007355]
0.000277143 [0.9998137313706043,

1.0000276921537746]
0.000213961

100
(PE4) [0.9999999721711177,

1.0000000064730162]
0.000000034 [0.9999999737301920,

1.0000000049139419]
0.000000031

Conclusions. Analogously to the previous case, we had to determine the error esti-
mates of the method, this time for problem (7.2). We assumed that M = 97.5 or the
method of the second order (see 7.6) and P = Q = 961.4 for the method of the fourth
order (see 7.5). Importantly, as in Example 1, the exact solution falls inside the obtained
interval solution. Note that if we slightly overestimate the constants M or P and Q

(which can happen if there is no data with appropriate partial derivatives or if, despite
increasing the grid size, the increments of the derivatives are admittedly decreasing but
are still relatively high) the interval results will change slightly. In Table 7.5 we present
the results obtained by (D)IPE and (D)IPE4 methods for problem (7.2) with values
M = 100 and P = Q = 1000. Let us also note that for the given problem the resulting
intervals are much narrower in directed interval arithmetic, which indicates the desirabil-
ity of its use. It can be assumed that it is influenced by the fact that the problem 7.2has
an additional, non-zero parameter – i.e. the function f = f(x, y), the inclusion of which
in the calculations results in greater inaccuracies of the estimation obtained in proper
interval arithmetic than in directed one.. �
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Example 3
Consider an equation that is a generalization of equation (7.2):

xyey
∂2u

∂x2 (x, y) + xyex
∂2u

∂y2 (x, y) =− π2xy(ey sin(πx) sin(πy)

+ ex sin(πx) sin(πy)),
0 ≤ x ≤ 1, 0 ≤y ≤ 1,
u|Γ(x, y) = 0

(7.3)

with the same exact solution as before u(x, y) = sin(πx) sin(πy). Note, however, that
the partial derivatives ∂2u

∂x2 and ∂2u
∂y2 are preceded by the functions a(x, y) = xyey and

b(x, y) = xyex, respectively. Moreover, the function f(x, y) has a more complicated form,
as is shown in Figure 7.7.
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Figure 7.7. The function f(x, y) = −π2xy(ey sin(πx) sin(πy) + ex sin(πx) sin(πy))
for problem given by Equation (7.3)

Obviously, it is not possible to find solutions to this equation using methods PE and
PE4, which were used in examples 1 and 2. However, three other methods, described
in the previous chapters, can be used here, i.e. GPE, NE3C and NE5C methods. It is
essential that only one of them is dedicated strictly to equations such as equation (7.3)
i.e. of general form given by equation (2.7). The remaining methods are designed to solve
an even more general class of elliptic equations (see (2.8)).
Let us determine the values of the constants estimating the errors of each of the methods

used. For the GPE method, valuesM = N = 97.5 were assumed, which is the same as the
value of constant M from the previous example, and the graph with approximations is
presented similarly as in Fig. 7.6. Similarly, also in the NE3C method, constantM = 97.5,
and constants P = Q = 32, which is shown in Fig. 7.8. In this method, there is also the
parameter σ for which a constant value of 10−3 was assumed. As for the NE5C method, for
the example under consideration, the values of the constants P = Q = 32, R = S = 32
and T = 97.5, and their approximations are not presented in the figures, as they are
similar to Fig. 7.8 and 7.6 respectively. The results of the calculations are summarized
in Table 7.6.
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10 30 50 70 90
m=n

20

25

30

P
approx P

10 30 50 70 90
m=n

20

25

30

Q
approx Q

Figure 7.8. Approximations of the constants P and Q and their exact values assumed
in NE3C method for problem (7.3)
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Figure 7.9. Widths of the resulting intervals at (x, y) = (0.5, 0.5) obtained by the
different methods for problem (7.3)
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Table 7.6. Interval solutions and interval widths obtained in ordinary (Ud) and directed interval
arithmetic for problem (7.3) at point (x, y) = (0.5, 0.5). The exact solution uexact(0.5, 0.5) = 1.0

.

m = n Up(0.5, 0.5) Width Ud(0.5, 0.5) Width
20
(GPE) [0.9990649974434728,

1.0050524160855946]
0.0059875 [0.9990649974434731,

1.0050524160855942]
0.0059875

20
(NE3C) [0.9860739374347772,

1.0152541364845506]
0.0291802 [0.9964229264583249,

1.0053436834061202]
0.0089208

20
(NE5C) [0.9786753667911464,

1.0186856003690083]
0.0400103 [0.9967344503643154,

1.0128046153340249]
0.0160702

40
(GPE) [0.9997646140260656,

1.0012637869302333]
0.0014992 [0.9997646140260672,

1.0012637869302317]
0.0014992

40
(NE3C) [0.9971061584234387,

1.0029451881631108]
0.0058391 [0.9998396275730703,

1.0002394673377627]
0.0003999

40
(NE5C) [0.9951271381913196,

1.0040441558490130]
0.0089171 [0.9983151113625363,

1.0040082859452567]
0.0056932

60
(GPE) [0.9998952490902022,

1.0005617396807390]
0.0006665 [0.99989524909020632,

1.0005617396807350]
0.0006665

60
(NE3C) [0.9986813778136610,

1.0013054266639347]
0.0026241 [0.9995433062314391,

1.0004490541542588]
0.0009058

60
(NE5C) [0.9979136690784978,

1.0016947696529887]
0.0037812 [0.9991180516182936,

1.0019120076700542]
0.0027940

80
(GPE) [0.9999410510369446,

1.0003159897301436]
0.0003750 [0.9999410510369521,

1.0003159897301361]
0.0003760

80
(NE3C) [0.9991601301069161,

1.0008238062494343]
0.0016637 [0.9995377341314507,

1.0004479808293076]
0.0009105

80
(NE5C) [0.9988506397527160,

1.0009229643915976]
0.0020724 [0.9994654771167783,

1.0011140612022322]
0.0016486

100
(GPE) [0.9999622647894478,

1.0002022367349792]
0.0002400 [0.9999622647894605,

1.0002022367349665]
0.0002391

100
(NE3C) [0.9998944144289977,

1.0000930442322149]
0.0012635 [0.9995602349489116,

1.0004272237123009]
0.0008670

100
(NE5C) [0.9992740680518004,

1.0005787490125610]
0.0013047 [0.9996429422202743,

1.0007281964538527]
0.0010853

Conclusions. For all investigated methods the interval solutions contained the exact
solution. The most accurate estimates were obtained by the GPE method, which is ded-
icated only to problems of the form 2.7 to which the issue under consideration belongs.
More general methods, namely NE3C and NE5C, also allowed us to obtain correct es-
timates, however, less accurate (wider resultant ranges). The above example also shows
that minimizing the number of constants estimating the errors of the method is reason-
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able – using the NE3C method we obtained more accurate estimates of exact solutions
than using the NE5C method. For the NE3C method also a rounding-off – effect was
observed - starting from grid size m = n = 60 the width of the resulting intervals began
to increase. �

Example 4
The main purpose of the fourth example is to further analyse the relative position of

the exact solution inside the result intervals obtained by the methods proposed in this
work. It was previously published in the paper [30].
Let us denote by p(s) the relative position of the solution s inside the resulting interval

A = [a−, a+] defined as follows:

p(s) = |s−mid(A)|
widht(A) , (7.4)

where mid(A) = a++a−
2 and widht(A) = a+− a−. The value of p(s) determines whether

the solution s lies inside the interval A, since

p(s) =
{

( 1
2 ,+∞) dla s /∈ A,

[0, 1
2 ] dla s ∈ A.

Consider the problem (2.7) defined over the region Ω = (0, 1)× (0, 1), in which

f(x, y) = x2y2(3y2 + 2x2y2 − 3x2),

a1(x, y) = xy3e−
x2+y2

2 ,

a2(x, y) = x3ye−
x2−y2

2 ,

(7.5)

with boundary conditions

ϕ1(y) = ye
1−y2

2 , ϕ2(x) = xe
x2−1

2 ,

ϕ3(y) = 2ye
4−y2

2 , ϕ4(x) = 2xe
x2−4

2

and an exact solution
u(x, y) = xye

x2−y2
2 . (7.6)

As shown in the previous example, the most accurate method (among those described
in this work) for this type of problems is the NE3C method and it was used to find
interval solutions. The values of constants M = 636.4 and N = 53.79 were taken as the
estimated errors of the method.
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Figure 7.10. Exact solution for problem (7.6)
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Figure 7.11. Widths of the resulting intervals obtained by ordinary interval arithmetic
at x = 1.5 for the problem defined by (7.5).

Figure 7.11 shows that increasing the grid size results in narrower resulting intervals
for both interval arithmetic. Narrower intervals imply a better estimate of the location
of the exact solution.
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Figure 7.12. The difference in width of the resulting intervals at (x, y) = (1.5, 1.5)
between ordinary (Up) and directed (Ud) interval arithmetic.
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Figure 7.13. Relative position p(s) (7.4) of the exact (first row) and floating-point
(second row) solutions to the problem given by equation (7.5) inside the intervals
obtained by ordinary interval arithmetic

Conclusions. The difference in the width of the resulting intervals between ordinary
and directed interval arithmetic increases as the grid size increases, as shown in Figure
7.12. A similar effect is also observed in the following examples. Figures 7.13 show the
relative position of exact and variable solutions inside the intervals obtained in ordinary
interval arithmetic. These results confirm that the exact solutions are always inside the
obtained interval solutions. Moreover, with the increased density of the grid we observe
that the distribution of positions of exact solutions changes and the denser the grid,
the more exact solutions lie relatively closer to the center of the resulting intervals. For
directed interval arithmetic, analogous results were obtained. Note also that the exact
solutions rarely lie in the middle of the interval solutions. On the other hand, as expected,
the floating point solutions lie almost in the middle of the interval solutions and their
deviation from the centers of the resulting intervals is negligibly small. �
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Example 5
In this example and the next one, let us consider the boundary problems for which

Nakao presented his method in the works [76, 77, 90]. Both boundary problems were
solved by both Nakao’s method (MN) and the method proposed in this work in Section
6.2 (NE3C). Let us take the following boundary problem:

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) + 5
4π

2u(x, y) = −π sin(π2 x) sin(πy),

u|Γ(x, y) = ϕ(x, y) = 0.
(7.7)
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Figure 7.14. Exact solution (7.7)

The exact solution is expressed by the formula u(x, y) = x cos(π2 ) sin(πy) and is shown
in Figure 7.14. For comparison, it was also solved by the finite difference method (FDM),
presented in Section 6.2, using classical and interval floating point arithmetic and by the
Nakao method (NM). The results are summarized in Table 7.7.
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Figure 7.15. Estimation of constants P, Q and R

Figure 7.15 shows the results obtained by the experimental method of determining the
error estimating constants for the NE3C method. As for Nakao’s method, described by
pseudo-code 4.6. all the necessary integrals defined earlier in detail in chapter 4had to be
determined. Their analytical determination, though generally possible, is time – consum-
ing, Thus, we propose, like Nakao himself, to perform a numerical integration. The GNU
Scientific Library [20] and an integration method called gsl_monte_plain_integrate.
were chosen for this task. It requires an indication of the number of internal iterations
(that is, performed during each integration) – this number is specified by the parameter
GSL_MC_ITER. Thus, it should be assumed that the entire computational process
for the Nakao method will be characterized by high time complexity.



102 7. Computational experiments

Table 7.7. Interval solutions and interval widths obtained in ordinary (Up) and directed (Ud)
interval arithmetic for problem (7.7) at point (x, y) = (0.5, 0.5). Parameters of the NM
method: GSL_MC_ITER = 25000, ε = 10−8 and δ = 10−8. Exact solution u(0.5, 0.5) ≈
0.353553390593273762

.

m = n Up(0.5, 0.5) Szerokość Ud(0.5, 0.5) Szerokość
10

(FDM) [0.33736480586793682,
0.36300478305332898]

0.025639 [0.33756936887156512,
0.36280022004970067]

0.025231

10
(NM) [0.3152061118620046,

0.36132018383540089]
0.046114 ——— ———

20
(FDM) [0.34941684316762481,

0.35610061725233360]
0.006684 [0.34962483373204273,

0.35589262668791567]
0.006268

20
(NM) [0.33915297428263464,

0.36240419420738459]
0.023252 ——— ———

40
(FDM) [0.35237722718097839,

0.35434723485693209]
0.001971 [0.35258608866995258,

0.35413837336795790]
0.001553

40
(NM) [0.34825826185867063,

0.35991260298977276]
0.011655 ——— ———

50
(FDM) [0.35272747688557449,

0.354136199185642]
0.000141 [0.35293644326868165,

0.35392723280253516]
0.000991

50
(NM) [0.34982805250009871,

0.35915492449402315]
0.009327 ——— ———

60
(FDM) [0.35291693874340361,

0.35402163378308488]
0.001105 [0.35312596214058223,

0.35381261038590626]
0.000687

60
(NM) [0.35083812253001074,

0.35861146659504341]
0.007774 ——— ———

70
(FDM) [0.35303084052839114,

0.35395264357629360]
0.000922 [0.35323989831501673,

0.35374358578966801]
0.000504

70
(NM) [0.35153360919724092,

0.35819829475234529]
0.006665 ——— ———

80
(FDM) [0.35310460462858216,

0.35390792521922393]
0.000804 [0.35331368474001861,

0.35369884510778749]
0.000386

80
(NM) [0.35205135444988570,

0.35788372978196933]
0.000584 ——— ———

90
(FDM) [0.35315509109784634,

0.35366820876113393]
0.000723 [0.35336418651725463,

0.35413837336795790]
0.000305

90
(NM) [0.35245716757768397,

0.35764099607470005]
0.0051839 ——— ———

100
(FDM) [0.35319115489527668,

0.35385542477058268]
0.000665 [0.35340026126546315,

0.35364631840039621]
0.000247

100
(NM) [0.35276267037643749,

0.35742841430850891]
0.000467 ——— ———
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Figure 7.16. Widths of the resulting intervals at (x, y) = (0.5, 0.5) obtained by NE3C
and Nakao (NM) methods

Figure 7.17. Difference in the width of the resulting intervals at (x, y) = (0.5, 0.5)
obtained by the N3C method in ordinary and directed floating point arithmetic (ex-
pressed as a percentage)

Conclusions. Increasing the size of the grid results in obtaining increasingly narrower
intervals - solutions, and thus increasingly precise estimation of the exact solution. Note
that the intervals estimating the exact solution obtained by the Nakao method are wider
than those obtained by the method proposed in this work. Experiments have shown that
the resulting intervals for both methods contain the exact solution, with the estimates
obtained by the method in Section 6.2.2 being more accurate. It is also worth noting that
the exact solution is contained in the results obtained using both interval arithmetics,
with the intervals obtained in the directed arithmetic being slightly narrower. �
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Example 6
Consider an example of an elliptic equation of a more complicated form, where the

parameter c = c(x, y), that is, is a function of two variables rather than a constant value
as in the previous example. Let us take the following boundary problem:

∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y) + 20 sin(πxy)u(x, y)

= 20(1− x)(1− y)(1− exy) sin(πxy)
−(1− x)(1− y)y2exy + 2(1− y)yexy − (1− x)x2(1− y)exy + 2(1− x)xexy,

u|Γ(x, y) = ϕ(x, y) = 0.

(7.8)

As you can see, the form of the function f = f(x, y) on the right side of the equation is
also much more complicated. The exact solution of this problem is given by the formula

u(x, y) = (1− x)(1− y)(1− exy).
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Figure 7.18. Exact solution (7.8)

The problem was solved, as in the previous example, using the NM method and the
NE3C method. The estimates of constants P ,Q and R for the NE3C method adopted
in the calculations were 4.0, 1.0 and 18.0, respectively. They can be determined exper-
imentally, as shown in Figure 7.19. The obtained interval results for problem 7.8 are
summarized in Table 7.8.
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Figure 7.19. Estimation of constants P, Q and R

Figure 7.20. Widths of the resulting intervals at (x, y) = (0.5, 0.5) obtained by NE3C
and Nakao (NM) methods
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Table 7.8. Interval solutions and interval widths obtained in proper (Up) and directed (Ud)
interval arithmetic for problem (7.8) at point (x, y) = (0.5, 0.5). Parameters of the NM
method: GSL_MC_ITER = 50000, ε = 10−6 and δ = 10−6. Exact solution u(0.5, 0.5) ≈
−0.07100635417193537

m = n Up(0.5, 0.5) Width Ud(0.5, 0.5) Width
10

(FDM) [−0.0803593623373,
−0.05609708833454]

0.024262 [−0.0801120392085,
−0.05634441146333]

0.023767

10
(NM) [ −0.07371995397025,

−0.05940775359080]
0.014312 ——— ———

20
(FDM) [−0.0730226649557,

−0.06764240796135]
0.005381 [−0.0727725649764,

−0.06789250794075]
0.004880

20
(NM) [−0.0736936420756,

−0.06635492256125]
0.007338 ——— ———

40
(FDM) [−0.0716360062762,

−0.07004991689743]
0.001587 [−0.0713852159381,

−0.070300707235545]
0.001085

40
(NM) [−0.0728105668809,

−0.06911503278813]
0.003696 ——— ———

50
(FDM) [−0.0714915329527,

−0.07031340623592]
0.001179 [−0.0713852159381,

−0.07030070723554]
0.000677

50
(NM) [−0.0725579344437,

−0.06959961152060]
0.002959 ——— ———

60
(FDM) [−0.07141614475551,

−0.070452886154063]
0.000964 [−0.07116522674098,

−0.070703804168597]
0.000462

60
(NM) [−0.07237804343632,

−0.069911177391834]
0.002467 ——— ———

70
(FDM) [−0.07137198052190,

−0.070535471876300]
0.000837 [−0.07112103541543,

−0.070786416982778]
0.000335

70
(NM) [−0.07224229063939,

−7.012801234449167]
0.002115 ——— ———

80
(FDM) [−0.07134393436792,

−0.070588352794936]
0.000755 [−0.07109297167899,

−0.070839315483867]
0.000253

80
(NM) [−0.07213822483315,

−0.070287571865418]
0.001851 ——— ———

90
(FDM) [−0.07132503264187,

−0.070624230448671]
0.000701 [−0.07107405789903,

−0.070875205191503]
0.000199

90
(NM) [−0.07205642787106 ,

−0.070412142956674]
0.001645 ——— ———

100
(FDM) [−0.07131169771395,

−0.070649680535005]
0.000662 [−0.07106071434932,

−0.070900663899635]
0.000161

100
(NM) [−0.07198821126530,

−0.070507997969016]
0.001481 ——— ———
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Figure 7.21. Difference in width of resultant intervals at (x, y) = (0.5, 0.5) obtained
by NE3C method in ordinary and directed floating point arithmetic (expressed as a
percentage)

Conclusions. The Nakao method produced more accurate estimates only for the
smallest grid size tested, i.e. m = n = 10. As the grid size increased, the width of
the resulting intervals decreased much faster for the NE3C method. The difference was
about an order of magnitude. This situation is probably due to the fact that in NM
numerical integration is used many times – while the basis functions that occur there
have not changed (they are the same pyramidal functions), but the functions that are
parameters of the equation are in this case much more complex. It is interesting to note
that, as in the previous example, the difference in width (expressed as a percentage)
between the intervals obtained by the NE3C method in ordinary and directed arithmetic
increased as the grid size increased. This suggests that the more calculations are to be
performed, the greater the benefit of using directed interval arithmetic. This emphasizes
the sensibility of the author’s implementation of this arithmetic. �





8
Summary

In this dissertation, interval methods of the FDM class which allow finding estimates
of exact solutions for boundary problems defined for selected elliptic equations are pre-
sented. In total, methods based on five different differential schemes are presented for
three types of PDEs, which are implemented in three types of arithmetic, i.e. floating-
point arithmetic, ordinary interval arithmetic, and directed interval arithmetic (see Table
5.1 and Table 6.1).
The algorithms presented in this work deal with the heuristic estimation of exact

solutions obtained by interval FDM methods. An attempt is also made to refer to a
method that allows a rigorous verification of the existence of PDE solutions and finding
their estimate supported by a mathematical proof. Such a method for elliptic equations
is the Nakao method using the FEM model (described in papers [76] and [78]). The
results obtained with both types of methods, i.e. the interval FDM methods proposed in
this work and the interval-based (but not fully interval – as pointed out in Chapter 4)
Nakao method, were compared. However, this required extending the algorithm originally
developed by the author for the simplest elliptic equation, the Poisson equation, to a form
designed for the more general class of elliptic equations that Nakao considered.
Therefore, the Poisson equation (PE) with Dirichlet boundary conditions was taken

as a starting point. Then the problem was generalised by adding functions which are
the parameters of this equation, which is called (within this dissertation) the generalised
Poisson equation (GPE). Then, this equation was extended to an even more general
form defining a certain class of elliptic equations considered by Nakao (NE). This was
important as, from preliminary analyses of the current state of research in the world,
it appeared that the method developed by Nakao uses interval arithmetic to verify the
existence and to find estimates for solutions of exact elliptic equations, which, in the
author’s opinion, needs to be referred to in this dissertation. Hence, a separate chapter
(see Chapter 4) was devoted to a detailed description of this method.
The research conducted by the author towards the verification of the main hypothesis

(H1), which was published in papers [29], [32], [31] and [39], showed that we can esti-
mate the errors of the method experimentally and then take them into account during
the calculations. Furthermore, it was possible to successfully demonstrate the usefulness
of interval arithmetic for selecting the optimal grid size for a given problem [39]. The
properties of directed interval arithmetic are also interesting, as due to the existence of
the opposite and inverse element, it allows us to perform computations in a way that
enables a certain reduction in the width of the end-intervals – the solution. Experiments
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which were carried out to test the hypothesis (H3), confirmed that the intervals ob-
tained after applying this arithmetic are narrower than in the case of ordinary interval
arithmetic [29,31,32].
Moreover, it was possible to demonstrate the utility of using interval arithmetic in

solving the following problems:

a) collecting information on rounding errors,
b) experimental estimation of method errors,
c) automatic estimation of the accuracy of the obtained solutions by specifying the

width of the resulting intervals, which provides complete information on this sub-
ject.

It also offers:

a) the possibility of including the analytically estimated error of the method in the
calculation,

b) the possibility of choosing an optimal grid for the problem (finding a grid size above
which we deal with the so-called rounding-off effect).

The verification of hypothesis (H2) equired the development of interval methods, pre-
pared earlier for the Poisson equation, in such a way as to include a certain class of elliptic
linear equations of order two. At the same time, the Nakao method was replicated for
these equations, which was part of the verification of hypothesis (H4). As a result of this
work, it was shown that it is not possible to apply Nakao’s method to solve Poisson’s
equation and its generalized form, although they are useful for a certain, quite general
class of elliptic PDEs. On the other hand, the methods proposed in this dissertation
(belonging to the finite difference methods) can be effectively applied also for the equa-
tions analysed by Nakao, and their significant advantage is a simpler construction and
implementation. The experiments showed, moreover, that the exact solutions belong to
the intervals obtained by the methods proposed by the author, although, as mentioned
earlier, finding an analytical proof of the existence of exact solutions seems to be difficult
from the mathematical point of view and depends on the problem under consideration.
In the course of conducting the research and analysing the results obtained on an

ongoing basis, it was found that finding the answer the following, rather important,
questions could be attempted:

• Is the interval method dedicated to a given (simplified) form of equation always
more effective than the methods dedicated to equations of more general form?
Hence, is it worth constructing interval methods for narrower or wider classes of
equations?

• How do the implementations of the above methods behave in ordinary and directed
positional arithmetic? Does the use of directed interval arithmetic provide any
measurable benefits?

The attempt to answer these questions influenced the choice of computational examples
presented in the previous chapter. Although it cannot be said to be the rule, Example 3
showed that constructing methods with a limited number of error-estimating constants
gives better results – the advantage of the NE3C method over the NE5C method. More-
over, it showed that the use of directed interval arithmetic is cost-effective, and that the
more complex calculations the example requires, the more noticeable are the effects of
its use.
The main conclusions of the conducted research are as follows:
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• for all considered issues, the exact solution was located inside the obtained result
ranges (in the case of both tested arithmetic – ordinary and directed),

• construction of the interval methods proposed in this dissertation is easy, and find-
ing the solutions comes down, in the worst case, to solving large systems of linear
equations (this depends only on the size of the grid),

• experiments demonstrated that the obtained solution estimates for PDE problems
are much more accurate than those obtained using the Nakao method,

• the methods presented in this paper can be applied to a much wider class of elliptic
equations than Nakao’s method. It is worth noting that Nakao’s methods cannot
be used for Poisson’s equation or for GPE equation,

• in the Nakao method (based on the FEM and Galerkin approximation), a ma-
jor problem is the need to use numerical integration, which in the case of more
complex equations can significantly increase the computation time - experiments
showed that the Nakao method using numerical integration is much slower than
the considered interval FDM methods.

Once again, it should be stressed that the interval FDM methods proposed in this
dissertation can be called heuristic methods for estimating exact solutions for elliptic
equations. However, it is worth noting that they can be an excellent complement to ver-
ified computing methods such as the Nakao method. First, to obtain a guarantee of the
existence of exact solutions and their general estimation, one can apply, for example, the
Nakao method. The obtained interval solutions can be treated as a preliminary approx-
imation of the exact solutions. Then, using e.g. the means of the intervals obtained by
the verified-computing method, we can estimate the constants necessary for the methods
described in this work. As a result, using the obtained constants approximating the error
of the method, we can apply one of the presented FDM interval methods for the same
problem – thus obtaining its much more accurate and indirectly verified estimation. It
should also be emphasised that while for ordinary differential equations (ODEs) numer-
ical methods for finding solutions and their verification are well known [8,83], designing
such methods for PDEs is a rather complex problem [11, 33]. This is due to the fact
that on the mathematical side there is no general way of proving the existence of solu-
tions to this type of equations [12–14]. This results in the fact that even if the numerical
methods developed do find a solution to the equation, we are not sure either how correct
the obtained solution is or whether it exists at all for the given problem [55]. Therefore,
in the author’s opinion, numerical methods that allow both obtaining detailed informa-
tion about the accuracy of the obtained solution, as presented in this dissertation, and
methods that allow proving its existence and verifying the solution are so important [81].
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Content of the CD

The disk attached to the thesis contains the code of programs implementing particular
methods described in the thesis. Also attached is a virtual machine with the operating
system Linux Ubuntu 20.04 LTS and prepared runtime environment. Its full content is
described in Tab. A.1.

Table A.1. Directories on CD

Path Content
/thesis dissertation in .pdf format
/thesis/tex source TeX files with the body of the work and bibliog-

raphy
/thesis/tex/figures graphs and graphics included in the work
/code subdirectories with the code of the individual methods
/code/pe source code of the PE method
/code/gpe source code of the GPE method
/code/ee source code of EE methods
/code/nm source code of the Nakao method
/vm virtual machine with ready to run environment contain-

ing compiled code of particular methods (operating sys-
tem: Ubuntu 20.04)

/instructions detailed instructions for running the virtual machine
and the programs
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