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To my dearest Henryka.





Abstract

Global services that lie at the heart of today’s Internet must remain operational at
all times. To avoid downtimes caused by machine and network failures, highly
available systems, such as NoSQL data stores, are utilized. Due to our increasing
reliance on such systems, the study and verification of their correctness is of the
utmost concern.

In this dissertation, we approach the problem of correctness of highly avail-
able systems from the theoretical point of view. We study the consistency and
progress guarantees achievable under various assumptions. In particular, we
investigate mixed-consistency systems, in which weakly consistent highly avail-
able operations are mixed with strongly consistent but not highly available ones.
We also closely examine the behaviour of highly available systems in the pres-
ence of specific types of failures.

We devise new formal frameworks to reason about highly available systems,
that allow us to uncover inherent limitations and tradeoffs in their correctness
guarantees. We show that in a mixed-consistency system it is impossible to com-
bine the best features of eventually consistent and strongly consistent systems
without inflicting a penalty on the correctness guarantees. We also show that
certain liveness guarantees are unachievable under specific failure models.

We formally identify undesirable phenomena that can occur under some
conditions, such as circular causality, temporary operation reordering, split brain syn-
drome and phantom operations, and show how they can be mitigated. We also
provide novel correctness criteria suitable for certain types of systems and en-
vironments. We propose fluctuating eventual consistency for systems in which
temporary operation reordering is unavoidable, and we propose a family of
failure-aware correctness criteria which precisely capture the achievable correct-
ness guarantees in specific failure models.
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processing computer system and method for implementing a distributed
two-tier state machine,” 2018. USPTO patent no. US 10135929 B2, Nov. 20,
2018



Contents

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Aims and contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Mixed-consistency semantics . . . . . . . . . . . . . . . . . 5
1.2.2 Correctness in the presence of failures . . . . . . . . . . . . 7

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Acute Cloud Types 11
2.1 Acute non-negative counter . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Bayou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Detailed description . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Correctness guarantees . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Progress guarantees . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 AcuteBayou . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Acute non-negative counter vs AcuteBayou . . . . . . . . . . . . . 23
2.4 Formalizing Acute Cloud Types . . . . . . . . . . . . . . . . . . . . 23

2.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Design properties . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Formal framework for mixed-consistency systems 29
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Functions and tuples . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Event graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Abstract executions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Correctness predicates . . . . . . . . . . . . . . . . . . . . . . . . . 33



x Contents

3.5 Replicated data type . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 ACT specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Correctness criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.1 Key requirements for eventual consistency . . . . . . . . . 36
3.7.2 Basic Eventual Consistency . . . . . . . . . . . . . . . . . . 36
3.7.3 Fluctuating Eventual Consistency . . . . . . . . . . . . . . 38
3.7.4 Operation levels . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.5 Strong consistency . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Correctness of ANNC and AcuteBayou . . . . . . . . . . . . . . . 42

4 Limitations of mixed-consistency 43
4.1 Other solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Symmetric models with strong operations blocking upon
a single crash . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Symmetric Bayou-like models . . . . . . . . . . . . . . . . 49
4.1.3 Asymmetric models with cloud as a proxy . . . . . . . . . 49
4.1.4 Asymmetric master-slave models . . . . . . . . . . . . . . 50
4.1.5 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Explicit failures modelling 53
5.1 Motivations and an example . . . . . . . . . . . . . . . . . . . . . . 53
5.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Clients – replicas interactions . . . . . . . . . . . . . . . . . 57
5.2.4 Network properties . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Formal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Abstract executions . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Correctness predicates and replicated data type . . . . . . 62
5.3.4 Basic eventual consistency . . . . . . . . . . . . . . . . . . . 62

6 Client-side guarantees 65
6.1 Context preservation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Correctness in the face of failures 69
7.1 Network partitions and state convergence . . . . . . . . . . . . . . 69
7.2 Replica crashes and phantom operations . . . . . . . . . . . . . . . 73
7.3 Replica recovery and stable storage . . . . . . . . . . . . . . . . . . 76
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Related work 83
8.1 High availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Eventual consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Causal consistency and session guarantees . . . . . . . . . . . . . 85
8.4 Limitations of highly available systems . . . . . . . . . . . . . . . 86



Contents xi

8.5 Highly available system designs . . . . . . . . . . . . . . . . . . . 87

9 Conclusions 89

Bibliography 91

A StateObject properties 103

B Correctness proofs for ANNC and AcuteBayou 105
B.1 ANNC correctness proofs . . . . . . . . . . . . . . . . . . . . . . . 106
B.2 AcuteBayou correctness proofs . . . . . . . . . . . . . . . . . . . . 111

Streszczenie 121





1
Introduction

The global services that lie at the heart of today’s Internet, such as messaging ap-
plications, social media, e-commerce, banking, stock exchange, or online gam-
ing, are powered by numerous complex distributed systems. In order to cope
with the increasing traffic generated by millions of users these systems must be
horizontally scalable, which means that their capacity can be increased by intro-
ducing more processing nodes. The massive scalability requirements are further
complicated by the fact that these systems must stay operational at all times.
As no computer or networking equipment is completely immune to hardware
faults, the services themselves must be implemented in a way that lets them
gracefully tolerate failures. That way the systems running these services can
become highly available, i.e. they continue to serve client requests even when
(partial) failures occur.

A common technique to increase system availability is replication, which con-
sists of keeping multiple copies of service data and code, called replicas, on
physically distinct nodes, often dispersed geographically. Besides providing
fault-tolerance, replication facilitates scalable performance and lowers response
times when replicas are located geographically close to clients. Traditional repli-
cation schemes, such as state machine replication [15, 16] or primary-backup [17],
enforce strong consistency between replicas, i.e. the replicas coordinate their
state changes so that the system as a whole appears to the clients as a central-
ized single server. However, keeping the replicas in sync is costly, as it usually
entails solving distributed consensus. Thus, before a response can be returned to
a client several messages need to be exchanged between replicas, which greatly
amplifies response times. Moreover, maintaining replicas’ consistency is impos-
sible when network splits occur and the service ought to remain available, as
stated in the famous CAP conjecture [18]. Thus, traditional strongly consistent
replication schemes only guarantee availability in case of (a limited number of)
replica crashes, but not in case of network failures resulting in lack of connectiv-
ity between groups of replicas.

To overcome the above limitations consistency requirements can be relaxed.
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When some form of eventual consistency [19] is provided, the replicas need to syn-
chronize their states only eventually. Thus, replicas can process client requests
independently and disseminate state changes asynchronously. Thus, even when
network splits occur, high availability can be maintained. To achieve this goal,
eventually consistent systems feature a decentralized architecture and rely on
peer to peer (asynchronous) communication protocols: a design pioneered by
the seminal Amazon’s Dynamo storage system [20], and followed in a plethora
of popular NoSQL data stores (see, e.g., Apache Cassandra [21], Scylla [22], Riak
[23], Voldemort [24], and Netflix’s Dynomite [25]).

However, relaxed consistency models offer weaker guarantees and by de-
sign allow a certain degree of inconsistencies to occur. If not handled correctly,
they may lead to undesired anomalies, including data loss. Thus, developers
must carefully design the replicated services’ code to cover all edge cases and
account for the possible anomalies. In order to alleviate this burden, specialized
data structures called conflict-free replicated data types (CRDTs) [26, 27, 28] are
introduced. CRDTs can be implemented solely in an asynchronous manner and
by design ensure eventual convergence of replica states. Popular CRDTs include
Multi-Value Registers (MVRs), Last-Write-Wins Registers (LWW-registers),
Positive-Negative-Counters (PN-counters), Observed-Remove Sets [27], and
structures for collaborative text editing [29].

Unfortunately, the semantics of CRDTs are very limited. In order to provide
high availability, low response times and eventual state convergence, these data
structures require either that all operations commute, or that there exist commu-
tative, associative, and idempotent procedures for merging replica states. This is
why these mechanisms are not suitable for all use cases. For example, consider a
simple non-negative integer counter. The addition operation can be trivially im-
plemented in a conflict-free manner, as the addition operations are commutative.
However, implementing the subtraction operation requires global agreement to
ensure that the value of the counter never drops below 0. In a similar way, in an
auction system, concurrent bids can be considered independent operations and
thus their execution does not need to be synchronized. However, the operation
that closes the auction requires solving distributed consensus to select the single
winning bid [30].

Due to the inherent shortcomings of CRDTs, and eventual consistency in
general, recently there have been several attempts both in the industry [31, 32,
33, 34], as well as in academia [35, 36, 37, 38, 39, 40, 41, 42], to enrich the se-
mantics of the eventually consistent systems by allowing some operations to
be performed with stronger consistency guarantees or by introducing (quasi)
transactional support. Thus, a special class of highly available systems emerges,
called mixed-consistency systems, in which only certain operations are required to
be available. Operations that are executed with lower consistency guarantees,
called weak, remain available in spite of failures, while operations executed in
strongly consistent manner, called strong, may block due to, e.g., network splits.
The analysis and formalization of mixed-consistency correctness properties are
a major topic of this dissertation.
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1.1 Motivations

As discussed, because of the growing importance of high availability in modern
global services, highly available systems, including middleware solutions such
as NoSQL data stores, proliferate in the Internet. Due to our increasing reliance
on such systems, the study and verification of their correctness is of the utmost
concern. Although there is already a significant body of research in the area, still
there is much to be done.

For a long time eventual consistency has evaded being clearly defined and
formalized. Several definitions had been proposed (see, e.g., [19, 43, 44, 45,
46, 2, 26, 37, 47, 48, 49]), which varied greatly both in the formalization tech-
niques used, and in practical guarantees implied. On the other hand, strong
consistency, which has been in use for decades (see, e.g., [50, 51, 52]), is much
better understood. It is because strong consistency is based on a clear princi-
ple: a strongly consistent system executing requests in parallel should be indis-
tinguishable from a one executing requests sequentially. Compared to strong
consistency, eventual consistency provides guarantees that are not only much
weaker, but also difficult to grasp due to their complexity or vagueness. For in-
stance, the definition given by Vogels [19] stipulates that, when updates cease
eventually all read operations return the same value, but it does not put any
constraints on return values when updates never cease. Then again, cloud types
[37] require the user to think in terms of revisions which can fork and join as in
source control systems, a model called revision consistency [47], which was later
abandoned due to excessive complexity [38]. As a result, proving correctness of
some particular eventually consistent system, as well as reasoning about such
systems in general, is more challenging. Moreover, when eventually consistent
(weak) operations are mixed with strongly consistent (strong) ones, within the
same mixed-consistency system, the confusion regarding the provided guaran-
tees is amplified. In fact, currently there is no general consensus on the expected
semantics of such systems.

Mixed-consistency systems employed in the industry lack clearly stated se-
mantics, or have them severly restricted. For example, in Apache Cassandra
[21] using the light weight transactions on data that are accessed at the same time
in the regular, eventually consistent, fashion leads to undefined behaviour [53].
On the other hand, in Riak [23] data items accessed by strong and weak opera-
tions must be stored under separate namespaces (called buckets) [34], and thus
there is no actual mixed-consistency semantics. Other systems [39, 31, 32] offer
selectable consistency levels only for read-only operations by allowing clients
to read stale or fresh data. On the other hand updates are always executed as
strong operations.

All the known approaches that do provide mixed-consistency semantics fea-
ture some limitations in regard to their behaviour during failures. For example,
in cloud types [37] as well as in global sequence protocol (GSP) [38] all the updating
operations (both weak and strong) must pass through a centralized subsystem,
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called the cloud, which disseminates the updates to all the nodes in an ordered
stream. When the cloud is unavailable, e.g. due to failures of majority of servers
within the cloud or a network split, an updating operation can still be performed
and applied locally on some node, but its effect is not visible to other nodes. As a
further example, in lazy replication [54], RedBlue consistency [35], and partial order
restrictions [36] all replicas are required to be operational to execute strong oper-
ations. Thus, a single replica crash may block the system, with regard to strong
operations, until the failure is fixed. Typical strongly consistent replicated sys-
tems utilizing non-blocking agreement protocols, such as Paxos [55], may tolerate
up to half of replicas crash, and continue processing operations. Thus, the in-
ability to tolerate even a single crash in a highly available system that ought to
gracefully tolerate failures seems deeply unsatisfactory, even if the crash affects
only strong operations.

The approaches mentioned above, when faced with failures, compromise ei-
ther the progress of weak operations (by not propagating their effects), or the
progress of strong operations (by blocking them). Such tradeoffs resulting from
mixing weak and strong operations are worth exploring. In particular, an in-
teresting question we try to answer in this dissertation is whether there exists a
mixed-consistency system that handles strong operations in non-blocking man-
ner (tolerates some number of replica crashes), while not inhibiting the progress
of weak operations. Such a system would offer the best of both worlds: high
availability and low latency in case of weak operations similarly as in eventu-
ally consistent systems, and strong guarantees and (limited) failure tolerance in
case of strong operations similarly as in strongly consistent systems. The next
question naturally concerns the correctness guarantees that such as a system can
provide.

Whether a highly available system features additional strong operations or
not, ensuring its correct behaviour when failures occur is critical. It is espe-
cially so since these systems are specifically designed for scenarios where fail-
ures are imminent. It comes as a surprise then that the majority of works con-
cerning the correctness of highly available systems that can be found in the
literature abstract away from replica or network failures altogether (see, e.g.,
[45, 35, 46, 56, 57, 58, 59, 60, 36, 61, 48, 49]). The analysis conducted that way can
be deemed incomplete: a protocol that works correctly only when no failures
occur does not necessarily work as expected when failures do happen. Thus, a
comprehensive correctness analysis, which explicitly considers various failure
models, may reveal new insights and inherent tradeoffs unnoticed so far by the
research community and the industry.

1.2 Aims and contributions

Given the motivations presented above, we formulate our main thesis as fol-
lows:
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Tradeoffs and limitations in highly available systems’ correctness guarantees re-
sulting from mixed-consistency operations and from machine and network failures
can be formally identified and reasoned about.

We demonstrate the veracity of the thesis in two parts. Firstly, we identify
and analyze the tradeoffs in correctness resulting from mixed-consistency se-
mantics. Secondly, by taking a holistic approach to correctness analysis, which
involves creating a faithful model of real-life client-server systems and explicit
inclusion of failures, we precisely define the limitations on correctness of such
systems resulting from machine and network failures.

Below we summarize the main contributions of this dissertation in detail.

1.2.1 Mixed-consistency semantics

In order to formally study the mixed-consistency systems and expose trade-
offs in their correctness we introduce a new abstraction called acute cloud types
(ACTs). ACTs constitute a family of specialized mixed-consistency data struc-
tures designed primarily for high availability and low latency, but that also
seamlessly integrate on-demand strongly consistent semantics. ACTs feature
two kinds of operations:

• weak operations targeted for unconstrained scalability and low response
times (as operations in CRDTs), and

• strong operations used when eventually consistent guarantees are insuffi-
cient. Strong operations require consensus-based inter-replica synchro-
nization prior to execution.

Weak operations are guaranteed to progress, and are handled in such a way
that the replicas eventually converge to the same state within each network par-
tition, even when strongly consistent operations cannot complete due to net-
work and process failures (unlike in cloud types [37]. On the other hand, strong
operations can provide guarantees even as strong as linearizability [52] with
respect to the already completed strong operations and a precisely defined sub-
set of completed weak operations. Crucially, strong operations are non-blocking:
they can leverage efficient, quorum-based synchronization protocols, such as
Paxos [55], and thus gracefully tolerate machine and network failures (unlike
RedBlue consistency [35]). Both weak and strong operations can be arbitrarily
complex, but they must be deterministic.

Furthermore, unlike in the RedBlue consistency and in similar approaches
(e.g., [54, 59, 36]), in which weak operations are causally consistent by design,
ACTs support consistency guarantees weaker than causal consistency, so ac-
count for a wider range of systems. Causal consistency is known to be costly
to achieve in practice [62], and is not always needed [63].

We model ACTs as state automata that communicate with each other via an
asynchronous network. Additionally, in the model we implicitly provide a fail-
ure detector which can be used to solve distributed consensus synchronization
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necessary to deliver strongly consistent operations. In this part we consider ma-
chine and network crashes only implicitly. More precisely, we consider stable
(failure-free) system runs, and asynchronous ones in which consensus-based syn-
chronization does not terminate. We define ACTs through a set of implementation
restrictions which enforce, among others, that the ACTs’ state automata indeed
do provide high availability for weak operations and non-blocking semantics
for strong operations.

In any run of an ACT, logically, there always exists a single global order S of
all operations. Therefore, system traces can be reasoned about in terms of serial
execution, which is the hallmark of strong consistency [51, 50, 52], as well as
various weaker models, e.g., [64, 44, 65, 61]. During execution, strong operations
are guaranteed to observe a prefix of S up to their position in S. Conversely, a
weak operation may observe a serialization S′ of operations that diverges from
S, but only by a finite number of elements. Thus weak and strong operations are
interconnected in a non-trivial way, which intuitively ensures write stabilization:
once a strong operation, during its execution, observes some weak operations
opi, opj in that order, all subsequent strong operations, and eventually all weak
operations, will also observe opi, opj in that order. Write stabilization allows
ACTs to overcome limitations of models such as RedBlue consistency in which
the effects of a weak operation could never be deemed final. It is so even though
weak operations never have to directly synchronize with strong operations (e.g.,
by blocking on the completion of strong operations).

We propose a framework that enables formal reasoning about ACTs and
their guarantees. We express the dependencies between operations through the
visibility and arbitration relations, similarly as in [49], but we allow each opera-
tion to observe the arbitration in a temporarily inconsistent (but eventually con-
vergent) form. In order to capture the unique properties of ACTs and write sta-
bilization in particular, we define a novel correctness condition called fluctuating
eventual consistency (FEC) that is strictly weaker than Burckhardt’s basic eventual
consistency (BEC) [48].

By formally specifying ACTs, we uncovered several interesting phenom-
ena unique to mixed-consistency systems (they are never exhibited by popular
NoSQL systems, which only guarantee eventual consistency, nor by strongly
consistent solutions). Crucially, some ACTs exhibit a phenomenon that we call
temporary operation reordering, which happens when replicas temporarily dis-
agree on the relative order in which the requests (modelled as operations) sub-
mitted to the system were executed. When not handled carefully, temporary
operation reordering may lead to all kinds of undesired situations, e.g., circular
causality among responses observed by the clients. As we formally prove, tem-
porary operation reordering is not present in all ACTs but in some cases cannot
be avoided. This impossibility result is startling, because it shows that appar-
ent strengthening of the semantics of a system (by introducing strong operations
to an eventually-consistent system) results in the weakening of the guarantees
on the eventually-consistent operations. This result represents our main con-
tribution in regards to identifying correctness limitations of mixed-consistency
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systems.
In order to illustrate our concepts and analysis, we present an ACT for a non-

negative counter and also revisit Bayou [44], a seminal, always available, even-
tually consistent data store. Bayou combines timestamp-based eventual consis-
tency [19] and serializability [51] by speculatively executing transactions sub-
mitted by clients and having a primary replica to periodically stabilize the trans-
actions (establish the final transaction execution order). We show how Bayou
can be improved to form a general-purpose ACT.

1.2.2 Correctness in the presence of failures

As we mentioned earlier, the majority of the existing work on the correctness of
highly available systems either abstract away from machine failures altogether
[45, 35, 46, 57, 58, 59, 60, 36, 61], or admit machine failures or network splits
but the correctness proofs only consider system runs in which no failures occur
[48, 49]. In this dissertation we holistically approach the problem of correctness
of highly available systems in the presence of failures. To this end we introduce
a novel formal framework that explicitly considers hardware failures, such as
transient or permanent machine crashes and network splits. In order to make
our analysis complete we extend our system model to more closely follow sys-
tems that are actually deployed in real world. In particular we consider external
clients of various types (stateless, stateful, sticky or mobile), load balancers that
route requests from clients to replicas, and we admit replica recovery from stable
storage after crash. By utilizing three machine failure models, and two network
failure models, we consider a total of six combined failure models.

Since in highly available systems replicas serve client requests independently
(without blocking communication with other replicas), many client-side correct-
ness guarantees (called session guarantees) hinge on the ability of clients to remain
permanently connected to the same replica, or to retain state to store some meta-
data and cache previous system responses. In general, due to machine and net-
work failures, system designers cannot expect client requests to be routed to the
same replica each time. Therefore, it is especially important to consider external
clients which can connect to different replicas, and which are either stateful or
stateless. Thus, we discuss when clients can be stateless and, if they do need to
maintain some state, how to place requirements on their sessions. In particular,
we define a novel session guarantee called context preservation (CP) for systems
that expose the concurrency to the client (e.g., implement multi-value registers
[26] or observed-removed sets [27]). CP is incomparable with the four classic
session guarantees [66].

There are many possible failure scenarios that need to be considered in order
to ensure that a protocol works as intended in real-life environments where fail-
ures are to be expected. Popular eventually consistent systems we are aware of
do feature various anti-entropy mechanisms that prevent them from exhibiting
undesirable anomalies [21, 23]. However, when the correctness of a protocol is
proven using only system runs in which no failures occur, the robustness of such
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mechanisms is not fully validated, as we explain below.
Correctness guarantees can be divided into safety (nothing bad ever happens)

and liveness (eventually something good happens) properties [67] [68]. When prov-
ing a safety property of a protocol (which does not feature any post-crash recov-
ery procedures) it is indeed sufficient to only consider failure-free runs. It is so
because in finite executions crashed nodes are indistinguishable from very slow
ones and network splits are indistinguishable from occurances of temporary
communication delays. The same, however, does not hold for liveness guar-
antees, which can be violated only in infinite executions. Some strongly consis-
tent correctness criteria, such as linearizability [52], are pure safety properties.1

However, correctness criteria based on eventual consistency are an intersection
of safety and liveness guarantees. Thus, in that case all possible system runs
with failures need to be considered in a correctness proof. Our framework al-
lows us to formally study both the safety and liveness aspects of the correctness
of highly available systems when failures occur.

We show specific liveness guarantees that cannot be provided when certain
failures occur, such as eventual visibility of all events. Thus, we formally iden-
tify a set of undesired phenomena, which are observable by the clients but, as
we prove, are unavoidable in the considered environments. In particular, when
unrecoverable replica crashes are possible, a successful execution of an opera-
tion op may be first acknowledged to the client that submitted it, but later op

may appear as if it had never been executed by any replica. We call such op-
erations phantom operations. We discuss, however, that with the proliferation of
low-latency solid state drives (SSDs) and the advent of new technologies such as
non-volatile memory (NVM, also called persistent memory) [70], phantom op-
erations can be mitigated in many cases with minimal performance overhead.

Finally, we propose to relax the liveness requirements which cannot be sat-
isfied in certain failure models. However, we posit that this relaxation occurs
only due to failures and not arbitrarily, i.e. the guarantees should still hold com-
pletely in failure-free runs. Thus, we define a family of failure-aware correctness
criteria, to adequately capture the behaviour of eventually consistent systems in
failure-prone environments. We use our novel correctness criteria to systematize
in a formal way the existing knowledge and intuitions regarding the correctness
of highly available systems under failure conditions.

1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2 we introduce acute cloud types
and revisit Bayou. Then, in Chapter 3 we present our formal framework for
mixed-consistency systems and define various correctness criteria including our
fluctuating eventual consistency (FEC). Next, in Chapter 4 we explore the limi-
tations of mixed-consistency systems. In Chapter 5 we extend our system model

1Assuming a deterministic or finitely undeterministic protocol [69].
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to explicitly consider failures and we present the formal framework for reason-
ing about the correctness in the presence of failures. In Chapter 6 we discuss
session guarantees and introduce context preservation (CP). Then, in Chapter 7
we analyze the achievable correctness guarantees in certain failure models and
we introduce failure-aware correctness criteria. In Chapter 8 we revisit other
work that is related to our research. Finally, we conclude in Chapter 9.





2
Acute Cloud Types

In this chapter we introduce ACTs. Before we define them formally, we begin
with an overview of ACTs by discussing some examples. First, we propose an
ACT protocol (or simply an ACT) for a non-negative counter. Then, we study
the seminal Bayou protocol [44], which, with some modifications, can be consid-
ered a general ACT that enables execution of arbitrarily complex (deterministic)
operations.

2.1 Acute non-negative counter

As mentioned in Section 1, a non-negative integer counter cannot be imple-
mented as a CRDT because the subtraction operation requires global coordina-
tion to ensure that the value of the counter never drops below 0. In Algorithm 1
we present an acute non-negative integer counter (ANNC), a simple ACT imple-
menting such a counter. The add (line 5) and get (line 32) operations are weak
and thus guarantee low response times, whereas subtract (line 12) is a strong
operation to ensure the semantics of a non-negative counter. The crux of ANNC
lies in using two complementary protocols for exchanging updates (a gossip one
and one that establishes the ultimate operation serialization), and calculating
the state of the counter by liberally counting add operations and conservatively
counting the subtract operations.

In order to track the execution of weak and strong operations, each ANNC
replica maintains three variables (line 2): one for subtraction operations
(strongSub) and two for the addition operations (weakAdd and strongAdd ). The
replicas exchange the information about new ADD requests (weak updating
operations) using a gossip protocol (modelled using reliable broadcast, RB [71])
as well as a protocol that involves inter-replica synchronization (modelled us-
ing total order broadcast, TOB [72], which can be efficiently implemented using
quorum-based protocols, such as Paxos [55]; lines 9-10). On the other hand, the
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Algorithm 1 Acute non-negative counter (ANNC) for replica Ri

1: struct Req(type : {ADD, SUBTRACT}, value : int, id : pair⟨int, int⟩)
2: var weakAdd , strongAdd , strongSub, currEventNo : int
3: var reqsAwaitingResp : set⟨pair⟨int, int⟩⟩
4: var rbDeliveredAdds : set⟨pair⟨int, int⟩⟩
5: upon invoke add(value : int) // weak operation
6: currEventNo = currEventNo + 1
7: weakAdd = weakAdd + value
8: r = Req(ADD, value, (i, currEventNo))
9: RB-cast(r)

10: TOB-cast(r)
11: return ok to client
12: upon invoke subtract(value : int) // strong operation
13: currEventNo = currEventNo + 1
14: r = Req(SUBTRACT, value, (i, currEventNo))
15: TOB-cast(r)
16: reqsAwaitingResp = reqsAwaitingResp ∪ {r.id}
17: upon RB-deliver(r : Req(ADD, value, id))
18: if r.id .first ̸= i ∧ r.id ∈ rbDeliveredAdds then
19: rbDeliveredAdds = rbDeliveredAdds ∪ {r.id}
20: weakAdd = weakAdd + value

21: upon TOB-deliver(r : Req(ADD, value, id))
22: if r.id ̸∈ rbDeliveredAdds then
23: trigger RB-deliver(r) // RB-deliver always before TOB-deliver
24: strongAdd = strongAdd + value

25: upon TOB-deliver(r : Req(SUBTRACT, value, id))
26: var res = strongAdd ≥ strongSub + value
27: if res then
28: strongSub = strongSub + value

29: if id ∈ reqsAwaitingResp then
30: reqsAwaitingResp = reqsAwaitingResp \ {id}
31: return res to client
32: upon invoke get() // read-only, weak operation
33: return weakAdd − strongSub to client

subtract operation, which does not commute unlike the add operation, solely
uses TOB. Upon receipt of a TOB-cast SUBTRACT message, the subtract oper-
ation completes successfully only if we are certain that the value of the counter
does not drop below 0, i.e., when the aggregated value of all confirmed addition
operations (strongAdd ) is greater or equal to the aggregated value of all subtract
operations (strongSub) increased by value (lines 26-28).

We ensure that on any replica and for any ADD request r, the RB-deliver(r)
event always happens before the TOB-deliver(r) event (lines 22–23). This way
weakAdd ≥ strongAdd . Hence, we solely use weakAdd as the approximation of
the total value added to ANNC when calculating the return value for the get

operations.
Using a gossip protocol allows us to achieve propagation of weak updat-

ing operations within network partitions, when synchronization which requires
solving distributed consensus is not possible. On the other hand, when solving
distributed consensus is possible, replicas can agree on the final order in which
operations will be visible. This way weak operations add and get are highly
available, i.e., they always execute in a constant number of steps and do not
depend on waiting on communication with other replicas. Crucially, the return
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value of the get operation always reflects all the add operations performed lo-
cally and, eventually, all add operations performed within the network partition
to which the replica belongs, if such a partition exists. On the other hand, the
strong subtract operation is applied only if the replicas agree that it is safe to do
so.

ANNC guarantees a property which is a conjunction of basic eventual con-
sistency (BEC) [48, 49] for weak operations (add and get) and linearizability (LIN)
[52] for strong operations (subtract). We formalize BEC and LIN in Sections 3.7.2
and 3.7.5, and prove the correctness of ANNC in Section 3.8.

2.2 Bayou

Now let us discuss the seminal Bayou protocol. Bayou was an experimental
system, so was never optimized for performance. However, due to its unique
approach to speculative execution of transactions and their later stabilization (es-
tablishing the final transaction execution order by a primary replica), examining
Bayou allows us to discuss various problematic phenomena that stem from hav-
ing both weak and strong semantics in a single system. In this section first we
discuss the original protocol and then we improve Bayou to form a general-
purpose, albeit not performance-optimized ACT.

2.2.1 Protocol overview

Below we give a high-level description of the Bayou protocol. In order to make
our analysis more general, we abstract certain aspects of the original protocol.
Crucially, we allow clients to submit to Bayou replicas deterministic, arbitrarily
complex (also as complex as, e.g., SQL transactions) operations that can provide
the clients with a return value. Each operation is either weak or strong, similarly
to operations in ANNC.

In Bayou, each replica speculatively total-orders all client operations, with-
out prior agreement with other replicas, using a simple timestamp-based mech-
anism (a replica assigns a timestamp to an operation upon its submission). The
requests (operations together with their timestamps) are disseminated to all
replicas using a gossip protocol and each replica independently executes them
sequentially according to their timestamps. When a replica delivers a new re-
quest r with a timestamp lower than some already executed requests, the higher-
timestamp requests are rolled-back and reexecuted after r. This way a single
total order, consistent with operation timestamps, is always maintained by all
replicas.

The above approach has two major downsides. The first one concerns the
performance: every time a replica receives a request with a relatively low times-
tamp (compared to the timestamps of the requests executed most recently), in
order to maintain the correct execution order, many requests need to be rolled
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back and reexecuted. The second downside is related to the guarantees pro-
vided: a client that submitted an operation op and already received a response
can never be sure that there will be no other operation op′ with a lower times-
tamp than op, which will eventually cause op to be reexecuted, thus producing
possibly a different return value.

To mitigate the two above problems, one of the replicas, called the primary,
periodically commits a growing prefix of already executed operations, i.e., it de-
cides to never rollback them again and broadcasts this decision to other replicas.
Thus, it establishes the final operation execution order (also called the committed
order). This order may occasionally differ from the timestamp order, e.g., when
a message sent to the primary is delayed. Replicas always honour the order es-
tablished by the primary, which may force them to rollback and reexecute some
operations. However, once an operation is executed according to the commit-
ted order on a replica R, it will never be rolled back and reexecuted again on R

(we then say that the operation is stable on R). Ultimately, all operations (weak
or strong) are committed and become stable. However, since weak operations
return results before this occurs, the results may be inconsistent.

Intuitively, the replicas converge to the same state, which is reflected by
the prefix of operations established by the primary (called the committed list
of operations) and the sequence of other operations ordered according to their
timestamps (the tentative list of operations). More precisely, when the stream
of operations incoming to the system ceases and there are no network splits
(the replicas can reach the primary), the committed lists at all replicas will be
the same, whereas the tentative lists will be empty. On the other hand, when
there are partitions, some operations might not be successfully committed by
the primary, but will be disseminated within a partition using a gossip protocol.
Then all replicas within the same partition will have the same committed and
(non-empty) tentative lists.

2.2.2 Detailed description

The pseudocode in Algorithm 2 specifies the Bayou protocol for replica Ri. Repli-
cas are independent and communicate solely by message passing. When a client
submits an operation op to a replica, op is broadcast within a Req message using
a gossip protocol.1 In our pseudocode, we use regular reliable broadcast, RB (line
12; we say that op has been RB-cast). Through the code in line 13 we simulate
immediate local RB-delivery of op.

Each Bayou replica totally-orders all operations it knows about (executed lo-
cally or received through RB). In order to keep track of the total order, a replica
maintains two lists of operations: committed and tentative . The committed list
encompasses the stabilized operations, i.e., operations whose final execution or-
der has been established by the primary. On the other hand, the tentative list en-
compasses operations whose final execution order has not yet been determined.

1In practice a read-only (RO) operation does not need to be broadcast to other replicas. For
simplicity we omit this optimization in the pseudocode. See Section 2.2.7 for details on how to
implement such an optimization.



Algorithm 2 The Bayou protocol for replica Ri

1: struct Req(timestamp : int, id : pair⟨int, int⟩, strongOp : boolean, op : ops(F))
2: operator <(r : Req, r ′ : Req)
3: return (r .timestamp, r .id) < (r ′.timestamp, r ′.id)

4: var state : StateObject
5: var currEventNo : int
6: var committed , tentative : list⟨Req⟩
7: var executed , toBeExecuted , toBeRolledBack : list⟨Req⟩
8: var reqsAwaitingResp : map⟨Req,Resp⟩
9: upon invoke(op : ops(F), strongOp : boolean)

10: currEventNo = currEventNo + 1
11: var r = Req(currTime, (i, currEventNo), strongOp, op)
12: RB-cast(ISSUE, r)
13: insertIntoTentative(r)
14: reqsAwaitingResp.put(r,⊥)

15: procedure insertIntoTentative(r : Req)
16: var previous = [x|x ∈ tentative ∧ x < r]
17: var subsequent = [x|x ∈ tentative ∧ r < x]
18: tentative = previous · [r] · subsequent
19: var newOrder = committed · tentative
20: adjustExecution(newOrder )
21: upon RB-deliver(ISSUE, r : Req)
22: if r.id .first = i then // r issued locally
23: return
24: if r ̸∈ committed then
25: insertIntoTentative(r)
26: upon FIFO-RB-deliver(COMMIT, r : Req)
27: if i = primary then
28: return
29: commit(r)

30: procedure commit(r : Req)
31: committed = committed · [r]
32: tentative = [x|x ∈ tentative ∧ x ̸= r]
33: var newOrder = committed · tentative
34: adjustExecution(newOrder )
35: if reqsAwaitingResp.contains(r) ∧ r ∈ executed then
36: return reqsAwaitingResp.get(r) to client
37: reqsAwaitingResp.remove(r)

38: periodically primaryCommit()
39: if i = primary ∧ tentative ̸= [] then
40: var [head ] · tail = tentative
41: commit(head)
42: FIFO-RB-cast(COMMIT, head)

43: procedure adjustExecution(newOrder : list⟨Req⟩)
44: var inOrder = longestCommonPrefix(executed ,newOrder)
45: var outOfOrder = [x|x ∈ executed ∧ x ̸∈ inOrder ]
46: executed = inOrder
47: toBeExecuted = [x|x ∈ newOrder ∧ x ̸∈ executed ]
48: toBeRolledBack = toBeRolledBack · reverse(outOfOrder)

49: upon toBeRolledBack ̸= []
50: var [head ] · tail = toBeRolledBack
51: state.rollback(head)
52: toBeRolledBack = tail
53: upon toBeRolledBack = [] ∧ toBeExecuted ̸= []
54: var [head ] · tail = toBeExecuted
55: var response = state.execute(head)
56: if reqsAwaitingResp.contains(head) then
57: if ¬head .strongOp ∨ head ∈ committed then
58: return response to client
59: reqsAwaitingResp.remove(head)
60: else
61: reqsAwaitingResp.put(head , response)

62: executed = executed · [head ]
63: toBeExecuted = tail
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Algorithm 3 StateObject
1: var db : map⟨Id,Value⟩
2: var undoLog : map⟨Req, map⟨Id,Value⟩⟩
3: function execute(r : Req)
4: var undoMap : map⟨Id,Value⟩
5: instrument r .op as below and execute line by line
6: upon any x = read(id) replace with
7: x = db[id ]
8: upon any write(id , v) replace with
9: if undoMap[id ] = ⊥ then

10: undoMap[id ] = db[id ]
11: db[id ] = v
12: upon any return response replace with
13: undoLog [r ] = undoMap
14: return response

15: function rollback(r : Req)
16: var undoMap = undoLog [r]
17: for (k, v) ∈ undoMap do
18: db[k] = v
19: undoLog = undoLog \ (r, undoMap)

The operations on the tentative list are sorted using the operations’ timestamps
(to resolve any ties, the replica identifiers and per replica sequence numbers are
used). A timestamp is assigned to an operation as soon as a Bayou replica re-
ceives it from a client.

A Bayou replica continually executes operations one by one in the order de-
termined by the concatenation of the two lists: committed ·tentative (line 55). The
replica keeps additional data structures, such as executed and toBeExecuted , to
keep track of its progress. An operation op ∈ committed , once executed, will not
be executed again as its final operation execution order is determined. On the
other hand, an operation in the tentative list might be executed and rolled back
multiple times. It is because a replica adds operations to the tentative list (rear-
ranging it if necessary; lines 18-16) as they are delivered by a gossip protocol.
Hence, a replica might execute some operation op, and then, in order to main-
tain the proper execution order consistent with the modified tentative list, the
replica might be forced to roll op back (line 51), execute a just received operation
op′ (which has lower timestamp than op), and execute op again. We maintain
the toBeRolledBack list of operations scheduled for rollback (operations are kept
in the order reverse to the one in which they were executed, line 48). An oper-
ation execution can proceed only once all the scheduled rollbacks have been
performed.

One of the replicas, called the primary, periodically commits operations from
its tentative list by moving them to the end of the committed list, thus establish-
ing their final execution order (line 38). The primary announces the commit of
operations by RB-casting commit messages, so that each replica can also commit
the appropriate operations. Note that the primary uses the FIFO variant of RB
to ensure that all replicas commit the same set of operations in the same order.

Operations are executed on the state object (line 4), which encapsulates the
state of the local database. At any moment, the value of state corresponds to
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R1

R2

(primary) R3

invoke(u1)

invoke(q1)

response(q1,1)

invoke(u2) invoke(q2)

response(q2,2)

commit(u1) commit(u2)

executions of u1 executions of u2 executions of q1/q2

u1 {
x = 1
if y = 1 then

z = 1
}

u2 {
y = 1
if x = 1 then

z = 2
}

q1/q2 {
return z

}

Figure 2.1: Example execution of Bayou showing temporary operation
reordering and circular causality.

a sequence s of the already executed operations on a replica given, where s is
a prefix of committed · tentative . Note that state allows us to easily rollback a
suffix of s (line 51). We discuss the properties of the state object in more detail
in Appendix A.

Algorithm 3 shows a pseudocode of a referential implementation of the Sta-
teObject for arbitrary operations of any sequential data type (a specialized one
can be used to take advantage of specific data type’s characteristics or to enable
non-sequential semantics for certain replicated data types which expose concur-
rency to the client). We assume that each operation can be specified as a com-
position of read and write operations on registers (objects) together with some
local computation. The assumption is sensible, as the operations are executed
locally, in a sequential manner, and thus no stronger primitives than registers
(such as CAS, fetch-and-add, etc.) are necessary. The StateObject keeps an undo
log which allows it to revoke the effects of any operation executed so far (the log
can be truncated to include only the operations on the tentative list).

2.2.3 Anomalies

Now we discuss the consequences to the semantics of Bayou resulting from hav-
ing two, inconsistent with each other, ways in which operations are ordered (the
timestamp order and the order established by the primary).

Consider the example in Figure 2.1, which shows an execution of a three-
replica Bayou system. Initially, replica R1 executes updating operations u1 and
u2 in order u2, u1, which corresponds to u1’s and u2’s timestamps. This opera-
tion execution order is observed by the client that issues query q1. On the other
hand, R2 executes the operations according to the final execution order (u1, u2),
as established by the primary replica R3. Hence, the client that issued query
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q2 observes a different execution order than the client that issued q1. Note that
replicas execute the operations with a delay (e.g., due to CPU being busy) and
that R1 reexecutes the operations once it gets to know the final order.

Clearly, the clients that issued the operations can infer from the return val-
ues the order in which Bayou executed the operations. The observed opera-
tion execution orders differ between the clients accessing R1 and R2. We call
this anomaly temporary operation reordering, as only eventually operations will
observe the same serialization of any two past operations. Interestingly, the
anomaly is present even though both u1 and u2 are weak. Temporary opera-
tion reordering is directly related to the sheer ability of the system to execute
strongly consistent operations. This behaviour is not present in strongly consis-
tent systems, which ensure that a single global ordering of operation execution
is always respected (e.g., [15, 73]). The majority of eventually consistent systems
which trade consistency for high availability are also free of this anomaly, as they
only use one method to order concurrent operations (e.g., [64, 48]), or support
only commutative operations (as in strong eventual consistency [26], e.g., [27, 58]).
There are also protocols that allow past operations to be perceived in different
(but still legal) orders (e.g., [74, 75, 35]). But, unlike Bayou, they do not require
the replicas to eventually agree on a single execution order for all operations.
Interestingly, temporary operation reordering is not present in ANNC, because
weak updating operations (add) commute and do not provide return values to
clients.

Bayou exhibits another anomaly, which comes as very non-intuitive, i.e., cir-
cular causality. By analysing the return values of queries q1 and q2 one may
conclude that there is a circular dependency between u1 and u2: u1 depends on
u2 as evidenced by q1’s response, while u2 depends on u1 as evidenced by q2’s
response (in principle the cycle of causally related operations can contain more
operations). Interestingly, as we show later, circular causality does not directly
follow from temporary operation reordering but is rather a result of the way
Bayou rolls back and reexecutes some operations.

In the original Bayou protocol, application-specific conflict detection and res-
olution is accomplished through the use of dependency checks and merge procedure
mechanisms. Since we allow operations with arbitrary complex semantics, the
dependency checks and the merge procedures can be emulated by the opera-
tions themselves, by simply incorporating if-else statements: the dependency
check as the if condition, and the merge procedure in the else branch (as sug-
gested in the original paper [44]). Hence, these mechanisms do not alleviate the
anomalies outlined above.

2.2.4 Correctness guarantees

Because of the phenomena described above, the guarantees provided by Bayou
cannot be formalized using the correctness criteria used for contemporary even-
tually consistent systems. E.g., basic eventual consistency (BEC) by Burckhardt et
al. [48, 49] directly forbids circular causality (see Section 3.7.2 for definition of
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BEC). BEC also requires the relative order of any two operations, as perceived
by the client, to be consistent and to never change. Similarly, strong eventual con-
sistency (SEC) by Shapiro et al. [26] requires any two replicas that delivered the
same updates to have equivalent states.2 Obviously, Bayou neither satisfies BEC
nor SEC (as evidenced by Figure 2.1). On the other hand informal definitions
of eventual consistency which admit temporal reordering, such as [19], involve
only liveness guarantees, which is insufficient. Bayou fulfills the operational
specification in [76]. However, we are interested in declarative specifications,
similar in the style to popular consistency criteria, such as sequential consistency
[50], or serializability [51], through which we can concisely define the behaviour
of a wide class of systems. Hence we introduce a new correctness criterion, fluc-
tuating eventual consistency (FEC), which can be viewed as a generalization of
BEC (see Section 3.7.3 for definition). FEC relaxes BEC, so that different opera-
tions can perceive different operation orders. However, we require that the dif-
ferent perceived operation orders converge to one final execution order. Hence,
FEC is suitable for systems that feature temporary operation reordering.

Similarly to ANNC, Bayou also ensures linearizability for strong operations
(a response of a strong operation op always reflects the serial execution of all
stabilized operations up to the point of op’s commit). In Section 3.8 we formally
prove that the Bayou-derived general-purpose ACT satisfies the above correct-
ness criteria.

2.2.5 Progress guarantees

In a highly available system replicas are supposed to respond to a request even
in the presence of network splits. However, this requirement can be differently
formalized. In the model considered by Brewer [18], a network partition can
last infinitely. Then, high availability can be formalized as wait-freedom [77],
which means that each request is eventually processed by the system and the
response is returned to the client. In the more commonly assumed model that
admits only temporary network partitions (we also adopt this model for ACTs,
similarly to, e.g., [48, 58]), that requirement is not strong enough, since a replica
could trivially just wait until the partitions are repaired before executing a re-
quest and responding to the client. Therefore, in such a model the requirement
of high availability must be formulated differently. It can be done as follows: a
system is highly available if it executes each request in a finite number of steps
even when no messages are exchanged between the replicas (the replica can-
not indefinitely postpone execution of a request or returning the response to the
client, see Section 2.4.2 for a formal definition). In this sense, weak operations
in Bayou are highly available. However, this definition of high availability does
not preclude situations in which, e.g., the number of steps the execution of each
request takes grows over time and thus is unbounded. Hence, one could for-
mulate a slightly stronger requirement, i.e., bounded wait-freedom [77], which

2BEC can be seen as a refinement of SEC, which abstracts away from CRDTs implementation
details and ensures that no return value is constructed out of thin air.
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states that there is a possibly unknown but bounded number of protocol steps
that the replica takes before a response is returned to the client upon invocation
of an operation. Interestingly, unlike many popular NoSQL data stores, such
as [20] or [21], Bayou does not guarantee bounded wait-freedom even for weak
operations, as we now demonstrate.

Consider a Bayou system with n replicas, one of which, Rs, processes re-
quests slower compared to all other replicas. Assume also that every fixed pe-
riod of time ∆t there are n new weak requests issued, one on each replica, and
the processing capabilities of all replicas are saturated. In every ∆t, Rs should
process all n requests (as do other replicas), but it starts to lag behind, with its
backlog constantly growing. Intuitively, every new operation invoked on Rs

will be scheduled for execution after all operations in the backlog, as they were
issued with lower timestamps. Hence the response time will increase with every
new invocation on Rs. One could try to overcome the problem of the increasing
latency on Rs by artificially slowing the clock on Rs, thus giving unfair priority
to the operations issued on Rs, compared to operations issued on other replicas.
But then any operation invoked on Rs would appear on other replicas as an op-
eration from a distant past. In turn, any such operation would cause a growing
number of rollbacks on the other replicas.

Strong operations cannot be (bounded) wait-free simply because in order for
them to complete, the primary must be operational, which cannot be guaranteed
in a fault-prone environment.

Interestingly, in AcuteBayou (see Section 2.2.7) the execution of weak opera-
tions is trivially bounded wait-free, as they are executed immediately upon their
invocations.

2.2.6 Fault-tolerance

Bayou’s reliance on the primary means that it provides only limited fault-
tolerance. Even though the primary may recover, when it is down, operations
do not stabilize, and thus no strong operation can complete. Hence, the primary
is the single point of failure. Alternatively, the primary could be replaced by a
distributed commit protocol. If two-phase-commit (2PC) [78] is used, the phe-
nomena illustrated in Figure 2.1 are not possible. In this case each replica votes
to commit a given request. A replica postpones the commit of a request with a
higher timestamp to ensure that its requests with lower timestamps are commit-
ted first. However, in this approach, a failure of any replica blocks the execution
of strong operations (as all the replicas need to be operational in 2PC in order
to reach distributed agreement). This makes such a system even less resilient
to failures than the original one. On the other hand, if a non-blocking commit
protocol, e.g., one that utilizes a quorum-based implementation of TOB is used
(as in ANNC), the system may stabilize operations despite (a limited number
of) failures.3 As we prove later, ACTs (which do not depend on the synchronous

3Sharded 2PC [79] can be considered non-blocking, under the assumption that within each
shard at least one process remains operational at all times. Then, in such a scheme not every pro-
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communication with all replicas and thus can operate despite failures of some
of them) with general-purpose semantics similar to Bayou, are necessarily prone
to the temporary operation reordering.

2.2.7 AcuteBayou

Bayou can be improved to make it more fault-tolerant and free of some of the
phenomena mentioned earlier. With the modifications described below the im-
proved Bayou protocol becomes the general-purpose ACT, called AcuteBayou.

In Algorithm 4 we present the modifications to the Algorithm 2, which give
us AcuteBayou. Note that, we also improve the execution of weak read-only
(RO) operations (since any RO operation op does not change the logical state of
the state , op can be executed only locally4).

Firstly, we use TOB in place of the primary to establish the final operation
execution order. More precisely, every (weak, updating) operation is broadcast
using RB (as before) as well as TOB (lines 13–14). When a replica TOB-delivers
an operation op (line 20), it stabilizes op. Since TOB guarantees that all replicas
TOB-deliver the same set of messages in the same order, all replicas will stabilize
the same set of operations in the same order. As we have argued, TOB can be
implemented in a way that avoids a single point of failure [55].

Further changes are aimed at eliminating circular causality in Bayou as well
as improving the response time for weak operations. To this end (1) any strong
operation is broadcast using TOB only (line 19), and (2) upon being submit-
ted, any weak operation is executed immediately on the current state, and then
rolled back (lines 11 and 12). It is easy to see that the modification (2) means the
incoming stream of weak operations from other replicas cannot delay the execu-
tion of weak operations submitted locally. Below we argue why the two above
modifications allow us to avoid circular causality in Bayou.

The change (1) means that for any pair of a strong s and a weak operation
w, if the return value of any operation e depends on both s and w (e observes
s and w), they will be observed in an order consistent with the final operation
execution order. We prove it through the following observations:

1. for e to observe s, s must be committed (in the modified algorithm s never
appears on the tentative list),

2. if e is a strong operation, then w must also be committed, because upon ex-
ecution strong operations do not observe operations on the tentative list;
hence both operations are observed according to their final execution or-
der,

3. otherwise (e is a weak operation):

a) w is updating (not RO), because otherwise it would not logically im-
pact the return value of e,

cess needs to be contacted to commit a transaction, thus it falls under the quorum-based category.
4We assume that StateObject features an overloaded execute function which takes a plain op-

eration as an argument, instead of a Req record, when executing RO operations.
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Algorithm 4 Modifications to the Bayou protocol that produce AcuteBayou
// redefines the Req record

1: struct Req(timestamp : int, id : pair⟨int, int⟩, ctx : set⟨pair⟨int, int⟩⟩,
strongOp : boolean, op : ops(F))

// replaces invoke(...) and primaryCommit()
2: upon invoke(op : ops(F), strongOp : boolean)
3: if ¬strongOp ∧ op ∈ readonlyops(F) then
4: var response = state.execute(op)
5: return response to client
6: else
7: currEventNo = currEventNo + 1
8: var ctx = (

⋃
r∈executed r.id) ∪ (

⋃
r∈toBeRolledBack r.id)

9: var r = Req(currTime, (i, currEventNo), ctx , strongOp, op)
10: if ¬strongOp then
11: var response = state.execute(r)
12: state.rollback(r)
13: RB-cast(ISSUE, r)
14: TOB-cast(COMMIT, r)
15: insertIntoTentative(r)
16: return response to client
17: else
18: reqsAwaitingResp.put(r,⊥)
19: TOB-cast(COMMIT, r)

// replaces upon FIFO-RB-deliver(COMMIT, r : Req)
20: upon TOB-deliver(COMMIT, r : Req)
21: commit(r)

b) if w is already committed, it is similar to case 2,

c) if w is not yet committed, e will observe the operations in the order
s, w; on the other hand, once w is delivered by TOB and committed, it
will appear on the committed list after s, and so e also observes s and
w in the same order s, w.

The change (2) is necessary to prevent circular causality between two (or
more) weak operations (the case depicted in Figure 2.1. It is because the modi-
fied algorithm executes a weak (updating) operation op without waiting for the
RB-cast/TOB-cast message to arrive. It means that no concurrent operation op′

will be executed prior to the first execution of op, whose return value observes
the client. Otherwise op could observe op′ even though the final execution order
is op, op′.

Finally, we redefine the Req record to include the execution context ctx , i.e.,
the identifiers of requests already executed upon the invocation of the current
operation and which have influenced the state object (those on the executed list
and those on the toBeRolledBack list). Note that in practice such identifiers can
be efficiently represented using Dotted Version Vectors [80]. With the augmented
Req record the implementation of StateObject can take advantage of the relative
visibility between operations to achieve the non-sequential semantics of such
replicated data types as MVRs or ORsets.

Note that the modified variant of Bayou does not ensure that subsequent op-
erations invoked by the same client observe the effects of previous ones, even if
all of them are issued on the same replica (the read-your-writes session guarantee,
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RYW [66]). In the original Bayou system, clients were collocated with replicas
and RYW was naturally provided. However, modern eventually consistent sys-
tems eschew sessions guarantees for performance reasons. More precisely, pro-
viding RYW without synchronous replication between servers either forces the
client to always connect to the same server (which is typically avoided because
of the use of load-balancers and stateless, thin, mobile clients), or to maintain a
significant state on the client-side. See also Chapter 6 for an in depth discussion
on session guarantees.

2.3 Acute non-negative counter vs AcuteBayou

While ANNC implements a very specific narrow data type, we can consider
AcuteBayou as a generic ACT, capable of executing any set of weak and strong
operations. In fact we could trivially implement a non-negative integer counter
using AcuteBayou by executing each counter operation as a separate Acute-
Bayou operation, albeit such an implementation would be suboptimal: in some
cases the operations would have to be rolled back and temporary operation re-
ordering would be possible again.

Despite the many differences between ANNC and AcuteBayou, they share
several design assumptions, which are common to all ACT implementations.
Firstly, in order to facilitate high availability and low response times (which are
essential in geo-replicated environments), frequently invoked operations should
be defined as weak operations and replicas should process them similarly to op-
erations in CRDTs (automatically resolve conflicts between concurrent updates;
converge to the same state within a network partition). To enforce this behaviour
without resorting to distributed agreement, we impose the same assumptions
as Attiya et al. for highly available eventually consistent data stores in [58] (see
Section 2.4.2 for details). Secondly, when weak consistency guarantees are insuf-
ficient, strong operations can be used. Strong operations use a global agreement
protocol for inter-replica synchronization, e.g., TOB. We require that strong op-
erations do not block the execution of weak operations and that they do not
require all replicas to be operational at all times in order to complete (as in 2PC).

ACTs are meant to provide the programmer with a modular abstraction layer
that handles all the complexities of replication, while enabling flexibility, high
performance and clear mixed-consistency semantics. In the next section we
specify ACTs formally.

2.4 Formalizing Acute Cloud Types

An acute cloud type is an abstract data type, implemented as a replicated data
structure, that offers a precisely defined set of operations, divided into two
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groups: weak and strong. The operations can be either updating or read-only
(RO), and all operations are allowed to provide a return value (in Chapter 3 we
show how the semantics of operations can be specified formally). We impose the
following implementation restrictions over ACTs: invisible reads, input-driven pro-
cessing, op-driven messages, highly available weak operations and non-blocking strong
operations. The first four, are adapted from the definition of write-propagating data
stores [58]. They guarantee genuine, low-latency, eventually-consistent process-
ing for weak operations (as in, e.g., CRDTs [26]). The last restriction guarantees
that strong operations are implemented using a non-blocking agreement proto-
col, instead of a non-fault-tolerant approach requiring all the replicas to be oper-
ational. In Sections 2.4.1 and 2.4.2 we formalize the system model and provide
precise definitions of the implementation restrictions.

2.4.1 System model

Replicas and clients

We consider a system consisting of n ≥ 2 processes called replicas, which main-
tain full copies of an ACT and to which external clients submit requests in the
form of operations to be executed.5 Each operation invoked by a client is marked
either weak or strong. Replicas communicate with each other through message
passing. We assume the availability of a gossip protocol, which is used when or-
dering constraints are not necessary, and some global agreement protocol, used
for tasks that require solving distributed consensus. For simplicity, as in Al-
gorithm 1, we formalize these protocols using reliable broadcast (RB) [71], and
TOB, respectively. Replicas can implement point-to-point communication sim-
ply by ignoring messages for which they are not the intended recipient. We
model replicas as deterministic state machines, which execute atomic steps in
reaction to external events (e.g., operation invocation or message delivery), and
can execute internal events (e.g., scheduled processing of rollbacks). We say
that a specific event is enabled on a replica, if its preconditions are met (e.g., an
RB-deliver(m) event is enabled on a replica R, if m was previously RB-cast and
R has not delivered message m yet). Replicas have access to a local clock, which
advances monotonically, but we make no assumptions on the bound on clock
drift between replicas.

We model crashed replicas as if they stopped all computation (or compute
infinitely slowly). We say that a replica is faulty if it crashes (in an infinite execu-
tion it executes only a finite number of steps). Otherwise, it is correct.

Network properties

In a fully asynchronous system, a crashed replica is indistinguishable to its peers
from a very slow one, and it is impossible to solve the distributed consensus
problem [81]. Real distributed systems which exhibit some amount of synchrony
can usually overcome this limitation. For example, in a quasi-synchronous

5We assume full replication for simplicity.
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model [82], the system is considered to be synchronous, but there exist a non-
negligible probability that timing assumptions can be broken. We are interested
in the behaviour of protocols, both in the fully asynchronous environment, when
timing assumptions are consistently broken (e.g. because of prevalent network
splits), and in a stable one, when the minimal amount of synchrony is available
so that consensus eventually terminates. Thus, we consider two kinds of runs:
asynchronous runs and stable runs. Replicas are not aware which kind of a run
they are currently executing. In stable runs, we augment the system with the
failure detector Ω (which is an abstraction for the synchronous aspects of the
system). We do so implicitly by allowing the replicas to use TOB through the
TOB-cast and TOB-deliver primitives. Since, TOB is known to require a fail-
ure detector at least as strong as Ω to terminate [83], we guarantee it achieves
progress only in stable runs.

In both asynchronous and stable runs we guarantee the basic properties of
reliable message passing [71], i.e.:

• if a message is RB-delivered, or TOB-delivered, then it was, respectively,
RB-cast, or TOB-cast, by some replica,

• no message is RB-delivered, or TOB-delivered, more than once by the same
replica,

• if a correct replica RB-casts some message, then eventually it RB-delivers
it,

• if a correct replica RB-delivers some message, then eventually all correct
replicas RB-deliver it,

• if any (correct or faulty) replica TOB-delivers some message, then eventu-
ally all correct replicas, TOB-deliver it,

• messages are TOB-delivered by all replicas in the same total order.

We define tobNo(m) as the sequence number of the TOB-deliver(m) event in
which m is TOB-delivered (among other TOB-deliver events in the execution) on
any replica (we leave it undefined, i.e., tobNo(m) = ⊥, if m is never TOB-delivered
by any replica).

Solely in stable runs, we also guarantee the following:

• if a correct replica TOB-casts some message, then eventually all correct
replicas TOB-deliver it.

• if a message m was both RB-cast and TOB-cast by some (correct or faulty)
replica, and m was RB-delivered by some correct replica, then eventually
all correct replicas TOB-deliver it.

The last guarantee is non-standard for a total-order broadcast, but could be eas-
ily emulated by the application itself. We include it to simplify presentation of
certain algorithms, such as ANNC and AcuteBayou.
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Fair executions

An execution is fair, if each replica has a chance to execute its steps (all replicas
execute infinitely many steps of each type of an enabled event, e.g., infinitely
many RB-deliver events for infinitely many messages RB-cast).

We analyze the correctness of a protocol by evaluating a single arbitrary in-
finite fair execution of the protocol, similarly to [49] and [60]. If the execution
satisfies the desired properties, then all the executions of the protocol (including
finite ones and the ones featuring crashed replicas) satisfy all the safety aspects
verified (nothing bad ever happens [67, 68]). Additionally, all fair executions of the
protocol satisfy liveness aspects (something good eventually happens).6

2.4.2 Design properties

Below we state the five rules that ACTs need to adhere to.

Invisible reads

Replicas do not change their state due to an invocation of a weak read-only oper-
ation. Formally, for each weak read-only operation op invoked on a replica R in
state σ, the state of R after a response for op is returned is equal σ. Note that, the
consequence of this is that weak read-only operations need to return a response
to the client immediately in the invoke event, without executing any other steps.
We allow strong read-only operations to change the state of a replica, because
sometimes it is necessary to synchronize with other replicas, and then the replica
needs to note down that a response is pending.

Input-driven processing

Replicas execute a series of steps only in response to some external stimulus,
e.g., an operation invocation or a received message. We say that a state σ of a
replica R is passive if none of the internal events on the replica are enabled in
σ. Initially each replica is in a passive state. An external event may bring a
replica to an active state σ′ in which it has some internal events enabled. Then,
after executing a finite number of internal events (when no new external events
are executed), the replica enters a passive state. More formally, for each replica
R, we require that in a given execution, either there is only a finite number of
internal events executed on R, or there is an infinite number of external events
executed on R. We say that R is passive, if it is in a passive state, otherwise it is
active.

Op-driven messages

RB or TOB messages are only generated and sent as a result of some non-read-
only client operation, and not spontaneously or in response to a received mes-
sage. More formally, a message can be RB-cast or TOB-cast by a replica R, if

6In Chapter 5 we use a relaxed definition of a fair execution to account for faulty replicas.
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previously some non-read-only operation was invoked on R, and since then R

did not enter a passive state.

Highly available weak operations

Weak operations need to eventually return a response without communicating
with other replicas. A weak operation op may remain pending only if the exe-
cution is finite, and the executing replica remains active since the invocation of
op (in an infinite execution a pending weak operation is never allowed).

Non-blocking strong operations

Strong operations need to eventually return a response if a global agreement has
been reached. More formally, for a strong operation op invoked on a replica R,
let msgs be the set of all messages TOB-cast by R since the invocation of op but
before R enters a passive state. Then, op may remain pending only if:

• the execution is finite, and R remains active since the invocation of op, or
R remains active because of the delivery of any message m ∈ msgs , or

• there exists a message m ∈ msgs , which has not been TOB-delivered by R

yet.

It means that in order to execute a strong operation replicas may synchronize by
TOB-casting multiple messages, but once TOB completes, the response must be
returned in a finite number of steps.

Summary

All the above requirements are commonly met by various eventually consistent
data stores and CRDTs (when we consider them as ACTs with only weak oper-
ations and using our communication model7), see, e.g., [84, 28, 20, 85, 86, 26, 87,
58, 60]. Restrictions 1–4 are inspired by the ones defined for write-propagating
data stores [58], but modified appropriately to accommodate for the more com-
plex nature of ACTs. In particular, we allow implementations that do not ex-
ecute each invoked operation in one atomic step, but divide the execution be-
tween many internal steps (e.g., see the pseudocode of Bayou in Section 2.2.2).
On the other hand, the 5th requirement concerns strong operations, and so is
specific for ACTs. As discussed in [58, 60], requirements 1–4 preclude imple-
mentations which offer stronger consistency guarantees but do not provide a
real value to the programmer (and still fall short of the guarantees possible to
ensure if global agreement can be reached). For example, a register’s implemen-
tation lacking invisible reads can return not the most recent value, but a stale
one, unless the read operation was invoked earlier a certain number of times.
Such an implementation is more restrictive compared to a classic register, i.e.,
it admits fewer execution traces. Thus it satisfies a more stringent consistency

7In case of geo-replicated systems which are weakly consistent between data centers, but fea-
ture state machine replication within a data center to simulate reliable processes, we can consider
the whole data center as a single replica.
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guarantee, albeit not a very useful one. On the other hand, with the above re-
strictions, it is still possible to attain causal consistency and variants of it, such
as observable causal consistency [58].
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Formal framework for mixed-consistency

systems

Below we provide the formal framework that allows us to reason about execu-
tion histories and correctness criteria. We extend the framework by Burckhardt
et al. [48] (also used by several other researchers, e.g., [57, 58, 60, 88], see also
[49] for a textbook tutorial).

3.1 Preliminaries

3.1.1 Functions and tuples

We use standard notations for functions: A → B denotes the set of all functions
from A to B, and f : A → B means that f ∈ (A → B). For any function
f : A → B we denote by f−1 : B → A the inverse of f : for any b ∈ B, f−1(b) =

{a ∈ A|f(a) = b}. We may treat functions as relations, thus f(a) = b ⇔ (a, b) ∈
f . In case of partial functions we use the following notation to indicate that
a ∈ A does not belong to the domain of f : f(a) = ⊥. We use the ⊥ symbol also
to denote an undefined value in other contexts such as in pairs or tuples. If the
structure of a tuple is well defined, e.g. a = (x, y, z), we often write a.x to simply
denote x.

3.1.2 Relations

A binary relation rel over set A is a subset rel ⊆ A × A. For a, b ∈ A, we use

the notation a
rel−→ b to denote (a, b) ∈ rel , and the notation rel(a) to denote

{b ∈ A : a
rel−→ b}. We use the notation rel−1 to denote the inverse relation, i.e.

(a
rel−1

−−−→ b) ⇔ (b
rel−→ a). Therefore, rel−1(b) = {a ∈ A : a

rel−→ b}. Given two
binary relations rel , rel ′ over A, we define the composition rel ; rel ′ = {(a, c) :

∃b ∈ A : a
rel−→ b

rel ′−−→ c}. We let idA be the identity relation over A, i.e., (a idA−−→
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Property Element-wise Definition Algebraic Definition
∀x, y, z ∈ A :

symmetric x
rel−→ y ⇒ y

rel−→ x rel = rel−1

reflexive x
rel−→ x idA ⊆ rel

irreflexive x ̸rel−→ x idA ∩ rel = ∅
transitive (x

rel−→ y
rel−→ z) ⇒ (x

rel−→ z) (rel ; rel) ⊆ rel

acyclic ¬(x rel−→ ...
rel−→ x) idA ∩ rel+ = ∅

total x ̸= y ⇒ (x
rel−→ y ∨ y

rel−→ x) rel ∪ rel−1 ∪ idA = A×A

Property Definition

natural ∀x ∈ A : |rel−1(x)| < ∞
partialorder irreflexive ∧ transitive

totalorder partialorder ∧ total

enumeration totalorder ∧ natural

equivalencerelation reflexive ∧ transitive
∧symmetric

Figure 3.1: Definitions of common properties of a binary relation rel ⊆
A×A.

b) ⇔ (a ∈ A) ∧ (a = b). For n ∈ N0, we let reln be the n-ary composition
rel ; rel ...; rel , with rel0 = idA. We let rel+ =

⋃
n≥1 rel

n and rel∗ =
⋃

n≥0 rel
n. For

some subset A′ ⊆ A, we define the restricted relation rel |A′ = rel ∩ (A′ × A′). In
Figure 3.1 we summarize various properties of relations.

We define by words(A) the set of all sequences (words) containing only ele-
ments from the set A. When not ambiguous we use A∗ to denote words(A) (i.e.
when A is not a binary relation).

Let rank(A, rel , a) denote the number of elements of set A that are in relation
rel to element a ∈ A. Thus, rank(A, rel , a) = |{x ∈ A : x

rel−→ a}| = |rel−1(a)∩A|.
We also define two operators sort and foldl . A.sort(rel) ∈ A∗ arranges

in an ascending order the elements of set A according to the total order rel .
foldl(a0, f, w) ∈ A reduces sequence w ∈ B∗ by one element at a time using
the function f : A×B → A and accumulator a0 ∈ A:

foldl(a0, f, w) =

{
a0 if w = ϵ
f(foldl(a0, f, w

′), b) if w = w′b

3.1.3 Event graphs

To reason about executions of a distributed system we encode the information
about events that occur in the system and about various dependencies between
them in the form of an event graph. An event graph G is a tuple (E, d1, ...., dn),
where E ⊆ Events is a finite or countably infinite set of events drawn from uni-
verse Events (the set of all possible events that we may encounter in a concrete
situation), n ≥ 1, and each di is an attribute or a relation over E. Vertices in G

represent events that occurred at some point during the execution and are inter-
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preted as opaque identifiers. Attributes label vertices with information pertinent
to the corresponding event, e.g., operation performed, or the value returned.
All possible operations of all considered data types form the Operations set. All
possible return values of all operations form the Values set. Relations represent
orderings or groupings of events, and thus can be understood as arcs or edges of
the graph.

Event graphs are meant to carry information that is independent of the ac-
tual elements of Events chosen to represent the events (the attributes and re-
lations in G encode all relevant information regarding the execution). Let G =

(E, d1, ...., dn) and G′ = (E′, d′1, ...., d
′
n) be two event graphs. G and G′ are isomor-

phic, written G ≃ G′, if (1) for all i ≥ 1, di and d′i are of the same kind (attribute
vs. relation) and (2) there exists a bijection ϕ : E → E′ such that for all di, where
di is an attribute, and all x ∈ E, we have di(x) = d′i(ϕ(x)), and such that for all

di where di is a relation, and all x, y ∈ E, we have x
di−→ y ⇔ ϕ(x)

d ′
i−→ ϕ(y).

3.2 Histories

We represent a high-level view of a system execution as a history. We omit im-
plementation details such as message exchanges or internal steps executed by
the replicas. We include only the observable behaviour of the system, as per-
ceived by the clients through received responses. Formally, we define a history
as an event graph H = (E, op, rval , rb, ss, lvl), where:

• op : E → Operations , specifies the operation invoked in a particular event,
e.g., op(e) = write(3),

• rval : E → Values∪{∇}, specifies the value returned by the operation, e.g.,
rval(e) = 3, or rval(e′) = ∇, if the operation never returns (e′ is pending in
H),

• rb, the returns-before relation, is a natural partial order over E, which spec-
ifies the ordering of non-overlapping operations (one operation returns be-
fore the other starts, in real-time),

• ss , the same session relation, is an equivalence relation which groups events
executed within the same session (the same client), and finally

• lvl : E → {weak , strong}, specifies the consistency level demanded for the
operation invoked in the event.

We consider only well-formed histories for which the following holds: which
satisfy:

• ∀a, b ∈ E : (a
rb−→ b ⇒ rval(a) ̸= ∇) (a pending operation does not return),

• ∀a, b, c, d ∈ E : (a
rb−→ b ∧ c

rb−→ d) ⇒ (a
rb−→ d ∨ c

rb−→ b) (rb is an interval
order, i.e. it is consistent with a timeline interpretation where operations
correspond to segments [89, 49]),
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• for each event e ∈ E and its session S = {e′ ∈ E : e
ss−→ e′}, the restriction

rb|S is an enumeration (clients issue operations sequentially).

3.3 Abstract executions

In order to explain the history, i.e., the observed return values, and reason about
the system properties, we need to extend the history with information about the
abstract relationships between events. For strongly consistent systems typically
we do so by finding a serialization [50] (an enumeration of all events) that satisfies
certain criteria. For weaker consistency models, such as eventual consistency or
causal consistency, it is more natural to reason about partial ordering of events.
Hence, we resort to abstract executions.

An abstract execution is an event graph A = (E, op, rval , rb, ss, lvl , vis, ar , par),
such that:

• (E, op, rval , rb, ss, lvl) is some history H ,

• vis is an acyclic and natural relation,

• ar is a total order relation, and

• par : E → 2E×E is a function which returns a binary relation in E.

For brevity, we often use a shorter notation A = (H, vis, ar , par) and let H(A) =

H . Just as serializations are used to explain and justify operations’ return values
reported in a history, so are the visibility (vis) and arbitration (ar ) relations. Per-
ceived arbitration (par ) is a function which is necessary to formalize temporary
operation reordering.

Visibility (vis) describes the relative influence of operation executions in a
history on each others’ return values: if a is visible to b (denoted a

vis−−→ b), then
the effect of a is visible to the replica performing b (and thus reflected in b’s re-
turn value). Visibility often mirrors how updates propagate through the system,
but it is not tied to the low-level phenomena, such as message delivery. It is an
acyclic, and natural relation, which may or may not be transitive. Two events
are concurrent if they are not ordered by visibility.

Arbitration (ar ) is an additional ordering of events which is necessary in case
of non-commutative operations. It describes how the effects of these operations
should be applied. If a is arbitrated before b (denoted a

ar−→ b), then a is consid-
ered to have been executed earlier than b. Arbitration is essential for resolving
conflicts between concurrent events, but it is defined as a total-order over all op-
eration executions in a history. It usually matches whatever conflict resolution
scheme is used in an actual system, be it physical time-based timestamps, or
logical clocks.

Perceived arbitration (par ) describes the relative order of operation executions,
as perceived by each operation (par(e) defines the total order of all operations,
as perceived by event e). If ∀e ∈ E : par(e) = ar , then there is no temporary
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operation reordering in A.

3.4 Correctness predicates

A consistency guarantee P(A) is a set of conditions on an abstract execution A,
which depend on the particulars of A up to isomorphism. For brevity we usually
omit the argument A. We write A |= P if A satisfies P . More precisely: A |=
P def⇐⇒ ∀A′ : A′ ≃ A : P(A′). A history H is correct according to some consistency
guarantee P (written H |= P) if it can be extended with some vis , ar relations
and par function to an abstract execution A = (H, vis, ar , par) that satisfies P .
We say that a system is correct according to some consistency guarantee P if all
of its histories satisfy P .

We say that a consistency guarantee Pi is at least as strong as a consistency
guarantee Pj , denoted Pi ≥ Pj , if ∀H : H |= Pi ⇒ H |= Pj . If Pi ≥ Pj and
Pj ̸≥ Pi then Pi is stronger than Pj , denoted Pi > Pj . If Pi ̸≥ Pj and Pj ̸≥ Pi,
then Pi and Pj are incomparable, denoted Pi ≶ Pj .

3.5 Replicated data type

In order to specify semantics of operations invoked by the clients on the repli-
cas, we model the whole system as a single replicated object (as in case of Algo-
rithm 1). Even though we use only a single object, this approach is general, as
multiple objects can be viewed as a single instance of a more complicated type,
e.g. multiple registers constitute a single key-value store. Defining the semantics
of the replicated object through a sequential specification [52] is not sufficient for
replicated objects which expose concurrency to the client, e.g. multi-value regis-
ter (MVR) [26] or observed-remove set (OR-Set) [27]. Hence, we utilize replicated
data types specification [28].

In this approach, the state on which an operation op ∈ Operations exe-
cutes, called the operation context, is formalized by the event graph of the prior
operations visible to op. Formally, for any event e in an abstract execution
A = (E, op, rval , rb, ss, lvl , vis, ar , par), the operation context of e in A is the

event graph context(A, e)
def
= (vis−1(e), op, vis, ar). Note that an operation con-

text lacks return values, the returns-before relation, as well as the information
about sessions. The set of previously invoked operations, coupled with their
relative visibility and arbitration, unambiguously defines the output of the op-
eration invoked in the considered event. This brings us to the formal definition
of a replicated data type.

A replicated data type F is a function that, for each operation op ∈ ops(F)

(where ops(F) ⊆ Operations) and operation context C, defines the expected



Freg(write(v), (E, op, vis, ar)) = ok

Freg(read(), (E, op, vis, ar)) =

{
v if ∃e ∈ E : (op(e) = write(v) ∧ ∄e′ ∈ E : (op(e′) = write(v′) ∧ e

ar−→ e′))

0 otherwise

FMVR(write(v), (E, op, vis, ar)) = ok

FMVR(read , (E, op, vis, ar)) = {v : ∃e ∈ E : op(e) = write(v) ∧ ∄e′ ∈ E : op(e′) = write(v′) ∧ e
vis−−→ e′}

Forset(add(v), (E, op, vis, ar)) = ok

Forset(remove(v), (E, op, vis, ar)) = ok

Forset(read(), (E, op, vis, ar)) = {v|∃e ∈ E : op(e) = add(v) ∧ ∄e′ ∈ E : op(e′) = remove(v) ∧ e
vis−−→ e′}

Fseq(append(s), (E, op, vis, ar)) = ok

Fseq(read , (E, op, vis, ar)) =

ϵ, if appends(E) = ∅
s1 · s2 · . . . · sn otherwise,where ∀i ≤ n : ∃e ∈ E : rank(appends(E), ar , e) = i

∧ op(e) = append(si) ∧ si ∈ $∗

where $ = {a, b, c, . . . , z} and appends(E) = {e ∈ E : ∃v ∈ $∗ : op(e) = append(v)}

FNNC (add(v), (E, op, vis, ar)) = ok

FNNC (subtract(v), (E, op, vis, ar)) =

{
true if foldl(0, fNNC , E.sort(ar)) ≥ v
false otherwise

FNNC (get , (E, op, vis, ar)) = foldl(0, fNNC , E.sort(ar))

where v ∈ N and fNNC =

fNNC (x, add(v)) = x+ v
fNNC (x, subtract(v)) = x− v if x ≥ v or x otherwise
fNNC (x, get) = x

Figure 3.2: Formal specifications of replicated data types for a last-write-
wins register Freg , a multi-value register FMVR, an observed-remove
set Forset , an append-only sequence Fseq , and a non-negative counter
FNNC .
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return value v = F(op, C) ∈ Values , such that v does not depend on events,
i.e., is the same for isomorphic contexts: C ≃ C ′ ⇒ F(op, C) = F(op, C ′) for
all op, C, C ′. We say that op ∈ ops(F) is a read-only operation (denoted op ∈
readonlyops(F)), if and only if, for any operation op′, context C = (E, op, vis, ar)

and event e ∈ E, such that op(e) = op, F(op′, C) = F(op′, C ′), where C ′ =

(E \ {e}, op, vis, ar). In other words, read-only operations can be excluded from
any context C, producing C ′, and the result of any operation op′ will not change.

In Figure 3.2 we give the specification of five replicated data types: Freg

(a last-write-wins register), FMVR (a multi-value register), Forset (an observed-
remove set), Fseq (an append-only sequence), and FNNC (a non-negative
counter). Freg uses the last-write-wins policy [64] to select the most recently
written value as specified by the ar relation. An instance of FMVR stores multi-
ple values when there are concurrent write() operations (write() operations not
ordered by the vis relation). An Forset removes an element x from the set only
if it has been observed previously (when the add(x) operation is visible to the
remove(x) operation). Fseq can be used to create a sequence of characters (a
word), where the set of characters is limited to a through z. Fseq features two
operations: append(x), which appends x to the end of the sequence and returns
ok ∈ Values , and read(), which returns a sequence (a word) w ∈ $∗. FNNC stores
an integer value, that can be increased using the add operation or decreased us-
ing the subtract operation, but only if the value of the counter will not decrease
below 0. The get operation simply returns the current value of the counter. See
the definition of operators sort and foldl in Section 3.1.

We use Fseq in the subsequent sections to illustrate various consistency mod-
els.

3.6 ACT specification

To accommodate for the mixed-consistency nature of ACTs we have to extend
replicated data type specification with the information on supported consis-
tency levels for a given operation. Thus, we define ACT specification as a pair
(F , lvlmap), where F is a replicated data type specification and lvlmap :

Operations → 2{weak ,strong} is a function which specifies for each op ∈ Operations

with which consistency levels it can be executed. We assume that clients follow
this contract, and thus, when considering a history H = (E, op, rval , rb, ss, lvl)

of an ACT compliant with the specification (F , lvlmap), we assume that for each
e ∈ E : lvl(e) ∈ lvlmap(op(e)).

The ACT specification of ANNC presented in Algorithm 1 is (FNNC ,

lvlmapNNC ), where:

lvlmapNNC (add) = {weak},
lvlmapNNC (get) = {weak}, and

lvlmapNNC (subtract) = {strong}.
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3.7 Correctness criteria

In this section we define various correctness guarantees for ACTs. We define
them as conjunctions of several basic predicates. We start with two simple re-
quirements that should naturally be present in any eventually consistent sys-
tem. For the discussion below we assume some arbitrary abstract execution
A = (E, op, rval , rb, ss, lvl , vis, ar , par).

3.7.1 Key requirements for eventual consistency

The first requirement is the eventual visibility (EV) of events. EV requires that for
any event e in A, there is only a finite number of events in E that do not observe
e. Formally

EV def
= ∀e ∈ E : |{e′ ∈ E : e

rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞

Intuitively, EV implies progress in the system because replicas must synchronize
and exchange knowledge about operations submitted to the system.

The second requirement concerns avoiding circular causality, as discussed
in Section 2.2.3. To this end we define two auxiliary relations: session order and

happens-before. The session order relation so
def
= rb ∩ ss represents the order of

operations in each session. The happens-before relation hb
def
= (so ∪ vis)+ (a

transitive closure of session order and visibility) allows us to express the causal

dependency between events. Intuitively, if e hb−→ e′, then e′ potentially depends
on e. We simply require no circular causality:

NCC def
= acyclic(hb)

In the following sections we add requirements on the return values of the
operations in A. Formalizing the properties of ACTs which, similarly to Acute-
Bayou, admit temporary operation reordering, requires a new approach. We
start, however, with the traditional one.

3.7.2 Basic Eventual Consistency

Intuitively, basic eventual consistency (BEC) [48, 49], in addition to EV and NCC,
requires that the return value of each invoked operation can be explained using
the specification of the replicated data type F , which is formalized as follows:

RVAL(F)
def
= ∀e ∈ E : rval(e) = F(op(e), context(A, e))

Then
BEC(F)

def
= EV ∧ NCC ∧ RVAL(F)



ABEC
R1

R2

append(a) → ok read() → ab read() → ab

append(b) → ok read() → a read() → b read() → ab

...

...

AFEC
R1

R2

append(a) → ok read() → b read() → ab

append(b) → ok read() → ab read() → ba read() → ab

...

...

ASEQ
R1

R2

append(a) → ok read() → a read() → ab

append(b) → ok read() → ab read() → ab read() → ab

...

...

ALIN
R1

R2

append(a) → ok read() → a read() → ab

append(b) → ok read() → ab

...

...

Figure 3.3: Example abstract executions of systems with a list seman-
tics that satisfy BEC(Fseq), FEC(Fseq), SEQ(Fseq), and LIN(Fseq) respec-
tively (for brevity, we omit the level parameter l and assume that all
operations belong to the same class l). We use solid and dashed under-
lines to depict which updating operations are visible (through relation
vis) in A to the read() operations (we assume that every read() operation
observes all other read() operations that happened prior to it). In the
arbitration order, append(a) precedes append(b), and both updates are
followed by all the reads in the order they appear on the timeline.
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An example abstract execution ABEC that satisfies BEC(Fseq) is shown in
Figure 3.3. In ABEC, replicas R1 and R2 concurrently execute two append() op-
erations, and then each replica executes an infinite number of read() operations.
Consider the read() operations on R2: the first one observes only append(a)

(which is in the operation context of read()), whereas the second observes only
append(b). BEC admits this kind of execution, because it does not make any re-
quirements in terms of session guarantees [66]. Eventually, both append(a) and
append(b) become visible to all subsequent read() operations, thus satisfying EV.

By the definition of the context function (Section 3.5), when A satisfies
RVAL(F), the return value of each operation is calculated according to the ar

relation. It is then easy to see that there are executions of AcuteBayou (or other
ACTs that admit temporary operation reordering) which do not satisfy RVAL(F).
It is because weak operations (as shown in Section 2.2.3) might observe past op-
erations in an order that differs from the final operation execution order (ar ).
Hence AcuteBayou does not satisfy BEC(F) for an arbitrary F . But it could sat-
isfy BEC(F) for a sufficiently simple F , such as a conflict-free counter, in which
all operations always commute (as opposed to FNNC ). It is so, because then,
even if AcuteBayou reorders some operations internally, the final result never
changes and thus the reordering cannot be observed by the clients.

3.7.3 Fluctuating Eventual Consistency

In order to admit temporary operation reordering, we give a slightly different
definition of the context function, in which the arbitration order fluctuates, i.e., it

changes from one event to another. Let fcontext(A, e) def
= (vis−1(e), op, vis, par(e)),

which means that now we consider the operation execution order as perceived
by e, and not the final one. The definition of the fluctuating variant of RVAL is
straightforward:

FRVAL(F)
def
= ∀e ∈ E : rval(e) = F(op(e), fcontext(A, e))

To define the fluctuating variant of BEC, that could be used to formalize the
guarantees provided by ACTs we additionally must ensure that the arbitration
order perceived by events is not completely unrestricted, but that it gradually
converges to ar for each subsequent event. It means that each e ∈ E can be
temporarily observed by the subsequent events e′ according to an order that
differs from ar (but is consistent with par(e′)). However, from some moment
on, every event e′ will observe e according to ar . To define this requirement, we
use the rank function (defined in Section 3.1). Let Ee = {e′ ∈ E : e

vis−−→ e′}. This
intuition is formalized by convergent perceived arbitration:

CPAR
def
= ∀e ∈ E : |{e′ ∈ Ee : rank(vis

−1(e′), par(e′), e)

̸= rank(vis−1(e′), ar , e)}| < ∞
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If A satisfies CPAR, then for each event e, the set of events e′, which observe the
position of e not according to ar is finite. Thus, the position of e in par(e′) for
subsequent events e′ stabilizes, and par(e′) eventually converges to ar .

Now we can define our new consistency criterion fluctuating eventual consis-
tency (FEC):

FEC(F)
def
= EV ∧ NCC ∧ FRVAL(F) ∧ CPAR

An example abstract execution AFEC that satisfies FEC is shown in Figure 3.3.
In AFEC, replica R2 temporarily observes the append() operations in the order
append(b), append(a) which is different then the eventual operation execution
order (as evidenced by the infinite number of read() → ab operations). We call
this behaviour fluctuation.

It is easy to see that FEC(F) < BEC(F), in the sense that: for each F ,
FEC(F) ≤ BEC(F), and for some F , FEC(F) < BEC(F). It is so, because
FEC uses par instead of ar to calculate the return values of operation execu-
tions, but par eventually converges to ar . Hence, BEC(F) is a special case of
FEC(F), when ∀e ∈ E : par(e) = ar . It is easy to see that ABEC from Figure 3.3
satisfies both BEC and FEC, whereas AFEC satisfies only FEC.

3.7.4 Operation levels

The above definitions can be used to capture the guarantees provided by a wide
variety of eventually consistent systems. However, our framework still lacks the
capability to express the semantics of mixed-consistency systems. ACTs offer
different guarantees for different classes of operations (e.g., consistency guar-
antees stronger than BEC or FEC are provided in AcuteBayou or ANNC only
for strong operations). Hence, we need to parametrize the consistency criteria
with a level attribute (as indicated by the lvl function for each event). Since con-
sistency level is specified per operation invocation, we need to assure that the
respective operations’ responses reflect the demanded consistency level.

Let us revisit BEC first. Let L = {e ∈ E : lvl(e) = l} for a given l. Then

EV(l)
def
= ∀e ∈ E : |{e′ ∈ L : e

rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞

NCC(l)
def
= acyclic(hb ∩ (L× L))

RVAL(l,F)
def
= ∀e ∈ L : rval(e) = F(op(e), context(A, e))

BEC(l,F)
def
= EV(l) ∧ NCC(l) ∧ RVAL(l,F)

The above parametrized definition of BEC restricts the RVAL predicate only to
events issued with the given consistency level l (the events that belong to the set
L). It means that for any such event the response has to conform with the repli-
cated data type specification F , and with the vis and ar relations (as defined by
the definition of the context function). For all other events this requirement does
not need to be satisfied, so they can return arbitrary responses (unless restricted
by other predicates targeted for these events). Similarly, for EV and NCC, the
predicates are restricted to affect only the events from the set L. In case of EV,
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each event eventually becomes visible to the operations executed with the level
l. In case of NCC, there must be no cycles in hb involving events from the set L.

The parametrized variant of FEC is formulated analogously. Let L be de-
fined as before, and for any event e ∈ E, let Le = {e′ ∈ L : e

vis−−→ e′} be the
subset of events from L which observe e. Then:

FRVAL(l,F)
def
= ∀e ∈ L : rval(e) = F(op(e), fcontext(A, e))

CPAR(l)
def
= ∀e ∈ E : |{e′ ∈ Le : rank(vis

−1(e′), par(e′), e)

̸= rank(vis−1(e′), ar , e)}| < ∞

FEC(l,F)
def
= EV(l) ∧ NCC(l) ∧ FRVAL(l,F) ∧ CPAR(l)

As before, we restrict the return values only for the events from the set L. Ad-
ditionally, we restrict the predicate CPAR, so that par(e) converges towards ar

only for events e ∈ L. Other events can differently perceive the arbitration of
events (in principle, the observed arbitration can be completely different from
the final one, specified by ar ).

We can compare the parametrized variants of BEC and FEC as before:
FEC(l,F) < BEC(l,F).

All of the strong consistency criteria which we are going to discuss next, we
define already in the parametrized form with the given level l in mind, so they
can be used, e.g., for strong operations in AcuteBayou and ANNC.

3.7.5 Strong consistency

A common feature of strong consistency criteria, such as sequential consistency
[50], or linearizability [52], is a single global serialization of all operations. It
means that a history satisfies these criteria, if it is equivalent to some serial ex-
ecution (serialization) of all the operations. Additionally, depending on the par-
ticular criterion, the serialization must, e.g., respect program-order, or real-time
order of operation executions. Although we provide a serialization of all oper-
ations (through the total order relation ar , which is part of every abstract exe-
cution), the equivalence of a history to the serialization is not enforced in the
correctness criteria we have defined so far. For example, given a sequence of
three events ⟨a, b, c⟩, such that a ar−→ b

ar−→ c, the response of c according to BEC,
does not need to reflect neither a, nor b, as they may simply be not visible to c

(a ̸ vis−−→ c ∨ b ̸ vis−−→ c). Thus, to guarantee conformance to a single global serializa-
tion, we must enforce that for any two events e1, e2 ∈ E, e1

ar−→ e2 ⇔ e1
vis−−→ e2

(unless e1 is pending, since a pending operation might be arbitrated before a
completed one, yet still be not visible). We express this through the single order
predicate:

SINORD
def
= ∃E′ ⊆ rval−1(∇) : vis = ar \ (E′ × E)

SINORD(l)
def
= ∃E′ ⊆ rval−1(∇) : visL = arL \ (E′ × E)

where visL = vis ∩ (E × L) and arL = ar ∩ (E × L)
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Note that rval−1(∇) represents all pending events, while E′ is a subset of these
events. Thus, for certain pending events e1 ∈ E′, e1

ar−→ e2 ⇔ e1
vis−−→ e2 does not

need to hold. In the parametrized form, the conformance to the serialization is
required only for the events from the set L (but the serialization includes all the
events).

In order to capture the eventual stabilization of the operation execution order,
which happens in AcuteBayou and in ACTs similar to it, we now define two
additional correctness criteria that feature SINORD.

Sequential consistency

Informally, sequential consistency (SEQ) [50] guarantees that the system behaves
as if all operations were executed sequentially, but in an order that respects the
program order, i.e., the order in which operations were executed in each session.
Hence, SEQ implies RVAL together with SINORD, and additionally, session arbi-
tration (SESSARB). SESSARB simply requires that for any two events e, e′ ∈ E,
if e so−→ e′, then e

ar−→ e′. In the parametrized form we are interested only in the
guarantees for events in L, and thus we use soL = so∩ (E×L) instead of so (see
Section 3.7.1). SINORD together with SESSARB imply NCC and EV [49], how-
ever this does not hold for the parametrized forms of these predicates. Thus, we
define SEQ by extending BEC (which explicitly includes EV, NCC and RVAL):

SESSARB(l)
def
= soL ⊆ ar

SEQ(l,F)
def
= SINORD(l) ∧ SESSARB(l) ∧ BEC(l,F)

An example abstract execution ASEQ that satisfies SEQ is shown in Figure 3.3.
According to SEQ, since the append() operations are arbitrated append(a),

append(b) (as evidenced by any read() operation that observes both append()

operations), any read() can either return ab or a, a non-empty prefix of ab.

Linearizability

The linearizability (LIN) [52] correctness condition is similar to SEQ but instead
of program order it enforces a stronger requirement called real-time order. Infor-
mally, a system that is linearizable guarantees that for any operation op′ that
starts (in real-time) after any operation op ends, op′ will observe the effects
of op. We formalize LIN using the real-time order (RT) predicate, that uses the
rbL = rb ∩ (L× L) relation in its parametrized form:

RT(l) def
= rbL ⊆ ar

LIN(l,F)
def
= SINORD(l) ∧ RT(l) ∧ BEC(l,F)

Note that, SEQ and LIN are incomparable in their parametrized forms. While
LIN(l,F) requires any two events to be arbitrated according to real-time if they
both belong to L, SEQ(l,F) enforces real-time only within the same session, but
only one of the events needs to belong to L. By using a stronger definition of
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RT′(l) with rb′L = rb ∩ (E × L), we would force all operations to synchronize,
which is incompatible with high availability of weak operations.

An example abstract execution ALIN that satisfies LIN is shown in Figure 3.3.
According to LIN, since append(a) ended before append(b) started, the opera-
tions must be arbitrated append(a), append(b) (as evidenced by any read() opera-
tion that observes both append() operations). If some read() operation started af-
ter append(a) ended but executed concurrently with append(b) (append(b) would
start before read() ended), read() could return either a or ab.

3.8 Correctness of ANNC and AcuteBayou

Having defined BEC, FEC and LIN, we show four formal results: two regarding
ANNC and two regarding AcuteBayou. The proofs of all four theorems can be
found in Appendix B.

As we have discussed in Section 2.4.1, we are interested in the behaviour of
systems, both in a fully asynchronous environment, when timing assumptions
are constantly broken (e.g., because of prevalent network partitions), and in a
stable one, when sufficient synchrony is available so that consensus eventually
terminates. Thus, we consider two kinds of runs: asynchronous and stable.

Theorem 1. In stable runs ANNC satisfies BEC(weak ,FNNC )∧LIN(strong ,FNNC ).

Theorem 2. In asynchronous runs ANNC satisfies BEC(weak ,FNNC ) and does not
satisfy LIN(strong ,FNNC ).

ANNC does not guarantee LIN(strong ,FNNC ) in asynchronous runs, be-
cause strong operations in general (for arbitrary F) cannot be implemented
without solving global agreement, and since in asynchronous runs TOB comple-
tion is not guaranteed, some of the operations may remain pending. It means
that for some e ∈ E, such that lvl(e) = strong , rval(e) = ∇, even though it is not
allowed by F (recall from Section 2.4.1 that we consider fair executions).

By satisfying BEC(weak ,FNNC ), we prove that temporary operation reorder-
ing is not possible in ANNC. As we discussed in Section 2.2.3, it is not the case
for AcuteBayou. However, we can prove that AcuteBayou satisfies our new cor-
rectness criterion FEC(weak ,F) (for arbitrary F).

Theorem 3. In stable runs AcuteBayou satisfies FEC(weak ,F) ∧ LIN(strong ,F) for
any arbitrary ACT specification (F , lvlmap).

Theorem 4. In asynchronous runs AcuteBayou satisfies FEC(weak ,F) and it does
not satisfy LIN(strong ,F) for any arbitrary ACT specification (F , lvlmap).

The observation that some undesired anomalies are not inherent to all ACTs
leads to interesting questions that we plan to investigate more closely in the
future, e.g., what are the common characteristics of the replicated data types
with mixed-consistency semantics that can be implemented as ACTs that are
free of temporary operation reordering.



4
Limitations of mixed-consistency

We proceed to our central contribution: identifying key limitations of mixed-
consistency systems represented as ACTs. In the previous chapter, we have
shown that using Bayou one can obtain an ACT for any replicated data type
F . Naturally, a question arises whether it is possible to provide such a generic
solution, but which avoids temporary operation reordering. Unfortunately, the
answer is no. We show that there exists an ACT specification for which it is im-
possible to propose an ACT implementation that avoids temporary operation
reordering.

If a mixed-consistency ACT that implements some replicated data type F
could avoid temporary operation reordering, it would mean that it ensures BEC
for weak operations and also provides at least some criterion based on SINORD

for strong operations (to ensure a global serialization of all operations). Hence
we state our main theorem:

Theorem 5. There exists an ACT specification (F , lvlmap), for which there does not
exist an implementation that satisfies SINORD(strong) ∧ BEC(strong ,F) in stable
runs, and BEC(weak ,F) in both asynchronous and stable runs.

To prove the theorem, we take Fseq (defined in Figure 3.2) as an example
replicated data type specification F . We consider an ACT specification, which
features append and read operations in both consistency levels, weak , and strong .
Thus, (F , lvlmap) = (Fseq , lvlmapseq), where

lvlmapseq(append) = lvlmapseq(read) = {weak , strong}

.
Let us begin with an observation. Whenever any ACT implementation of

(Fseq , lvlmapseq) that satisfies BEC(weak ,Fseq) in asynchronous runs, executes a
weak append operation, it has to RB-cast some message m. Since the implemen-
tation satisfies EV (through BEC(weak ,Fseq)) we know that all replicas have to
be informed about the invocation of append . The replica executing the append

operation may not postpone sending the message until some other invocation
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happens, because all the subsequent operation invocations on the replica may
be operations, which do not grant the replica the right to send messages (e.g.,
RO operations, by the invisible reads requirement). Moreover, the replica may
not depend on TOB-cast messages, because in asynchronous runs they are not
guaranteed to be delivered to other replicas.1 Thus, a message must be RB-cast.
Naturally, a replica may RB-cast several messages (although in practice a single
message per operation should suffice) and may also TOB-cast some messages.
Since replicas cannot distinguish between asynchronous and stable runs, the
same observation also holds for stable runs. We utilize this fact in our proof by
considering asynchronous and stable executions and establishing certain invari-
ants which need to hold in both kinds of runs.

We now proceed with the proof of the theorem. We conduct the proof by
contradiction using a specially constructed execution, in which a replica that
executes a strong operation has to return a value without consulting all repli-
cas. Thus, we consider an ACT implementation of (Fseq , lvlmapseq) that satisfies
BEC(weak ,Fseq) in asynchronous runs, and BEC(weak ,Fseq)∧SINORD(strong)∧
BEC(strong ,Fseq) in both the asynchronous and stable runs (see definition of
Fseq in Figure 3.2).

Proof. We give a proof for a system of three replicas R1, R2 and R3. We begin
with an empty execution represented by a history H = (E, op, rval , rb, ss, lvl),
which we will extend in subsequent steps. Initially all replicas are separated
by a temporary network partition, which means that the messages broadcast
by the replicas do not propagate (however, eventually they will be delivered
once the partition heals). A weak append(a) operation is invoked on R1 in the
event ea and a weak append(b) operation is invoked on R2 in the event eb. By
input-driven processing and highly available weak operations both replicas re-
turn responses for the operations and become passive afterwards. Let msgsRB

a

and msgsRB
b denote the set of messages RB-cast by, respectively, R1 and R2, un-

til this point. Let msgsTOB
a and msgsTOB

b denote the set of messages TOB-cast
by, respectively, R1 and R2, until this point. R1 RB-delivers messages from the
set msgsRB

a , while R2 RB-delivers messages from the set msgsRB
b . No other mes-

sages are delivered by either replica (due to the temporary network partition).
Subsequently replicas become passive (if msgsTOB

a ̸= ∅ or msgsTOB
b ̸= ∅, then

these messages remain pending).
Consider another execution represented by history H ′ = (E′, op′, rval ′, rb′,

ss ′, lvl ′) in which the network partition heals, and R1 RB-delivers all messages in
the set msgsRB

b , R2 RB-delivers all messages in the set msgsRB
a , R3 RB-delivers all

messages in both the sets msgsRB
a and msgsRB

b , and then a weak read operation
is invoked on R1 in the event e′c and a weak read operation is invoked on R2 in
the event e′d. By invisible reads and highly available operations, both replicas
remain passive and immediately return a response.

Claim 1. rval ′(e′c) = rval ′(e′d) = v, and v = ab or v = ba .
1A replica may TOB-cast some messages due to the invocation of a weak append operation,

but its correctness cannot depend on their delivery.
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Proof. We extend H ′ with infinitely many weak read invocations on each replica,
in events e′k, for k ≥ 1. Similarly to e′c and e′d, the read operations invoked in
each e′k return immediately and leave the replicas in the unmodified passive
state. Since none of the read operations generate any new messages, H ′ rep-
resents a fair infinite execution that satisfies all network properties of an asyn-
chronous run. Then, by our base assumption, there exists an abstract execution
A′ = (H ′, vis ′, ar ′, par ′), such that A′ |= BEC(weak ,Fseq).

Because R1 and R2 remain in the same state since the execution of e′c and
e′d, respectively, each read operation invoked in e′k on these replicas, returns the
same response as e′c or e′d, depending on which replica the given event was ex-
ecuted on. By EV(weak), the two updating events ea and eb have to be both
observed by infinitely many of the e′k events. Let e′p be one such event executed

on R1 and e′q be one such event executed on R2, then (ea
vis′−−→ e′p ∧ ea

vis′−−→

e′q ∧ eb
vis′−−→ e′p ∧ eb

vis′−−→ e′q). There is either: ea
ar ′−−→ eb, or eb

ar ′−−→ ea. Now, by
the definition of read-only operations we can exclude the RO operations from
the context of any operation without affecting the return value of all operations.
Thus Fseq(read(), context(A

′, e′p)) = Fseq(read(), context(A
′, e′q)) = v′ for some

v′. Because of RVAL(weak ,Fseq), rval ′(e′p) = v′ = rval ′(e′q). Therefore, all read
operations in H ′ return the same value v′, including the earliest ones e′c and e′d,
which means that v = v′. By the definition of Fseq , either v = ab or v = ba

(depending on whether ea
ar ′−−→ eb, or eb

ar ′−−→ ea).

Without loss of generality, let us assume that v obtained in the history H ′

equals ab. Let us return to our main history H . We extend it similarly to the way
we extended H ′, but we do not allow the network partition to heal completely.
Instead, we just let msgsRB

b to reach R1, which RB-delivers them exactly as in H ′.
Then, similarly to H ′, in H we invoke a weak read operation on R1 in an event
er.

Claim 2. In history H , rval(er) = v = ab.

Proof. Since R1 executes exactly the same steps in both H and H ′ up to the in-
vocation of er and e′c, respectively, and because replicas are deterministic, the
current state of R1 when executing er must be the same as it was in H ′ during
the execution of e′c. Thus, the return values of both operations are equal.

Let us now consider yet another execution represented by history H ′′ =

(E′′, op′′, rval ′′, rb′′, ss ′′, lvl ′′) which is obtained from our main execution H by
removing any steps executed by R1. The events executed on R2 and R3 remain
unchanged, since the replicas were all the time separated by a network parti-
tion, and no messages from R1 reached neither R2 nor R3. We let the network
partition heal. R1 RB-delivers messages from the set msgsRB

b , R3 RB-delivers
messages from both the sets msgsRB

a and msgsRB
b , all replicas TOB-deliver mes-

sages from the set msgsTOB
b , and afterward all replicas become passive.

We now extend H ′′ by infinitely many times applying the following proce-
dure (for k from 1 to infinity):
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1. invoke a strong read operation on R2 in the event e′′3k,

2. let R2 execute its steps until it becomes passive,

3. on each replica, RB-deliver and TOB-deliver all messages, respectively,
RB-cast or TOB-cast, by R2 in step 2,

4. let each replica reach a passive state,

5. invoke a weak read on R1 in the event e′′3k+1,

6. invoke a weak read on R3 in the event e′′3k+2.

The resulting execution is fair and satisfies all the network properties of a
stable run. Note that the strong read operations executed on R2 are not restricted
by invisible reads and thus may freely change the state of R2. Moreover, they
can cause R2 to RB-cast and TOB-cast messages. On the other hand, the weak
read operations executed on R1 and R3 are always executed on a passive state,
and leave the replica in the same state. Moreover, R1 and R3 do not RB-cast,
nor TOB-cast any messages. By non-blocking strong operations no strong read

operation may be pending in H ′′. This is so, because for each k, by step 4, there
is no pending message not yet TOB-delivered on R2, and R2 is in a passive state.

Claim 3. There exists an event e′′x ∈ E′′, with x = 3k for some natural k, such that
rval ′′(e′′x) = b.

Proof. By our base assumption, there exists an abstract execution A′′ = (H ′′, vis ′′,

ar ′′, par ′′), such that A′′ |= SINORD(strong) ∧ BEC(strong ,Fseq). Then, for each
k, by RVAL(strong ,Fseq), rval ′′(e′′3k) = Fseq(read(), context(A

′′, e′′3k)). Moreover,
because of EV(strong), eb needs to be observed from some point on by every e′′3k.

Thus, we let eb
vis′′−−→ e′′x. Since eb is the only append operation visible to e′′x (there

are no other append operations in A′′), by definition of Fseq , rval ′′(e′′x) = b.

Let us return to our main history H . Note that, when we restrict H and H ′′

only to events on R2, H constitutes a prefix of H ′′. Moreover, the state of R2 at
the end of H is the same as in H ′′ just before TOB-delivering messages from the
set msgsTOB

b (if any) and executing the first strong read operation. Firstly, we
allow the partition between R2 and R3 to heal (but R1 remains disconnected).
Then, we extend H in a few steps. We let R3 RB-deliver messages from the
set msgsRB

b . Next, we TOB-deliver on R2 and R3 the messages from the set
msgsTOB

b . Finally, we extend H with steps executed on R2 and R3 generated
using the repeated procedure for H ′′, for k from 1 to x

3 . We can freely omit
the steps executed on R1, since none of them influenced in any way the other
replicas (neither R2, nor R3, RB-deliver, nor TOB-deliver any message from R1).
Thus, there exists an event ex ∈ E executed on R2, an equivalent of the e′′x event
from H ′′, such that op(ex) = read(), lvl(ex) = strong and rval(ex) = b.

Finally, we allow the network partition to heal completely. R2 and R3

RB-deliver messages from the set msgsRB
a , and R1 RB-delivers and TOB-delivers

any outstanding messages generated by R2 (naturally, R1 TOB-delivers mes-
sages in the same order as R2 and R3 did). Then, we let the replicas reach a
passive state, and in order to make our constructed execution fair, we extend
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it with infinitely many weak read operations as we did with H ′. By our base
assumption, there exists an abstract execution A = (H, vis, ar , par), such that
A |= BEC(weak ,Fseq) ∧ SINORD(strong) ∧ BEC(strong ,Fseq). There are only
two append operations invoked in A in the events ea and eb. Since rval(er) = ab

(which we have established in Claim 2), by RVAL(weak ,Fseq) and the definition
of Fseq , it can be only that ea

ar−→ eb. We also know that rval(ex) = b (ex is a
strong read operation executed on R2), which means that eb

vis−−→ ex ∧ ea ̸ vis−−→ ex.
By SINORD(strong), eb

ar−→ ex ∧ ea ̸ ar−→ ex, and thus ex
ar−→ ea. Therefore, a cycle

forms in the total order relation ar : ea
ar−→ eb

ar−→ ex
ar−→ ea, a contradiction. This

concludes the proof.

Since from Theorem 5 we know that there exists an ACT specification (F ,

lvlmap) for which we cannot propose (even a specialized) implementation that
satisfies BEC(weak ,F), we can formulate a more general result about generic
ACTs:

Corollary 1. There does not exist a generic implementation that for an arbitrary ACT
specification (F , lvlmap) satisfies SINORD(strong) ∧ BEC(strong ,F) in stable runs,
and BEC(weak ,F) both in asynchronous, and in stable runs.

Theorem 5 shows that it is impossible to devise a system similar to Acute-
Bayou (for arbitrary F) but one that never admits temporary operation reorder-
ing (so satisfies BEC(weak ,F) instead of FEC(weak ,F)). Hence, admitting tem-
porary operation reordering is the inherent cost of mixing eventual and strong
consistency when we make no assumptions about the semantics of F . Naturally,
for certain replicated data types, such as FNNC , achieving both BEC(weak ,F)

and LIN(strong ,F) is possible, as we showed earlier with ANNC.
In the following section we discuss several approaches that avoid temporary

operation reordering, albeit at the cost of compromising fault-tolerance (e.g., by
requiring all replicas to be operational), or sacrificing high availability (e.g., by
forcing replicas to synchronize in order to complete weak operations).

4.1 Other solutions

We use ACTs as an abstraction to represent mixed-consistency systems. We have
specifically designed ACTs to hold the best features of both eventually consistent
and strongly consistent systems. However, not all mixed-consistency solutions
share the same characteristic. Thus, our impossibility result can be mitigated
when some of these desirable features are traded off. Below we discuss some
such solutions that can be found in the literature. We classify them in five broad
categories.
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4.1.1 Symmetric models with strong operations blocking upon
a single crash

We start with symmetric mixed-consistency models, i.e., models in which all
replicas can process both weak and strong operations and communicate directly
with each other (thus enabling processing of weak operations within network
partitions), but which either do not enable fully-fledged strong operations (there
is no stabilization of operation execution order) or require all replicas to synchro-
nize in order for a strong operation to complete. In turn, the way these models
bind the execution of weak and strong operations can be understood as an asym-
metric (1–n) variant of quorum-based synchronization. Hence, unlike in ACTs,
strong operations cannot complete if even a single replica cannot respond (due
to a machine or network failure), which is a major limitation.

Lazy Replication [54] features three operation levels: causal, forced (totally or-
dered with respect to one another) and immediate (totally ordered with respect
to all other operations). In this approach, it is possible that two replicas execute
a causal operation opc and a forced operation opf in different orders. Since opc
is required to commute with opf , replicas will converge to the same state. How-
ever, the user is never certain that even after the completion of opf , on some
other replica no weaker operation op′c will be executed prior to opf . Hence the
guarantees provided by forced operations are inadequate for certain use cases,
which require write stabilization, e.g., an auction system [30] (see also Chap-
ter 1). On the other hand, immediate operations offer stronger guarantees, but
their implementation is based on three-phase commit [90], and thus requires all
replicas to vote in order to proceed.

RedBlue consistency [35] extends Lazy Replication (with blue and red opera-
tions corresponding to the causal and forced ones), by allowing operations to be
split into (side-effect free) generator and (globally commutative) shadow opera-
tions. This greatly increases the number of operations which commute, but red
operations still do not guarantee write stabilization. To overcome this limita-
tion, RedBlue consistency was extended with programmer-defined partial order
restrictions over operations [36]. The proposed implementation, Olisipo, relies
on a counter-based system to synchronize conflicting operations. Synchroniza-
tion can be either symmetric (all potentially conflicting pairs of operations must
synchronize, which means that weak operations are not highly available any
more) or asymmetric (all replicas must be operational for strong operations to
complete).

The formal framework of [59] can be used to express various consistency
guarantees, including those of Lazy Replication and RedBlue consistency, but
not as strong as, e.g., linearizability. Conflicts resulting from operations that
do not commute are modelled through a set of tokens. On the other hand, in
explicit consistency [91], stronger consistency guarantees are modelled through
application-level invariants and can be achieved using multi-level locks (similar
to readers-writer locks from shared memory).

All models mentioned so far assume causal consistency (CC) as the base-
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line consistency criterion and thus do not account for weaker consistency guar-
antees, such as FEC or BEC, as our framework. CC is argued to be costly to
ensure in real-life [62], which makes our approach more general.

Finally, the model in [48] is similar to ours but treats strong operations as
fences (barriers). It means that all replicas must vote in order for a strong oper-
ation to complete.

Temporary operation reordering is not possible in the models discussed so
far. It is because they are either state-based (and thus their formalism abstracts
away from the operation return values which clients observe and interpret) and
feature no write stabilization, or they require all replicas to vote in order to pro-
cess strong operations (as explained in Section 2.2.6).

4.1.2 Symmetric Bayou-like models

In Section 2.2 we have already discussed the relationship between the seminal
Bayou protocol [44] and ACTs.

In eventually-serializable data service (ESDS) [76], operations are executed spec-
ulatively before they are stabilized, similarly to Bayou. However, ESDS addi-
tionally allows a programmer to attach to an operation an arbitrary causal con-
text that must be satisfied before the operation is executed. Zeno [92] is similar
to Bayou but has been designed to tolerate Byzantine failures.

All three systems (Bayou, ESDS, Zeno) are eventually consistent, but ensure
that eventually there exists a single serialization of all operations, and the client
may wait for a notification that certain operation was stabilized. Since these
systems enable an execution of arbitrarily complex operations (as ACTs), they
admit temporary operation reordering.

Several researchers attempted a formal analysis of the guarantees provided
by Bayou or systems similar to it. E.g., the authors of Zeno [92] describe its be-
haviour using I/O automata. In [93] the authors analyse Bayou and explain it
through a formal framework that is tailored to Bayou. Both of these approaches
are not as general as ours and do not enable comparison of the guarantees pro-
vided by other systems. Finally, the framework in [57] enables reasoning about
eventually consistent systems that enable speculative executions and rollbacks
and so also AcuteBayou. However, the framework does not formalize strong
consistency models, which means it is not suitable for our purposes.

4.1.3 Asymmetric models with cloud as a proxy

Contrary to our approach, the work described below assumes an asymmetric
model in which external clients maintain local copies of primary objects that
reside in a centralized (replicated) system, referred to as the cloud. Clients per-
form weak operations on local copies and only synchronize with the cloud lazily
or to complete strong operations. Since the cloud functions as a communication
proxy between the clients, when it is unavailable (e.g., due to failures of major-
ity of replicas or a partition), clients cannot observe even each others new weak
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operations. Hence, this approach is less flexible than ours. However, since the
cloud serves the role of a single source of truth, conflicts between concurrent up-
dates can be resolved before they are propagated to the clients, so temporary
operation reordering is not possible.

In cloud types [37], clients issue operations on replicated objects stored in the
local revision and occasionally synchronize with the main revision stored in the
cloud, in a way similar as in version control systems. The synchronization hap-
pens either eagerly or lazily, depending on the used mode of synchronization.
The authors use revision consistency [47] as the target correctness criterion. In a
subsequent work [38] a global sequence protocol (GSP) was introduced, which re-
fines the programming model of cloud types, and replaces revision consistency
with an abstract data model, as revisions and revision consistency were deemed
too complicated for non-expert users. Global sequence consistency (GSC) [94] is a
consistency model that generalizes GSP and a few other approaches that assume
external clients that either eagerly or lazily push or pull data from the cloud.

4.1.4 Asymmetric master-slave models

There are systems which relax strong consistency by allowing clients to read
stale data, either on demand (the client may forgo recency guarantees by choos-
ing a weak consistency level for an operation), or depending on the replica lo-
calization (in a geo-replicated system the client accessing the nearest replica can
read stale data that are pertinent to a different region). However, in such sys-
tems all updating operations (including the weak ones) must pass through the
primary server designated for each particular data item. Thus, similarly to the
asymmetric, cloud as a proxy models, in this approach weak operations are not
freely disseminated among the replicas. Since all updates (of a concrete data
item) are serialized by the primary, temporary operation reordering is not pos-
sible.

Examples of systems which follow this design and allow users to select an
appropriate consistency level include PNUTS [39], Pileus [40], and also the widely
popular contemporary cloud data stores, such as AmazonDB [31] and CosmosDB
[32]. Systems that guarantee strong consistency within a single site and causal
consistency between sites include Walter [95], COPS [86], Eiger [96] and Occult
[97].

4.1.5 Other approaches

Certain eventually consistent NoSQL data stores enable strongly consistent op-
erations on-demand. E.g., Riak allows some data to be kept in strongly consistent
buckets [34], which is a namespace completely separate from the one used for
data accessed in a regular, eventually-consistent way. But then, the data kept in
regular and strongly consistent buckets are completely isolated, which means
that Riak lacks any meaningful mixed-consistency semantics (we could as well
use two separate systems: one strongly consistent, one eventually consistent).



4.1 Other solutions 51

Apache Cassandra provides compare-and-set-like operations, called light-weight
transactions (LWTs) [33], which can be executed on any data, but the user is for-
bidden from executing weakly consistent updates on that data at the same time.
Concurrent updates and LWTs result in undefined behaviour [53], which means
that mixed-consistency semantics of LWTs can be considered broken.

Various SQL database management systems (DBMS) feature several isola-
tion levels, such as read uncommitted, read committed, repeatable read, snapshot
isolation and serializable [98, 99], which correspond to different sets of guaran-
tees on the types of phenomena that a transaction can witness when executing
concurrently with other transactions. Hence DBMS can be considered mixed-
consistency systems. However, these systems typically use extensive inter-replica
synchronization based on locks to provide the aforementioned guarantees, and
thus they are not highly available.

In Lynx [100] and Salt [101] mixed-consistency transactions are translated
into a chain of subtransactions, each committed at a different primary site. Thus
such transactions can block or raise an error if a specific site is unavailable.

Observable Atomic Consistency Protocol [102] is symmetric and supports strong
operations via synchronization based on distributed consensus. However, un-
like in ACTs, weak operations block when any strong operation is in progress,
thus are not highly available.

Systems based on escrow techniques [103] enable strongly consistent opera-
tions to be executed simultaneously with weak operations, albeit in a non-fault-
tolerant manner or by enforcing strong synchronization, at least within a single
data center, also for weak operations [104].

Recently some work has been published on the programming language per-
spective of mixed-consistency semantics. Since this research is not directly re-
lated to our work, we briefly discuss only a few papers. Correctables [105] are
abstractions similar to futures, that can be used to obtain multiple, incremental
views on the operation return value (e.g., a result of a speculative execution of
the operation and then the final return value). Correctables are used as an in-
terface for the modified variants of Apache Cassandra and ZooKeeper [106] (a
strongly consistent system). In MixT [41] each data item is marked with a con-
sistency level that will be used upon access. A transaction that accesses data
marked with different consistency levels is split into multiple independently ex-
ecuted subtransactions, each corresponding to a concrete consistency level. The
compilation-time code-level verification ensures that operations performed on
data marked with weaker consistency levels do not influence the operations on
data marked with stronger consistency levels. Understandably, the execution
of a mixed-level transaction can be blocking. Finally, in [42] the authors advo-
cate the use of the release-acquire semantics (adapted from low-level concurrent
programming) and propose Kite, a mixed-consistency key-value store utilizing
this consistency model. In Kite weak read operations occasionally require inter-
replica synchronization and thus block on network communication, thus they
are not highly available.





5
Explicit failures modelling

In this chapter we extend the system model and provide a new formal frame-
work, which allow us to formally study the correctness of highly available sys-
tems in the presence of failures. We begin with a simple example that justifes
our approach.

5.1 Motivations and an example

Consider a simple system, in which each replica runs an implementation of
a last-write-wins register Freg (also called an epidemic register [49]; see the repli-
cated data type specification in Figure 3.2, and the pseudocode in Algorithm 5).
Clearly, the presented implementation is highly available as each replica re-
sponds to a client request immediately, without waiting for communication with
other replicas. Every replica of the system has a copy of the register and allows
clients to invoke two operations: write(v), which stores a new value v in the reg-
ister, and read(), which returns the current value of the register. When a replica’s
state changes, it sends a message to other replicas, so they can update their state
accordingly. In order to guarantee that eventually the replicas converge to the
same state, the replicas use timestamps and the last-write-wins policy [64]. More
precisely, when write(v) is invoked on some replica Ri (line 5), the replica saves
v in its copy of the register, together with a unique timestamp that comprises of a
logical clock [15] and Ri’s identifier (line 12). Then Ri uses best-effort broadcast
[107] to distribute v and the timestamp among other replicas (line 7). A replica
updates its copy of the register only if the received timestamp is greater than
the one corresponding to the current value stored by the replica (line 13). Many
existing NoSQL data stores, such as Apache Cassandra (in its default configura-
tion) [21] rely on a similar principle of operation.

It is easy to see that when neither replica crashes nor network splits are pos-
sible, this implementation indeed ensures eventual consistency, as defined by
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Algorithm 5 Naïve Single Distributed Register Protocol for replica Ri

1: struct RegRec(clock : integer, rid : integer, value : Value)
2: operator <(o : RegRec, o′ : RegRec)
3: return (o.clock < o′.clock) ∨ (o.clock = o′.clock ∧ o.rid < o′.rid)

4: var myReg : RegRec
5: upon invoke write(value : Value)
6: myReg = RegRec(myReg .clock + 1, i, value)
7: BE-castmyReg
8: return ok to client
9: upon invoke read ()

10: return myReg .value to client
11: upon BE-deliver(update : RegRec)
12: if myReg < update then
13: myReg = update
14: // BE-cast update // protocol fix

Vogels [19]: when updates cease eventually all read() operations return the same
value. Formally one could show that the implementation ensures BEC. How-
ever, as clearly follows from the executions in Figure 5.1, when replica crashes
(top execution) or network splits (bottom example) are possible, the implemen-
tation no longer satisfies even the simple Vogels’ definition of eventual consis-
tency (not even for each network partition considered separately). In order to
facilitate correct (intended by the programmer) behaviour when failures can oc-
cur some additional logic is necessary in the form of an anti-entropy protocol.
In our example a replica could simply forward the received messages when ap-
plying the update, thus achieving reliable broadcast [107] for the update messages
(see the fix in line 14). It is easy to see that the fix neither impacts safety (nothing
bad ever happens) nor liveness (eventually something good happens) guarantees [67]
[68] of the protocol when considering only failure free runs (the two versions,
with and without the fix, are indistinguishable from the perspective of the clients,
when no failures occur). However, when even a single failure might happen, the
two versions of the protocol behave in a very different manner. More precisely,
in all cases both versions satisfy the safety requirements (the reads return some
correct values written earlier), but in spite of failures only the latter one satisfies
the liveness requirements (convergence of the returned values).1

Our simple example showcases just two of many possible failure scenarios
that need to be considered in order to ensure the protocol works as intended in
real-life environments where failures are to be expected. The correctness anal-
ysis of such systems is further complicated when external clients, which can be
mobile or stateless, are accounted for. Popular eventually consistent systems
that we are aware of do feature various anti-entropy mechanisms that prevent
them from exhibiting anomalies depicted in Figure 5.1. The framework intro-
duced in this chapter allows us to formally study the correctness of highly avail-

1Note that if a system satisfies some safety guarantee in all failure-free runs, it can be shown
that the system satisfies the guarantee also when failures do occur. It is because in finite executions
crashed nodes are indistinguishable from very slow ones and network splits are indistinguishable
from occurances of temporary communication delays. The same, however, does not hold for live-
ness guarantees, which can be violated only in infinite executions. Moreover, defining meaningful
liveness guarantees that hold when failures occur is non-trivial.
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R1

R2

R3

R4

read() → 3 read() → 3 read() → 3

write(3) → ok read() → 5 read() → 5

read() → 5 read() → 5

write(5) → ok

...

...

...

R1

R2

R3

R4

read() → 3 read() → 5 read() → 5

write(3) → ok read() → 3 read() → 3

read() → 5 read() → 5

read() → 5 read() → 5

write(5) → ok

...

...

...

...

Figure 5.1: Example executions of a system implementing Algorithm 5.
Solid arrows originating in events (dots) represent sent messages. Top
execution: eventual transmission of a message is guaranteed only for
the three correct (never crashed) processes. A crash of R4 leads to in-
consistent states of replicas. Bottom execution: a network split between
R = {R1, R2} and R′ = {R3, R4} (depicted using a wavy line) results in
inconsistent states of replicas in R.

able systems and, in particular, detect defects, such as as the one in Algorithm 5.

5.2 System model

Since our goal is to realistically model highly available systems facing failures,
our approach somewhat deviates from the classic one. We consider a system
consisting of service replicas (or simply replicas), connected via an asynchronous
network, and external clients, which are routed to the replicas through load bal-
ancers. The key feature of our model is that a client’s requests cannot be guaran-
teed to be always routed to the same replica. Below we outline our assumptions
together with rationales behind them.

5.2.1 Replicas

Replicas form a set R = {R1, R2, ..., Rn}, which can be divided into disjoint
subsets G1, G2, ..., called partition groups. The groups represent sets of replicas
located physically close to each other, e.g. in the same region, datacenter, or
within the same availability zone inside of a datacenter (the significance of this
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division will be discussed later). Replicas communicate with each other solely
through message passing. Each replica has access to its own volatile memory as
well as stable storage.2 Data stored in the latter survive crashes and can be used
by the replica for recovery. The replicas issue regular or synchronous writes to
stable storage. Both kinds of writes can be interrupted by a crash, however the
latter blocks the code execution on the replica until the written data is guaran-
teed to be persisted. For simplicity we assume full replication of application
data (each replica holds all data necessary to serve any particular request). We
later discuss an extension to a partial replication setting.

We consider three replica failure models: the no-crash (NC) model, in which no
replica ever crashes, the crash-stop (CS) model, in which a replica can crash by
stopping execution and ceasing all communication but never recovers, and the
crash-recovery (CR) model, in which a replica can recover after crash by using,
e.g., the data saved in its stable storage. In the CR model we discern between
transient and fatal failures: after the latter one a replica never recovers. A hard-
ware failure that causes permanent restarts that prevent the replica from com-
pleting any meaningful computation is also treated as a fatal failure. Formally,
a replica that never crashes or experiences a finite number of (transient) failures
is correct, otherwise it is faulty. Any number of replicas can be faulty. We ex-
pect the system to remain available (1) even if only a single replica is correct,
and (2) in the case of sticky clients (explained later), if only a single replica in
each partition group is correct. Once a replica receives a client request it starts
to execute it, and unless the replica subsequently crashes, it returns a response
without waiting for any external events.

We make no assumptions on relative speeds of the replicas and we assume
no bounds on replica clocks skew. We consider fair infinite executions: each cor-
rect replica executes an infinite number of steps of the implemented algorithm
and receives a never ending stream of client requests.

5.2.2 Clients

Clients are the abstractions through which users interact with the system, and
which are responsible for passing user requests (possibly with some metadata)
to the replicas in an appropriate format.3 A client issues a single request at a
time. A series of requests issued by a client forms a session. Sessions allow us
to track potential dependencies between requests issued by the same user of
the system. Clients may be stateful, or stateless. In particular a stateful client
may represent, e.g., a desktop application maintaining a stable connection with
the system. On the other hand, a stateless client may represent an application
that cannot store state by design (e.g., due to performance considerations), or
because of technical limitations (e.g., a web app in a browser with local storage
and cookies disabled). A client may also loose state when the user’s device is

2Stable storage may comprise of any technology which allows the replicas to persist data, such
as HDDs, SSDs, or non-volatile/persistent memory (NVM/PM) [70].

3A client may also be used by another service. In that case, the service is the user of the system.
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restarted without saving the state to stable storage, or when the user switches
devices during a session.

In a classic replicated system model (e.g. [60]) all participating processes are
equal, and there is no distinction between replicas and clients, or the clients are
deemed to reside on the same physical nodes as the replicas and always com-
municate only with the local replica. In the system model in Section 2.4.1 we
considered clients to be external to replicas, but we did not elaborate any fur-
ther about their properties. Such treatment of clients was sufficient since we
abstracted away from persistent communication blockages as well as we did
not consider client-side guarantees based on sessions (session guarantees). On
the other hand, in this chapter we elect to represent clients as external, com-
pletely independent entities to better reflect the client-server architecture used
in practice. Moreover, such an approach has important consequences from the
correctness point of view when client-side guarantees are considered. E.g., it
is known that causal consistency is achievable in highly available systems in
the classic model, whereas it is not achievable with external clients [108]. It is so
even when the clients are stateful and cache all their requests and responses.4 To
achieve such guarantees clients would need to continously exchange informa-
tion with replicas and other clients about other clients’ requests, which would
render them full replicas and which is impractical. Moreover, a client may not
be able to maintain permanent connections with other processes.

We distinguish mobile and sticky clients. Mobile clients may issue their re-
quests to any of the replicas from R. On the other hand, sticky clients are asso-
ciated with a single partition group Gi and issue their requests only to replicas
from Gi. Our notion of sticky clients is different than in other works (e.g. [109]),
where a sticky client issues all requests always to exactly the same replica. We
discuss this difference below.

5.2.3 Clients – replicas interactions

Although a client issues only a single request at a time, when the replica does
not respond fast enough the request may timeout allowing the client to issue
the same request again to a different replica. Such a mechanism is necessary in a
failure prone environment because otherwise, in case of a fatal crash of a replica,
the client would remain blocked, which is against the spirit of high availability.5

This is one of the reasons why we exclude from this model a notion of sticky
clients which always connect to the same replica.

In practical replicated systems client requests are routed to the replicas
through (hardware or software) load balancers, which are either external (load
balancing through external DNS servers) or internal (dedicated devices or repli-
cas themselves balance the load). The load balancers can be stateless (treating

4The same applies to some combinations of eventual consistency and the four classic session
guarantees [44], and when the clients are stateless none of the classic session guarantees can be
achieved.

5To satisfy high availability as defined in [18], [110] or [49], only correct replicas need to even-
tually respond, and clients connected to a crashed replica may remain blocked infinitely.
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each request independently and assigning the requests to replicas in round-
robin fashion), or stateful (maintaining information about client connections and
routing requests of a given client always to the same replica). In general, state-
ful load balancing only works if the client maintains a stable connection with the
system, but even then there is a problem with this scheme: the load balancers
themselves may crash and lose state, or become unavailable. Thus, it is impos-
sible in a highly available system to guarantee that every request from the same
session reaches the same replica.6 In practice, load balancing is often stateless
by default and no attempt is made to route all requests within a session to the
same replica (e.g., this is the case in Apache Cassandra [21], where replicas serve
as the load balancers). This is the second reason why we exclude the notion of
sticky clients issuing all requests to the same replica. We model load balancers
only implicitly by their effect on request routing – i.e., the lack of control on the
client side which replica will serve the issued request.7

However, we do discern between mobile, completely unbounded clients
and sticky clients, which always connect to the same group of replicas, e.g.
from the same geographical region. Such behaviour can be achieved by geo-
sensitive load-balancing under the assumption that users do not cross geograph-
ical boundaries.

Let us now discuss a possible extension of the model to accommodate par-
tial replication. If only certain replicas hold the necessary data to serve a spe-
cific request, then load balancing needs to take this fact into account. This can
be achieved statelessly by utilizing consistent hashing [111] [20]. However, care
needs to be taken with partial replication, because in each partition group Gi

at least a single replica must hold the relevant data for each request. Moreover,
since the single replica could crash, multiple replicas are required. Even then,
the system is less resilient than a fully replicated one (which can tolerate up to
n− 1 faulty replicas and remain available) and requires additional assumptions
about failure patterns and the maximum allowed number of faulty replicas.

5.2.4 Network properties

We have so far strayed away from the network properties. In a typical asyn-
chronous system model it is assumed that fair-loss links are available [107],
which means that certain messages may be lost, but by utilizing stubborn re-
transmission it is possible to eventually contact every process. On the other
hand, in the CAP conjecture [18] [110] a network is allowed to lose arbitrarily
many messages. Thus, in the former approach only temporary network splits
(or partitionings) can be modelled, whereas in the latter permanent network
partitionings are also possible.

6Note that if the load balancers use a replicated state machine [55] and a consensus protocol to
maintain the client connections data, then such an approach is not highly available. It is because
before routing a new client’s request to a replica, the load balancer would have to first consult
other load balancers, and would block during a network split.

7More precisely, the system may try to route all requests from the same session to the same
replica by maintaining stable client-replica connections, but there is no guarantee that this will
succeed.
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Note that, as we discuss in Section 2.2.5, with only temporary network splits,
replicas might wait for any split to heal and communicate with each other before
responding to a client request. In the system model in Section 2.4.1 we assume
the existence of fair-loss links, and thus we admit only temporary network splits.
However, we define high availability differently than in CAP. We formalize it as
a replica design property (in a similar way as in [49, 58, 60]), which means a
replica must be designed in such a way so as not to depend on communication
with other replicas to generate a response to a client request. Thus, the impossi-
bility postulated by CAP still holds. Still, distinguishing between the two types
of network splits (temporary and permanent) can be useful as we discuss below.

Although in practice network splits are rare, they do occur, as shown by sev-
eral studies that quantify network reliability in a rigorous manner [112] [113]
[114] [115] (see also [109] for discussion on some high-profile cases). While most
network failures are short-lived, some can take hours to resolve. Network splits
may be caused by hardware failures or software issues, such as misconfigura-
tions. The split may occur between datacenters or within a datacenter. In reality,
network failure patterns can be complex. E.g., partial partitionings [115] [116] oc-
cur, in which two groups of replicas cannot communicate with each other, but
are otherwise reachable from a third group of replicas (or by external clients).

We choose to model short-lived and long-lived network splits separately,
as temporary and permanent, respectively. Even a single message loss can be
considered a very short-lived network split. As systems are designed to cope
with such minor failures, we classify a network split as temporary if its duration
is short enough not to break any liveness expectations of the users. On the other
hand, when the downtime caused by a network split is long enough to adversely
affect client sessions (users’ experience is compromised and as a result users
decide to finish their sessions early), we classify the split as permanent (from
the perspective of the interrupted session the split seems to last forever).

Thus, we consider the following two network failure models: the temporary
network partitionings (TNP) model and the permanent network partitionings (PNP)
model. The former corresponds to fair-loss links [107], while the latter is similar
to the model assumed in the CAP conjecture, in which arbitrarily many mes-
sages can be lost. In the PNP model the set R of replicas can be divided into
disjoint sets of replicas, P1, P2, ..., Pk, called partitions (or final network partitions).
Replicas within a single partition maintain fair-loss links with each other. On
the other hand, communication between replicas from different partitions may
be possible for some time, but from some point on all messages will be lost.
Thus, partitions represent the final state of connectivity between replicas in the
limit at infinity.

The replicas may utilize point-to-point communications, as well as any other
communication primitives that can be built upon them, such as best-effort broad-
cast, reliable broadcast, etc. (taking into account the limitations in connectivity
between replicas). On the other hand, the replicas may not use communication
primitives that require solving distributed consensus, such as total order broad-
cast.
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When considering sticky clients which always connect to a specific partition
group Gi, in the PNP model we assume that there exists Pj , such that Gi ⊆ Pj .
In other words, network partitionings do not cross partition groups. Thus, if we
define partition groups to represent separate datacenters, we model network
splits between datacenters, but not inside of them. Then, the model allows us to
compare guarantees provided to (1) clients that switch between replicas which
cannot communicate with each other (mobile clients), and (2) clients that stick to
replicas which can communicate with each other, but not with the rest of replicas
(sticky clients).8 Also, we assume that within each partition group Gi there is at
least a single correct replica reachable by external clients.

5.2.5 Summary

By having three replica failure models and two network failure models, in total
we consider six failure models: NC-TNP, NC-PNP, CS-TNP, CS-PNP, CR-TNP, CR-
PNP. Additionally, we separately consider mobile and sticky, as well as stateful
and stateless, clients.

5.3 Formal framework

Below we provide the formal framework that allows us to reason about correct-
ness of highly available systems in executions in which failures occur. In a sim-
ilar way as in Section 3 we extend the framework by Burckhardt et al. [48, 49].
To avoid repetition we cover below only the parts unique to this framework and
we refer to Section 3 for common elements and preliminary definitions, such as
e.g. event graphs.

5.3.1 Histories

To facilitate reasoning about failures we need to introduce two major changes to
the way we represent execution histories. Firstly, we add the information about
failures. Note that, a history represents a high-level view of a system as per-
ceived by the clients. While the failures are not directly observable by clients,9

we rely on this information to formalize the expected behaviour of the system.
Secondly, we augment the way we represent client sessions to reflect their more
complicated nature (such as timeouts on operations issued by clients). Instead
of the same session equivalence relation ss , we utilize session order so, in which we
allow a limited degree of branching to occur.10 We also drop the lvl function, as

8If network splits can occur, e.g., between datacenters and inside of a datacenter, but not within
a rack of servers, partition groups need to be adequately defined. On the other hand, if in this
scenario certain clients are sticky at the regional or datacenter level, but not at the rack level, they
need to be treated as mobile, and not sticky.

9E.g., a timeout on a client’s operation does not necessarily result from a replica failure.
10Thus, so is more complex than simple intersection of returns-before and same session (rb ∩ ss).
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mixed-consistency semantics is orthogonal to the failure modelling we pursue
in this chapter.

Formally, a history is an event graph H = (E, op, rval , rb, so, sp, crash), where:

• op : E → Operations , specifies the operation invoked in a particular event,
e.g., op(e) = write(3),

• rval : E → Values∪{∇}, specifies the value returned by the operation, e.g.,
rval(e) = 3, or rval(e′) = ∇, if the operation never returns (e′ is pending in
H),

• rb, the returns-before relation, is a natural partial order over E, which spec-
ifies the ordering of non-overlapping operations (one operation returns be-
fore the other starts, in real-time),

• so, the session order relation, is a natural partial order over E, which speci-
fies the ordering of operations executed within the same session,

• sp, the same-partition relation, is an equivalence relation, which groups
events according to the final network partition in which they occurred,

• crash : E → {true, false}, specifies if a particular event was executed on a
replica that subsequently crashed (true), or not (false).

Note that, for some event e ∈ E, crash(e) = true does not mean that, the
replica on which e was executed, crashed during, or immediately after, the ex-
ecution of e. Similarly, for any two events a, b ∈ E, a ̸≈sp b does not mean that
replicas, which executed a and b, could not communicate with each other at the
time these events were executed; the final permanent network split that sepa-
rated the replicas might have happened later. Our definition of a history does
not include the information about which event was executed on which replica.
We rather give only indirect information, regarding which network partition
was the replica located in, and whether the replica subsequently crashed or not.

Since replicas may crash shortly after receiving a request, just before the re-
quest is executed, or before the response is returned to the client, we need to
consider a few edge cases. rval(e) ̸= ∇ means the response was generated by
the replica, but this is fact is independent of whether the response was actually
received by the client or not (e.g., because the message carrying the response
was dropped and the replica did not retransmit it due to a crash, or because the
client already issued the request to a different replica and was no longer inter-
ested in the response). On the other hand, rval(e) = ∇ means that the replica
has already started processing the operation, perhaps sending some messages
to other replicas, but did not manage to produce any output (e.g., because of a
crash). Finally, if a client sent a request, but the replica never received it, then
there is no e ∈ E pertaining to this particular request. Consecutive operations is-
sued by the same client are ordered by the session order relation. If an operation
timeouts, and the client issues the operation to another replica, there can be two
concurrent operations within the same session, but the former one is abandoned
and forms a dead-end, i.e., it is not followed by further operations in the session
order.
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We consider only well-formed histories, for which the following holds:

• if |E| ≮ ∞, then ∀e ∈ E : (¬crash(e) ⇒ rval(e) ̸= ∇) (in infinite executions
replicas, which do not crash, eventually respond),

• ∀a, b ∈ E : (a
rb−→ b ⇒ rval(a) ̸= ∇) (a pending operation does not return),

• ∀a, b, c, d ∈ E : (a
rb−→ b ∧ c

rb−→ d) ⇒ (a
rb−→ d ∨ c

rb−→ b) (rb is an interval
order, i.e. it is consistent with a timeline interpretation where operations
correspond to segments [49] [89]),

• so ⊆ rb (session order respects the returns-before order; a client issues a
request only when the previous one has finished),

• for all e ∈ E, the set so−1(e) is well ordered by the relation so (so is a union
of trees),

• ∀a, b, c ∈ E : (a
so−→ b ∧ a

so−→ c) ⇒ (op(b) = op(c) ∧ (so(b) = ∅ ∨ so(c) = ∅))
(there is only limited branching in so due to timeouts),

• ∀a, b, c ∈ E : (a
so−→ b ∧ a

so−→ c ∧ so(b) = ∅ ∧ so(c) ̸= ∅) ⇒ (c ̸ rb−→ b) (a client
issues a request again only if it has abandoned the previous attempt),

• |/ ≈sp | < ∞ (there is only a finite number of permanent network parti-
tions).

5.3.2 Abstract executions

In accordance to the changes we applied to histories, we also modify abstract
executions (we add sp relation and crash function, but we drop the irrelevant in
this context par ).

An abstract execution is an event graph A = (E, op, rval , rb, so, sp, crash,

vis, ar), such that (E, op, rval , rb, so, sp, crash) is some history H , vis is an acyclic
and natural relation, and ar is a total order relation. For brevity, we often use
a shorter notation A = (H, vis, ar) and let H(A) = H . The meaning of visibility
(vis) and arbitration (ar ) relations is the same as in Section 3.3.

5.3.3 Correctness predicates and replicated data type

We retain all the defintions pertaining to correctness predicates and replicated
data types from the Sections 3.4 and 3.5 adjusted to the new definitions of his-
tories and abstract executions. Specifically, the operation context is still a four
element tuple which lacks return values, the returns-before relation, the infor-
mation about sessions, and now it also lacks information about failures as well.

5.3.4 Basic eventual consistency

We now revisit the definition of basic eventual consistency (BEC) from Section 3.7.2
and adapt it to the new framework (other correctness criteria can be adapted
analogously). We assume some abstract execution A = (E, op, rval , rb, so, sp,

crash, vis, ar).
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Recall that BEC consists of three simple requirements:

BEC(F)
def
= EV ∧ NCC ∧ RVAL(F)

The first requirement is the eventual visibility (EV) of events. The regular
variant of EV requires that for any operation executed in an event e ∈ E, there
is only a finite number of events in E that do not observe e. Due to replica
crashes some operations may become pending, which means that the executing
replicas did not manage to produce return values before a crash. Then, for such
an operation executed in an event e, rval(e) = ∇ even in an infinite history.
Since the return value was not passed to the client it is not necessary to require
the eventual visibility of this particular event e. On the other hand, it may be that
before the crash the replica managed to share the information about the pending
operation issued in e with some other replicas (in that case e may become visible
to other events). To enforce convergence we require that once such an event e
becomes visible to some other events eventually it has to become visible to all
subsequent ones from some point on. Thus, the adapted definition of EV is
formulated as follows:

EV def
= ∀e ∈ E :

(
(rval(e) ̸= ∇∨vis(e) ̸= ∅) ⇒ |{e′ ∈ E : e

rb−→ e′∧e ̸ vis−−→ e′}| < ∞
)

The second requirement concerns avoiding circular causality. We define the

auxiliary happens-before relation as before: hb def
= (so∪vis)+ (the transitive closure

of session order and visibility), using the revised definition of so. We simply
require no circular causality:

NCC def
= acyclic(hb)

Finally, we specify return value consistency (RVAL). In the adapted version
we release the pending operations from the obligation to return a value that
can be explained using the specification of the replicated data type F and the
operation’s context:

RVAL(F)
def
= ∀e ∈ E :

(
rval(e) ̸= ∇ ⇒ rval(e) = F(op(e), context(A, e))

)
BEC, as the name suggests, provides only very basic guarantees. It treats

each operation independently, so it can be described as client session agnostic.
If a client issues two operations op and op′, op does not need to be visible to
op′. Moreover, op (and op′) might be visible to some subsequent operations, and
then not be visible again. BEC only requires that after some time, there will be
no more operations which fail to observe op (and op′). This mimics how state-
less clients, switching between different replicas, may observe the incomplete
process of update propagation. Even though BEC is such a weak correctness
criterion, as we later show in Chapter 7, it cannot be satisfied when failures oc-
cur (even with the adaptations discussed above). Thus, it adequately captures
the guarantees provided by eventually consistent systems only in the best case,
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failure-free scenarios.



6
Client-side guarantees

In this chapter we discuss additional client-side guarantees called session guaran-
tees. The four classic session guarantees [66] facilitate an intuitive and pragmatic
programming model that builds on top of basic eventual consistency. Assum-
ing some abstract execution A = (E, op, rval , rb, so, sp, crash, vis, ar), they can
be expressed in our model as:

1. read your writes: RYW def
= so ⊆ vis

2. monotonic reads: MR def
= (vis; so) ⊆ vis

3. monotonic writes: MW def
= MWA ∧ MWV, where

• monotonic writes in arbitration: MWA def
= so ⊆ ar

• monotonic writes in visibility: MWV def
= (so; vis) ⊆ vis

4. writes follow reads: WFR def
= WFRA ∧ WFRV, where

• writes follow reads in arbitration: WFRA def
= (vis; so∗) ⊆ ar

• writes follow reads in visibility: WFRV def
= (vis; so∗; vis) ⊆ vis

System architects typically optimize for read your writes (RYW) and monotonic
reads (MR), as these are mostly anticipated by the users [117]. Thus, we mostly
focus on these two session guarantees. RYW guarantees that each event e is
visible to events that follow e in the same session. MR guarantees that events
which are visible to any event e are also visible to events that follow e in the
same session.

Unfortunately, as we have discussed in Section 5.2, in highly available sys-
tems classic session guarantees are difficult to provide (and cannot be provided
altogether when the clients are stateless). Moreover, it is debatable just how im-
portant such guarantees are to the users and system architects. E.g., MR is usu-
ally described as important in the context of a webmail client: whenever a user
has seen an email in their inbox, after a page refresh the email should not dis-
appear. However, as common experience teaches us, the mainstream webmail
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clients often forgo this guarantee and it is possible for a once visible message to
become temporarily not available. On the other hand, it is imperative that if a
message was once seen, that it eventually becomes visible, which is exactly the
guarantee that BEC provides. In Section 7.1 we provide variants of RYW and
MR that are ensured only eventually, called eventual session guarantees.

6.1 Context preservation

Although eventual session guarantees (implied by BEC) seem attractive, as they
can be provided easily with stateless clients, they are not always sufficient for
certain replicated data types, as we discuss below.

Let us start by considering a system that implements an observed-remove
set (OR-set; see the specification of Forset in Figure 3.2). An OR-set functions
like a regular set but binds the remove() operations with the read() operations,
so that a client can remove only those elements from the set, which it has ob-
served. This way the client cannot accidentally remove elements that were con-
currently added by other clients. Assume that a client received x in a response to
a read() operation (read() → S and x ∈ S) and then attempts to remove it. If the
read() and remove(x) operations issued by the client are executed by two differ-
ent replicas Ri and Rj , it might happen that the operation add(x) that added x

to the OR-set was visible to read(), but not to remove(x) (Rj has not yet received
the relevant update message). Then remove(x) will take no effect (because ac-
cording to the specification of Forset only observed elements can be removed).
Thus, without some form of a session guarantee the use of an OR-set leads to
unintended behaviour of the system. In practice, this problem can be easily
solved using client state. All elements added to the set can be tagged with some
unique identifier. These identifiers are returned as metadata in read() operations
and stored as part of the client’s state. When a client issues a remove(x) opera-
tion, it passes x’s identifier to the executing replica, which thus learns about x’s
existence (the add(x) operation becomes visible to the remove(x) operation).

This problem is even more evident in case of a system that implements a
multi-value register (MVR; see the specification of FMVR in Figure 3.2 and the
example systems Dynamo [20] and Riak [23]). Unlike in a typical register, in
an MVR concurrent write() operations do not lead to a race condition. Instead,
all values written concurrently (called siblings in Riak) are stored in the MVR
and are returned to the client as a set in a read() operation. A write() operation
that follows a read() operation logically overwrites all siblings returned in read(),
thus resolving the conflicts resulting from previous concurrent write() opera-
tions. Clearly, a stateless client cannot bind the invocation of read() and write()

operations on an MVR and each write() creates a new sibling. Again some form
of a session guarantee is necessary so an MVR can be used as intended. Such a
session guarantee requires client state for metadata storage.1

1Such metadata can be efficiently maintained by using, e.g., dotted version vectors [80] [118],
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Interestingly not always more is better: if a system provides classic session
guarantees (or causal consistency), unintended behaviour may also ensue. Con-
sider a system that, similarly to Dynamo and Riak, implements multiple MVR
registers (a key-value store with MVRs as values), and an abstract execution
A = (E, op, rval , rb, so, sp, crash, vis, ar) in which two clients concurrently issue
operations regarding registers x and y. The first client issues a following chain
of operations: read(x) → {u}, read(y) → {v}, write(x, u′), in events e1, e2 and
e3, respectively (which means, e.g., that op(e1) = read(x) and rval(e1) = {u}).
The second client issues: read(x) → {u}, write(x, u′′), in events e4 and e5. Both
clients read u from x and want to overwrite it with a different value. Now, if e5
occurs before e2, it is possible that e5

vis−−→ e2. This does not influence the return
value in e2, but the first client may obtain metadata that include information
about u′′ in x. Then, if MR is to be satisfied, e5

vis−−→ e3 must hold. Thus, the write
of u′ to x will overwrite not only u, but also u′′, and subsequent reads on x will
return {u′} instead of the intended {u′, u′′}.

Clearly, the relative visibility of events in case of an MVR needs to be care-
fully managed. The set of writes visible to some other write must correspond
exactly to the writes that were visible to the previous read executed in the same
session (and when considering multiple MVRs, on the same register). If addi-
tional writes are visible, they will be errorneously overwritten, and if insufficient
writes are visible, unncessary siblings will be created. Assuming some abstract
execution A = (E, op, rval , rb, so, sp, crash, vis, ar), we can express this require-
ment through a new predicate that we call context preservation (CP):

CP(FMVR)
def
= ∀e, e′ ∈ E, v ∈ Values :

(op(e) = read ∧ op(e′) = write(v) ∧ e
so−→ e′

∧ ̸ ∃e′′ ∈ E :
(
op(e′′) = read ∧ e

so−→ e′′
so−→ e′

)
⇒ vis−1(e′) = vis−1(e) ∪ {e})

CP(FMVR) explicitly defines the set of events visible to a write() operation as the
set of events visible to the most recent read() operation performed by the same
client, as well as the read() operation itself. CP is incomparable with classic ses-
sion guarantees (it is neither stronger, nor weaker). Note that slightly different
definitions of CP are needed, e.g., for a key-value store of multiple MVRs, or
an OR-set. Additionally, observe that for certain data types, no such guarantee
is necessary. E.g., in a distributed last-write-wins register (see the specification
of Freg in Figure 3.2, and the implementation in Algorithm 5) all operations are
independent and concurrency is never exposed to the client. Thus, an last-write-
wins register can work correctly with stateless clients.

as in Riak.





7
Correctness in the face of failures

In this chapter we present a formal analysis of the behaviour of highly available
replicated systems in the presence of failures. In Section 5.3.4 we have discussed
that BEC is indeed a very weak correctness criterion. It may come as a surprise,
then, that BEC is too strong to be satisfied when failures occur, as we discuss
below. We also define correctness criteria that can be satisfied in a failure-prone
environment, and then we show how to mitigate some of the undesired phe-
nomena that are present in certain failure models.

For our discussion we assume some arbitrary system implementing a non-
trivial replicated data type F , i.e., F features at least one read-only operation,
and one updating operation, which is detectable through the read-only operation.
Formally, assuming some abstract execution A = (E, op, rval , rb, so, sp, crash,

vis, ar):

∃opr ∈ readonlyops(F), opu ∈ updateops(F), e ∈ E :

(op(e) = opu ∧ F(opr, (∅, op, vis, ar)) ̸= F(opr, ({e}, op, vis, ar)))

All practical types (including the ones in Figure 3.2) are non-trivial.

7.1 Network partitions and state convergence

We begin with the simple case of permanent network partitions and assume
that every replica is correct and no crashes occur (the NC-PNP model). Recall
the example from Section 5.1. Clearly, the implementation of a register provided
in Algorithm 5 does not guarantee eventual visibility (EV) in case of network
splits. Hence, it does not ensure system-wide state convergence as well, even
with the proposed fix in line 14. The fix allows the replicas to converge within
each network partition, but still some events executed within one (final) network
partition will never become visible to events in other network partitions. Thus,
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Algorithm 5 does not satisfy EV and, in consequence, also BEC(Freg). A similar
argument can be made for any system implementing a non-trivial replicated
data type F (we include CS-PNP and CR-PNP models for completeness):

Theorem 6. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP models, it
is impossible to implement a highly available system that satisfies BEC(F).

Proof. We conduct the proof by contradiction. Consider a system featuring two
replicas R1, R2 and an execution with a network split that separates the two
replicas from the very beginning. Client c1 connects to R1, while client c2 con-
nects to R2. Firstly, c1 issues an updating operation opu. Then, both c1 and c2,
take turns to issue in a continuous fashion a series of read-only operations opr,
such that opu is detectable through opr (c1 issues operations on R1, c2 issues
operations on R2). Since no crashes occur, each invoked operation returns a re-
sponse to the appropriate client. Let us call the depicted scenario the history
H = (E, op, rval , rb, so, sp, crash). If the system satisfies BEC(F), then there
exists an abstract execution A = (H, vis, ar), that satisfies BEC(F).

There is a single event e0 ∈ E, such that op(e0) = opu and infinitely many
events ei ∈ E, with i ≥ 1, such that op(ei) = opr. For all ei, ej ∈ E, i <

j ⇔ ei
rb−→ ej . For each ei ∈ E, with i ≥ 1, let i ≡ 1 (mod 2) if the oper-

ation executed in ei was issued by c2, and i ≡ 0 (mod 2) if the operation ex-
ecuted in ei was issued by c1. Because of EV, there exists some k ≥ 1, such
that for each i ≥ k, e0

vis−−→ ei. Then, for each ei ∈ (E \ vis(e0)), rval(ei) =

F(opr, context(A, ei)) = F(opr, (∅, op, vis, ar)) = v, and for each ej ∈ vis(e0),
rval(ej) = F(opr, context(A, ej)) = F(opr, ({e0}, op, vis, ar)) = v′, because of
RVAL(F), and because read-only operations can be removed from a context
without changing the expected return values. Note that, v ̸= v′.

Now, let us consider an alternative history H ′ = (E′, op′, rval ′, rb′, so′, sp′,

crash ′), in which client c1 did not issue operation opu, and the events initiated by
c2 are exactly the same as in H . Thus, e0 ̸∈ E′, each ei>0 ∈ E′, and op′, rval ′, rb′,
so′, sp′, crash ′ when restricted to E′′ = {ei ∈ E′|i ≡ 1 (mod 2)}, are equivalent
to their counterparts in H when similarly restricted, i.e., the events executed on
R2 are exactly the same. In particular for every e′′ ∈ E′′, rval ′(e′′) = rval(e′′).
Such a history H ′ must exist, because the replicas in H were separated by a
network split, and the events on R2 occured independently of R1 and c1. Clearly,
it must be possible for the system to produce history H ′, if it produces H , since
H and H ′ are indistinguishable to R2. Then, there must also exist an abstract
execution A′ = (H ′, vis ′, ar ′), that satisfies BEC(F). By RVAL(F) and properties
of read-only operations, for each e′ ∈ E′, rval(e′) = F(opr, context(A

′, e′)) =

F(opr, (∅, op′, vis ′, ar ′)) = v. But clearly, for some e′′ ∈ E′′ ⊂ E′, rval(e′′) = v′ ̸=
v. A contradiction.

The above result is clearly related to the CAP theorem [18] [110], which states
that it is impossible to achieve strong consistency in highly available systems in
the presence of network splits. The proof provided by Gilbert and Lynch [110]
uses linearizability [52] as the consistency criterion. On the other hand, our re-
sult concerns the impossibility of satisfying BEC, a much weaker correctness
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criterion, and thus can be viewed as a strenghtening of the CAP theorem. More-
over, we consider arbitrary non-trivial types, and not only registers, as in CAP.
In terms of proof techniques, Gilbert and Lynch base their proof on violation of
a safety guarantee (linearizability’s real-time requirement), whereas we rely on
violation of a liveness property (EV). Thus, Gilbert and Lynch’s proof requires
only finite executions, whereas our proof utilizes infinite ones.

Interestingly, Burckhardt considers a variant of the CAP theorem in [49] im-
plicitly assuming only temporary network partitions (so the NC-TNP model)
and arrives at a different conclusion. He shows that for certain data types such
as Freg not only it is possible to achieve BEC(Freg), but even sequential consis-
tency (SEQ(Freg)). However, he shows that under these assumptions it is impos-
sible to satisfy linearizability (LIN(Freg)). The above highlights just how impor-
tant it is to clearly state all the assumptions. Since temporary network partitions
do not constitute substantial obstacles for eventually consistent highly available
systems, we do not focus on the TNP model alone (NC-TNP), but only in com-
bination with CS or CR models.

The crux of the proof of our Theorem 6 is the impossibility to satisfy EV.
Hence, we cannot expect the replica states to ever converge, as shown in Fig-
ure 5.1. However, in this system not only the states of replicas in different
network partitions never converge, but the replica states never converge even
within the same network partition. This behaviour could be easily prevented if
Algorithm 5 featured the proposed fix in line 14.

Below we propose a variant of BEC with a weakened EV requirement, which
can be satisfied under permanent network partitions, but which directly pro-
hibits the unnecessary phenomena present in Algorithm 5 without the fix. We
first formalize the weakened version of EV, called partition-aware eventual visibil-
ity (PAEV):

PAEV def
= ∀e ∈ E : (|{e′ ∈ [e]sp : e

rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞

∧ ∀p ∈ E/≈sp : (p ∩ vis(e) ̸= ∅ ⇒ |{e′ ∈ p : e
rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞))

PAEV states that for any event e, (1) if e is not pending,1 it has to be visible to
every event that happened from some point on within the same network parti-
tion as e, and (2) within every other network partition, if e has been observed
by some event e′ ∈ p executed in that partition, it has to be visible to every
event in p that happened from some point on. Note that if we consider an ex-
ecution with only one network partition (no network splits), PAEV reduces to
EV. Then, the weakened variant of BEC, called partition-aware basic eventual con-
sistency (PABEC), is obtained by simply substituting EV with PAEV:

PABEC(F)
def
= PAEV ∧ NCC ∧ RVAL(F)

1On the other hand, when e is pending then by the definition of well-formed histories there

are no events succeeding it in rb and thus {e′ ∈ [e]sp : e
rb−→ e′ ∧ e ̸ vis−−→ e′} = ∅.
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Clearly, our new criterion allows us to differentiate between algorithms, which
strive to achieve state convergence without waiting for network splits to heal,
from the ones that do not (so, e.g., Algorithm 5 with and without the fix, respec-
tively).

Note that network splits lead to a phenomenon called split brain syndrome, in
which mobile clients that switch between replicas from different network parti-
tions can observe diverging system replies concerning some data. On the other
hand, sticky clients are not directly affected by this phenomenon, but if they
communicate with each other outside of the system, they can observe it indirectly.

Let us now briefly discuss the eventual variants of two key session guaran-
tees: eventually read your writes (ERYW) and eventually monotonic reads (EMR).
Below we state them formally:

ERYW def
= ∀e ∈ E : |{e′ ∈ so(e) : e ̸ vis−−→ e′}| < ∞

EMR def
= ∀e ∈ E ∀e′ ∈ vis−1(e) : |{e′′ ∈ so(e) : e′ ̸ vis−−→ e′′}| < ∞

ERYW requires that for each event e the number of events that follow e in the
same session and which do not observe e is finite. On the other hand, EMR
requires that when an event e observes some other event e′, there is only a finite
number of events e′′ that follow e in the same session (e′′ ∈ so(e)) that do not
observe e′. Both ERYW and EMR are implied by BEC, but not by PABEC.
Neither of them can be provided for stateless mobile clients in the PNP model:

Theorem 7. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP models, it
is impossible to implement a highly available system that ensures PABEC(F)∧ERYW
or PABEC(F) ∧ EMR for stateless mobile clients.

Proof. The proof is similar to the one for Theorem 6. Consider a history H as out-
lined in the proof of Theorem 6, with the difference that all operations are issued
by the same client (c1 = c2). Note that, the client alternately issues operations
to R1 and R2, even though they are in two different network partitions. This
is naturally allowed, as we explicitly consider mobile clients. For all ei, ej ∈ E,
i < j ⇔ ei

so−→ ej . Note that so(e0) = E \ {e0}. If the system satisfies PABEC(F)

with either of the two session guarantees, then there exists an abstract execution
A = (H, vis, ar), that satisfies PABEC(F) with the respective session guarantee.

Because of PAEV, there exists some k′ ≥ 1, such that for each i′ ≥ k′ ∧ i′ ≡
0 (mod 2), e0

vis−−→ ei′ (ei′ was executed on R1).
If A |= ERYW, then there exists some k ≥ 1, such that for each i ≥ k,

e0
vis−−→ ei (e0 has to be eventually visible, as the set {e′ ∈ so(e0) : e0 ̸ vis−−→ e′} has

to be finite, and all operations are issued within the same session).
If A |= EMR, then there exists some k ≥ k′, such that for each i ≥ k, e0

vis−−→ ei
(since e0 is observed by some ei′ , where i′ ≥ k′ ∧ i′ ≡ 0 (mod 2), e0 can be not
observed only by a finite number of events ei ∈ so(ei′)).

Now, we can conclude (similarly to the way we did in the proof of Theo-
rem 6) that there is infinitely many events ej , such that e0

vis−−→ ej , and that their
return value v′ is different than v (the return value for ei such that e0 ̸

vis−−→ ei).
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When we consider an alternative history H ′, where opu has not been in-
voked, we can see it is indistinguishable from H for R2: the stateless client
issues the same operations, passing exactly the same information, and no mes-
sages from the other replica are delivered. Thus, the return values for operations
executed on R2 are the same in H and H ′, and infinitely many of them are v′.
However, according to PABEC(F), and more specifically RVAL(F), the only
allowed response is v ̸= v′. A contradiction.

On the other hand, it can be shown that for sticky clients, which always
connect to replicas from the same network partition, ERYW and EMR trivially
hold when PABEC is satisfied. Moreover, stateful clients can even achieve the
classic RYW and MR guarantees by caching requests and responses [108]. Note
also, that context preservation (CP; see Section 6.1) can also be achieved in the
PNP model, but using less resources than in case of RYW or MR.

7.2 Replica crashes and phantom operations

We continue our analysis by introducing replica crashes but not yet allowing
crashed replicas to recover (the CS-TNP and CS-PNP models). Even without
network splits, certain phenomena can occur, which we call phantom operations.
We explain them first using an example.

Assume that a client issues an update operation to a faulty replica Ri, which
responds with some return value (e.g., ok ), and soon afterwards crashes. Ri

might have tried to propagate the update to other replicas before the crash, but
it could only do so asynchronously. Because of fair-loss links there is no guaran-
tee of successful dissemination of messages when the sender fails. The client is
then misled that the update operation was successfully completed (the system
acknowledged the execution of the update), but there is no guarantee that it will
be included in any future state of the replicas. Moreover, the client could com-
municate outside of the system with other entities and spread invalid information
based on conviction that the update will eventually become visible. We call such
an operation a phantom operation.

Phantom operations do not need to be confined to a single faulty replica, nor
a single client. Multiple clients can observe the effects of a phantom operation
op by, e.g., performing operations on the faulty replica after op was executed
but before the replica crashed. Furthermore, a faulty replica Ri can manage
to propagate the update to some other faulty replica Rj which crashes before
successfully propagating the update to other replicas.

The common trait of the situations described above is that some update is
acknowledged or observed, but then permanently lost due to a failure. In our
framework this can be expressed as eventual invisibility of a particular event e:
only a finite number of events, out of infinitely many, observe e. When there are
no phantom operations (in an infinite abstract execution) the following predicate
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(which we could call phantom-freedom) holds:

XEV def
= |E| ≮ ∞ ⇒ ∀e ∈ E : (rval(e) ̸= ∇∨ vis(e) ̸= ∅ ⇒ |vis(e)| ≮ ∞)

Note that this visibility predicate is much weaker than EV (or even PAEV).
Whereas EV requires that an event becomes visible to all subsequent events
from some point on, XEV only requires the event to be visible to some (infinitely
many) events, but still infinitely many other events may not observe it. We can
define the weakest variant of BEC that is phantom-free as:

XBEC(F)
def
= XEV ∧ NCC ∧ RVAL(F)

Some acknowledged updates that were not propagated due to crashes are
benign. E.g., if an update a was overwritten by a subsequent update b, then
no information is lost. This is mirrored in the definition above, as for such an
update a, we can always add artificial visibility arcs in the abstract execution
(pretending that a was visible to every event which already observed b), in ef-
fect making a not a phantom anymore. Nonetheless, in principle we cannot
avoid phantom operations if crashes occur in the CS model, as we state formally
below:

Theorem 8. For any non-trivial F , in the CS-TNP and CS-PNP models, it is impossi-
ble to implement a highly available system that satisfies XBEC(F).

Proof. The proof is similar to the one for Theorem 6. Consider a history H as
outlined in the proof of Theorem 6, with the difference that all replicas are in the
same partition (no network splits), and R1 crashes immediately after sending
the response for opu back to the client c1 (also c1 does not issue the subsequent
opr operations). If R1 has sent any messages to other replicas, we drop them in
accordance with the properties of fair-loss links. We can now follow the same
logic as in the proof of Theorem 6, and show that in any abstract execution A,
the event e0 ∈ E needs to become visible to infinitely many ei ∈ E, for i ≥ 1, as
otherwise visibility requirements would be violated (in this case e0 would be a
phantom operation). This eventually leads to contradiction, because R2 cannot
know about the existence of the event e0. We skip the repetitive steps.

Corollary 2. For any non-trivial F , in the CS-TNP and CS-PNP models, it is impos-
sible to implement a highly available system that satisfies PABEC(F).

Corollary 3. For any non-trivial F , in the CS-TNP and CS-PNP models, it is impos-
sible to implement a highly available system that satisfies BEC(F).

The corollaries above follow directly from Theorem 8 and the definitions of
PABEC(F) and BEC(F), respectively.

If BEC and PABEC cannot be satisfied by a highly available system in the
face of failures, then what guarantees can such a system provide? The answer is
that we cannot rule out all phantom operations, but we could require that there
are no phantoms which are not caused by a replica failure. We formalize this in-
tuition by proposing crash-aware basic eventual consistency (CABEC) for the TNP
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model, and the more general failure-aware basic eventual consistency (FABEC) for
the PNP model. They are based on the crash-aware eventual visibility (CAEV) and
failure-aware eventual visibility (FAEV) predicates, respectively:

CAEV def
= ∀e ∈ E : (|{e′ ∈ E : e

rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞
∨ (crash(e) ∧ crash−1(false) ∩ vis(e) = ∅))

FAEV def
= ∀e ∈ E ∀p ∈ E/≈sp : (|{e′ ∈ p : e

rb−→ e′ ∧ e ̸ vis−−→ e′}| < ∞
∨ (p ∩ crash−1(false) ∩ (vis(e) ∪ {e}) = ∅))

CAEV implies that, unless an event e was executed on a replica which subse-
quently crashed and e was not observed by any other event on some replica that
did not crash, it has to be eventually visible. FAEV means that for each event
e and each network partition either e is eventually visible in that partition, or
no event e′ ∈ p that occurred on a replica from that partition, and which does
not crash, can observe e (or be e itself). Once e is observed by any event e′′ that
occurred on a replica which does not crash, e has to become eventually visible
in the network partition in which e′′ was executed. Then

CABEC(F)
def
= CAEV ∧ NCC ∧ RVAL(F)

FABEC(F)
def
= FAEV ∧ NCC ∧ RVAL(F)

When all replicas are correct CABEC reduces to BEC, and FABEC reduces to
PABEC.

Note that because of crashes and phantom operations, it is impossible to
ensure ERYW and EMR for stateless clients (both sticky and mobile), even when
no network splits occur.

Theorem 9. For any non-trivial F , in the CS-TNP and CS-PNP models, it is im-
possible to implement a highly available system that ensures CABEC(F) ∧ ERYW or
CABEC(F) ∧ EMR for stateless clients.

Proof. The proof is based on the same principles as the proofs for Theorem 6,
Theorem 7 and Theorem 8, but is more complex. We consider a history H as in
the proof of Theorem 6, but with c1 = c2, and R1 crashing after serving the re-
sponse for opu. However, contrary to the proof of Theorem 8, we do not crash R1

immediately after executing opu. Instead, we allow it to serve multiple opr op-
erations, all the time keeping R1 and R2 in two (temporary) network partitions,
dropping all messages exchanged between them. We proceed to show that from
some point on the opr operations executed on R1 start returning v′ ̸= v. To un-
derstand why this is the case we need to consider a couple alternative histories.

First, let us consider a history H ′ = (E′, op′, rval ′, rb′, so′, sp′, crash ′), in which
R2 crashes immediately without executing any event, while R1 executes e0 and
infinitely many ei, for i ≡ 0 (mod 2) as in H from the proof of Theorem 6.
Note that R1 does not crash in H ′, so e0 cannot be a phantom operation. Since
crash(ei) = false for all ei ∈ E′ (there are no events executed on the crashed R2),
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and because CABEC reduces to BEC in such cases, H ′ |= BEC(F). Then, fol-
lowing the logic from the proof of Theorem 6, we can show that from some point
on all opr operations will return v′. Let us denote by ek the first such event. Now,
we create another alternative history H ′′ from H ′, by crashing R1 immediately
after ek. Both R1 and R2 crash in H ′′, and thus it is a finite history.

Now we construct our target history H from H ′′ (which includes only events
executed on R1), by revoking the crash of R2 and adding infinitely many execu-
tions of opr on R2 in the events ei, for i ≡ 1 (mod 2). H is indistinguishable from
H ′′ for R1, because in both histories the stateless client issues the same opera-
tions to R1, and no messages are exchanged between replicas. Thus in H , (1) R1

executes a finite number of events with the last ek being an opr returning v′, and
then crashes; (2) for the entire duration R1 and R2 are separated by (temporary)
network split, and all messages between them are dropped; and (3) R2 executes
infinitely many events.

By the same logic as in the proof of Theorem 7, we can show that the ERYW
and EMR session guarantees require e0 to be eventually visible (through the
event ek in case of EMR), forcing all ei from some point on to return v′. Then, we
can show as in the proof of Theorem 6, that the only possible response for each ei,
for i ≡ 1 (mod 2) is v ̸= v′. Which concludes the proof with a contradiction.

7.3 Replica recovery and stable storage

Theorem 8 shows that phantom operations are unavoidable when a replica crashes
after serving an operation submitted by the client, but before propagating the
information about the operation to at least one correct replica. Naturally, in
the CS model phantom operations cannot be avoided unless we sacrifice high
availability and let the replica synchronize with other replicas before returning
a response to the client. However, in the CR model, where replicas can recover
after crash, we can avoid some of the phantom operations if only the informa-
tion about the operations performed can be recovered after crash. To this end
a replica has to perform a synchronous write to stable storage before returning
a response to the client. Of course, a replica recovery is not possible in case
of a fatal failure of the replica (e.g., a failure of the stable storage unit itself or
the replica crashing and recovering infinitely many times). We formalize this
intuition in the following three theorems:

Theorem 10. For any non-trivial F , in the CR-TNP and CR-PNP models, it is impos-
sible to implement a highly available system that satisfies XBEC(F).

Proof. The impossibility is due to fatal failures only, because as we argue later,
transient failures can be tolerated. There are two kinds of fatal failures in the
CR model: a crash after which the replica does not recover; and infinitely many
crashes and recoveries of the same replica. In the former case, the same reason-
ing applies as in Theorem 8 for the CS model. In the latter case we can choose
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the crashes to happen soon after recovery and drop all messages exchanged with
that replica, thus forcing it into an infinite restart loop, in which it is unable to
make any progress. Again, the same reasoning can be applied. However, note
that it is sufficient to consider only the former case to prove the theorem.

Theorem 11. For any non-trivial F , in the CR-TNP and CR-PNP models, it is im-
possible to implement a highly available system that ensures CABEC(F) ∧ ERYW or
CABEC(F) ∧ EMR for stateless clients.

Proof. Just as in Theorem 10 the impossibility is due to fatal crashes, and we can
apply the same reasoning as before. For a fatal crash where the replica does not
recover, we follow the proof of Theorem 9 for the CS model.

Theorem 12. For any non-trivial F , in the CR-TNP and CR-PNP models, if the repli-
cas do not issue synchronous writes to stable storage during the execution of some oper-
ations, but before returning the responses to the clients, it is impossible to implement a
highly available system that satisfies XBEC(F), even when no fatal failures occur.

Proof. Assume that the system either does not issue synchronous writes to sta-
ble storage during the execution of any operation, or that it does so only after
returning the response. Consider the same scenario as in the proof of Theorem 8
(R1 crashes immediately after returning the response for opu). We know that R1

did not use stable storage synchronously during the execution of the event e0,
and if it did asynchronously, we declare all the issued writes to had not been
persisted before the crash. There is no knowledge about the operation opu is-
sued by client c1, neither in the stable storage of R1, nor in the state of any other
replica (no messages from R1 were successfully transmitted, and the client c1
communicated only with R1). Now we can add to the execution R1’s recovery.
Due to the lack of any recorded information about opu, the state of R1 after re-
covery is the same as if opu was never issued by client c1. Now, we can follow
the same logic as in the proof of Theorem 8 to reach a contradiction.

Note that Theorem 12 does not require the system to issue synchronous writes
to stable storage during the execution of all operations. The set of operations that
require persistence depends on the semantics of F . Still, synchronous writes are
unavoidable in general and thus they constitute the inherent cost of eliminating
phantom operations caused by transient failures.

Persistent storage solutions available in today’s data centers primarily com-
prise of network storage devices based on magnetic disks (HDDs) and solid
state drives (SSDs) (see, e.g., [119]). The HDD-based storage devices, which can
handle around 7500-15000 random input/output operations per second (IOPS),
are simply too slow to enable frequent synchronous writes. However, the SSD-
based storage, which in recent years became much more affordable, can achieve
20-40 times the IOPS of HDD-based storage and a few times higher bandwidth
(especially for write operations). It means that now the cost of performing syn-
chronous writes for each client operation served is no longer prohibitive (un-
less a service running in the replicated environment must guarantee extremely
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Algorithm 6 Protocol implementing replicated data type F , for replica Ri

1: struct OpRec(clock : integer, rid : integer, op : ops(F))
2: operator <(o : OpRec, o′ : OpRec)
3: return (o.clock < o′.clock) ∨ (o.clock = o′.clock ∧ o.rid < o′.rid)

4: function opFun(o : OpRec)
5: return o.op

6: function makeContext(operations : set⟨OpRec⟩, vis : set⟨OpRec ×OpRec⟩)
7: var ar = {(o, o′)|o, o′ ∈ operations ∧ o < o′}
8: return (operations, opFun, vis, ar)

9: var operations : set⟨OpRec⟩
10: var visible : set⟨OpRec ×OpRec⟩
11: upon invoke(op : ops(F))
12: var rval = F(op,makeContext(operations, visible))
13: var o = OpRec(max (operations).clock + 1, i, op)
14: visible = visible ∪ (operations × {o})
15: operations = operations ∪ {o}
16: write operations and visible synchronously to stable storage
17: BE-cast(UPDATE, operations, visible)
18: return rval to client
19: upon BE-deliver(UPDATE, recOperations : set⟨OpRec⟩, recVisible : set⟨OpRec ×OpRec⟩)
20: if recOperations \ operations ̸= ∅ then
21: operations = operations ∪ recOperations
22: visible = visible ∪ recVisible
23: write operations and visible synchronously to stable storage
24: BE-cast (UPDATE, recOperations, recVisible)

25: upon recovery
26: initialize operations and visible from stable storage
27: BE-cast (RECOVERY, operations, visible)
28: upon BE-deliver(RECOVERY, recOperations : set⟨OpRec⟩, recVisible : set⟨OpRec×OpRec⟩)
29: if operations \ recOperations ̸= ∅ then
30: BE-cast (UPDATE, operations, visible)
31: if recOperations \ operations ̸= ∅ then
32: operations = operations ∪ recOperations
33: visible = visible ∪ recVisible
34: write operations and visible synchronously to stable storage

low latencies in serving client requests). The performance penalty due to fre-
quent writes to stable storage is likely to further drop with the adoption of novel
technologies, such as byte-addressable non-volatile memory (also called persis-
tent memory) [70] which promises performance that is almost on par with RAM
[120].

We make one final observation for a system that uses stable storage to avoid
some phantoms:

Theorem 13. For any F , it is possible to implement a highly available system that, if no
fatal failures occur, satisfies BEC(F) in the CR-TNP, and PABEC(F) in the CR-PNP
model, and if fatal failures occur, satisfies CABEC(F) in the CR-TNP, and FABEC(F)

in the CR-PNP model.

Proof. In order to prove the above, we need to show that we can propose an
implementation that satisfies FABEC for a generic type F . As an illustration,
consider Algorithm 6, which shows a pseudocode of a generic protocol for an
arbitrary F . Note that, Algorithm 6 is overly simplistic and not optimized for
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performance (e.g., it does not distinguish between read-only and updating oper-
ations, and does not minimize the size of exchanged messages, nor the amount
of data kept in stable storage).

An OpRec represents the quanta of information about invocation of a single
operation (line 1). An OpRec is a tuple which consists of the operation op in-
voked, the identifier rid of the replica that executes op, and clock (the value of
the a logical clock maintained by the replica at the time of the invocation of op).
OpRec structures can be totally ordered using the clock values and replica rids
(line 2).

Each replica maintains two data structures: operations and visible (lines 9-
10). They are used upon operation invocation to create the operation context, as
required by the function F (line 6). The operations set stores information about
the operation invocations the replica is aware of. On the other hand, the visible

set is used by the replica to maintain information about the relative visibility of
such events. A pair (o, o′) belongs to visible , iff o′ observes o.

Upon invocation of operation op, we calculate the return value rval using
F and the appropriately created operation context (line 12). Then the replica
needs to update its state and notify other replicas about the execution of op. To
this end, a new OpRec o is created (line 13). The value of o.clock is chosen so that
it is larger than the clock field of any other OpRec in the operations set. Next, we
extend the visible set so that o observes all the o′ in the operations set (line 14).
Then we add o to the operations set (line 15). Next we write both operations

and visible to stable storage (line 16). Finally, both the operations and visible sets
are broadcast to all replicas using best-effort broadcast in an UPDATE message
(line 17).

Upon receipt of an UPDATE message (line 19), when necessary, the replica
updates its operations and visible sets by merging them with the incoming ones,
writes both operations and visible to stable storage and finally broadcasts a mes-
sage with the new state. The last two steps are necessary to ensure FAEV.

Upon recovery (line 25) the replica initializes its operations and visible sets
from the stable storage and broadcasts a RECOVERY message. A RECOVERY
message from a replica Ri has a double purpose:

• Ri ensures that other replicas will also receive the operations Ri performed
and saved to its stable storage (but perhaps failed to disseminate), and

• upon receipt of a RECOVERY message (line 28), other replicas Rj will re-
send to Ri all operations that Ri might be missing.

For each fair execution (corresponding to some history H = (E, op, rval , rb,

so, sp, crash)) of a system that implements Algorithm 6, we need to show that
there exists an abstract execution A = (H, vis, ar), such that A |= FABEC(F).
It is because if there are no fatal failures, FABEC reduces to BEC in the TNP
model and PABEC in the PNP model. If there are fatal failures, FABEC reduces
to CABEC. Instead of considering all isomorphic histories, we consider only
histories for which E contains elements of OpRec type, which were constructed
according to the pseudocode of Algorithm 6 in the actual execution.
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For simplicity we assume, that whenever a message is BE-cast in the pseu-
docode, it is scheduled for sending, but it is actually sent only after the entire
code block in which BE-cast occurs finishes execution.

First, let us introduce some auxiliary definitions. For an event e ∈ E, we
denote by pre(e) and post(e) the volatile state of the replica, respectively, just
before the execution of e, and just after the execution of e. Similarly, by sspre(e)

and sspost(e) we denote the contents of stable storage of the replica executing e,
before and after the execution of e. Note that pre(e) = sspre(e), but not always
post(e) = sspost(e) (e.g., when the replica executing e crashes before complet-
ing the execution). Moreover, sspre(e).operations ⊆ sspost(e).operations and
sspre(e).visible ⊆ sspost(e).visible. Similarly, for any two events e, e′ ∈ E exe-
cuted on the same replica in that order, sspre(e′).operations

⊆ sspost(e).operations and sspre(e′).visible ⊆ sspost(e).visible.
To construct A, for any a, b ∈ E, we let a ar−→ b ⇔ a < b and a

vis−−→ b ⇔
a ∈ pre(b).operations . Now we need to show that A satisfies FAEV, NCC and
RVAL(F).

Let us make an observation. For an event e executed on some replica Ri,
if rval(e) ̸= ∇ it means that e ∈ sspost(e).operations . Similarly, if vis(e) ̸= ∅,
and thus there exists e′ ∈ E, such that e vis−−→ e′, it means that e must have been
broadcast and delivered by some other replica Rj , or e′ is some subsequent event
executed on Ri. In either case e ∈ sspost(e).operations .

When e is recorded in stable storage of some correct replica, eventually it
will be recorded in stable storage of each correct replica in the same partition. A
replica Ri saves e to stable storage in two cases: either it executed op(e) locally
or received e in some UPDATE or RECOVERY message. In either case, Ri will
broadcast e as part of its operations set. Since Ri is correct and it uses best-
effort broadcast, every correct replica Rj , which belongs to the same network
partition as Ri, will eventually deliver the message, and if Rj does not already
have e in its operations set (which is persisted on stable storage), Rj will add e

to its operations set and write it to stable storage.
For any partition p ∈ E/ ≈sp , any e, e′ ∈ E, such that e′ ∈ p

∧ e ∈ pre(e′).operations ∧ ¬crash(e′), it holds that there is only a finite num-

ber of events e′′ ∈ p, such that e /∈ pre(e′′).operations . Therefore, |{e′′ ∈ p : e
rb−→

e′′∧ e ̸ vis−−→ e′′}| < ∞. On the other hand, for an event e ∈ E, for which there does
not exist such an event e′ ∈ p, naturally

(
p∩ crash−1(false)∩ (vis(e)∪ {e}) = ∅

)
,

since
(
p ∩ crash−1(false) = ∅

)
. Thus, A |= FAEV.

Now let us focus on no-circular-causality (NCC). Observe that, for any two

events a, b ∈ E executed on the same replica in that order, a rb−→ b. Moreover,
the same holds also for any two events a, b ∈ E, such that a was executed on Ri,
b was executed on Rj , Ri ̸= Rj , and a ∈ pre(b).operations . This is so, because
for a to be included in the state of Rj , a must have been BE-cast by Ri in an
appropriate message already after the execution of a has finished. Thus, vis ⊆
rb. Additionally, so ⊆ rb, by well-formedness of a history. Therefore, hb =

(so ∪ vis)+ ⊆ rb, and since rb is a partial order, hb is acyclic, and A |= NCC.
Finally, we turn our attention to RVAL(F). The return value for each not
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no-crash crash-stop crash-recovery
only transient all

failures failures
temporary network partitions BEC CABEC BEC CABEC
permanent network partitions PABEC FABEC PABEC FABEC

Figure 7.1: The possible to ensure correctness criteria in various failure
models for a highly available system that implements an arbitrary (non-
trivial) replicated data type F .

no-crash crash-stop crash-recovery
only transient all

failures failures
temporary network partitions (all clients) ̸ ̸≤ ̸ ̸≤

permanent network partitions (all clients) ̸ ̸≤ ̸ ̸≤
(mobile clients) ̸ ̸≤ ̸ ̸≤

– phantom operations
̸ – no ERYW (eventually read your writes) for stateless clients
̸≤ – no EMR (eventually monotonic reads) for stateless clients

– split brain syndrome for clients who communicate outside the system

Figure 7.2: Phenomena observable by the clients in various failure mod-
els for a highly available system that implements an arbitrary (non-
trivial) replicated data type F .

pending event e ∈ E is computed using the function F itself. We need to show
that the output C ′ = (E′, op′, vis ′, ar ′) of the function makeContext is isomor-
phic with C ′′ = context(A, e) = (E′′, op, vis, ar). Firstly, by definition vis−1(e) =

pre(e).operations , thus E′ = E′′. Secondly, for each e′ ∈ E′, opFun(e′) = e′.op,
and e′.op = op(e′). Thus, for each e′ ∈ E′, op′(e) = op(e). Thirdly, for any
three events a, b, c ∈ E, if a ∈ pre(b).operations ∧ a, b ∈ pre(c).operations , then
(a, b) ∈ pre(c).visible, because the sets operations and visible are always modi-
fied, persisted and disseminated together atomically. Thus, for any two a, b ∈ E′,
such that a vis−−→ b, (a, b) ∈ pre(e).visible , which means that vis ′ = vis|E′ . Fourthly,
(a, b) ∈ ar ′ ⇔ a, b ∈ E′ ∧ a < b, and (a, b) ∈ ar ⇔ a, b ∈ E ∧ a < b. Thus,
ar ′ = ar |E′ . Finally, since E′ = E′′, while op ′, vis ′ and ar ′ are restrictions of op,
vis and ar to E′, C ′ and C ′′ are isomorphic, and A |= RVAL(F).

To conclude, since A |= FAEV, A |= NCC and A |= RVAL(F),
A |= FABEC(F).

Corollary 4. For any non-trivial F , in the CR-TNP model, if no fatal failures occur, it
is possible to implement a highly available system that satisfies BEC(F).

The above corollary follows directly from Theorem 13.
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7.4 Summary

In Figures 7.1 and 7.2 we summarize the consistency guarantees which are pos-
sible to achieve in highly available systems and the artifacts a client can observe
in various combinations of replica and network failure models. In terms of the
offered guarantees and the types of artifacts which the clients can encounter, the
crash-recovery (CR) model with only transient failures is akin to the no-crash
(NC) model. When we admit fatal failures in CR model, we achieve the same
guarantees and types of artifacts as in the crash-stop (CS) model.

Note that the formal framework can be easily extended for a particular class
of systems. E.g., one could use our approach to define a whole family of failure-
aware consistency criteria, based on other baseline predicates, such as causal
consistency.



8
Related work

In this chapter we present work relevant to our research. We start with vari-
ous definitions of high availability. Then, we discuss eventual consistency and
other consistency guarantees. Next, we focus on work concerning limitations
and tradeoffs present in highly available systems. Finally, we survey the most
influential highly available system designs.

We cover mixed-consistency models in detail separately in Section 4.1.5.

8.1 High availability

(High) availability was first defined as a formal guarantee for replicated systems
by Brewer in his CAP conjecture [18], in which it stipulates that eventually, for
every request, a response needs to be provided. However, high availability was
already recognized as an important feature of eventually consistent systems ear-
lier, e.g. in the design of Bayou [44] and similar early eventually consistent
systems, or in BASE (Basically available, soft state, eventually consistent semantics
[121].

As we discuss in Section 2.2.5, when the network paritions are permanent,
high-availability as proposed by Brewer is akin to wait-freedom [77], the fact
which was also noted by Gilbert and Lynch in their paper concerning CAP [110].

Bailis et al. [109] focus on high availability in the context of transaction pro-
cessing systems, where they define a few variants of high availability, such as
sticky availability, replica availability and transactional availability. As we discuss in
Section 5.2, their notion of sticky availability is different than ours when consid-
ering sticky clients.

More recently (see, e.g., [49, 58, 60]) high availability was modelled as a de-
sign property in which system replicas are required to respond to client requests
immediately without synchronous communication with peers. We follow this
approach.
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8.2 Eventual consistency

As follows from the CAP theorem, highly available systems can only guarantee
some form of eventual consistency. While eventual consistency has been con-
sidered in the context of replicated databases much earlier [64, 122, 44], these
approaches lacked clearly defined consistency requirements (they only describe
eventual consistency in operational terms). On the other hand, early definitions
of eventual consistency that followed [19, 43] are rather informal: they stipulate
that in the absence of updates, eventually the read operations on the same object
on all processes will return the same value. Such a definition (sometimes clas-
sified as quiescent consistency [49]) makes eventual consistency a pure liveness
property, as it does not impose any restrictions on the possible responses when
updates continue to be performed. In particular, according to this definition, a
read of an object can return a value that was never written to it.

Shapiro et al. proposed strong eventual consistency (SEC) [26, 27] as a target
correctness criterion for CRDTs. It requires any two replicas that receive the
same set of messages to be in the same state. While this definition improves
somewhat on the earlier approach, it still does not guarantee that the responses
returned by the replicas are explainable by the semantics of the implemented
data type (e.g., a replica of a register which always returns value 0 in every state
is correct according to SEC; e.g., consider Algorithm 5 with line 10 replaced by
return 0). In our approach, we avoid this problem by utilizing the replicated
data type specifications [28] to bind the allowed responses with the history of
previously executed operations. Moreover, unlike in case of SEC, which is de-
fined solely on replica states, we consider external clients and the guarantees
provided to them, which is a more robust approach. Although defining consis-
tency models over internal replica states seems convenient and easy to follow,
it is the externally observable behaviour of the system that really matters. Ad-
ditionally, Shapiro et al. assume that every step a CRDT algorithm performs is
synchronously logged to stable storage. This assumption is a very strong one
and it does not reflect the way CRDTs are usually implemented (as lightweight,
in-memory data structures).

The use of replicated data type specification also lays at the core of basic
eventual consistency (BEC), which was proposed by Burckhardt et al. [48, 49].
BEC abstracts away from implementation details such as internal replica states
or exchanged messages. We closely follow this work as we base fluctuating
eventual consistency (FEC) and our family of failure-aware correctness criteria
on BEC. In [49] Burckhardt formally specified a number of eventually consistent
protocols. However, the correctness proofs for these protocols, as well as proofs
for other formal results, only consider system runs in which no failures occur.

Eventually consistent linearizability [2] can be considered a precursor to the
crash-aware basic eventual consistency defined in Section 7.2, as it admits arti-
facts such as phantom operations. However, it is not a failure-aware criterion: it
admits such phenomena also in failure-free runs.
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Eventual linearizability, first defined in [45] and later refined in [46] models
intermittent inconsistencies (as in self-stabilizing systems) that may occur in a
system only up to certain point in time (measured in time or number of events
from the beginning of computation). As noted by the authors, providing even-
tual linearizability is as difficult as providing linearizability itself, because, from
some moment on, all processes have to work in a fully coordinated fashion (no
further inconsistencies are allowed). Thus, eventual linearizability is in fact very
similar to strongly consistent correctness criteria and requires an asynchronous
system model to be augmented with the same failure detector Ω, as in case of
strong consistency, in order to be achievable [123].

Finally, ∆-atomicity [124] and Γ-atomicity [125] can also be used to describe
the consistency model of eventually consistent data stores. However, both ∆-
atomicity and Γ-atomicity, as well as any other recency guarantees cannot be
enforced when failures occur.

8.3 Causal consistency and session guarantees

Causal consistency is a popular consistency model employed in many replicated
systems and CRDT implementations. It can be considered to be a stronger form
of eventual consistency. In its original formulation [126], inspired by causal
broadcast [127], it was restricted only to read-write registers, and lacked built-in
conflict resolution for updates which means it did not guarantee convergence.
Convergent conflict handling was delegated to the application. A revised defi-
nition which explicitly guarantees convergence was provided by Burckhardt et
al. in [47].

Several strengthenings of causal consistency have been proposed, most no-
tably causal+ consistency [86], natural causal consistency [128], and observable causal
consistency (OCC) [58]. Parallel snapshot isolation [95] proposed as an isolation
property for replicated databases is a variant of causal consistency, which solves
conflict resolution by aborting conflicting transactions.

Causal consistency is achievable in highly available systems assuming a clas-
sic asynchronous message-passing system. In fact OCC is claimed to be the
strongest correctness criterion achievable in highly available systems [58, 60].
Since it is stronger than eventual consistency, but weaker than strong consis-
tency, it is often advocated to be an optimal correctness criterion for highly
available systems [86, 58]. However, causal consistency is known to be costly to
achieve in practice [62], and is not always needed [63]. Moreover, as discussed
in Section 5.2, it is not achievable in highly available systems when external clients
are considered [108].

The four classic session guarantees [44], discussed in detail in Chapter 6, fea-
ture similar guarantees to causal consistency. In fact the four session guarantees
combined with eventual consistency imply causal consistency [129, 49]. Early
eventually consistent systems, which had clients collocated with replicas, could
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provide these guarantees with ease. With external clients session guarantees
can be trivially implemented by requiring clients to always communicate with
a quorum of replicas, albeit this approach is not highly available. On the other
hand, some session guarantees can be provided when the clients cache their
writes and reads [108]. In turn, signifcant use of client-side resources is neces-
sary, and thus this approach is typically avoided. The popular NoSQL systems
often feature tunable consistency levels, which means they can be configured
to operate either in the highly available mode, with no session guarantees, or
utilizing a quorum of replicas to achieve stronger consistency at the cost of high
availability.

In Section 6.1 we show that enforcing causal consistency or the classic session
guarantees can be actually counterproductive for certain replicated data types.
Instead we provide a novel substitute called context preservation and we define
eventual session guarantees, which can be obtained with stateless clients in certain
failure modes without compromising on high availability.

8.4 Limitations of highly available systems

In this section we revisit some results concerning limitations of highly available
systems, i.e., work that is most relevant to ours.

Naturally, the most important result is the CAP theorem [18, 110], which
established the impossibility of achieving strong consistency in highly available
systems. It has been especially influential in driving the design choices of many
highly available eventually consistent systems. Over the years several follow
up articles appeared (e.g., [130, 131, 132]) discussing its relevance. We directly
relate our work to the CAP theorem in Section 7.1.

Attiya et al. [58] [60] show that an eventually consistent data store imple-
menting multi-valued registers (MVRs) [20] cannot provide stronger guarantees
than already mentioned observable causal consistency (OCC). Thus, contrary to
CAP, this result constitutes a tight upper bound, i.e., it defines not only which
guarantees are not achievable (stronger than OCC), but also which are. How-
ever, as discussed above, causal consistency, and by extension OCC, are achiev-
able only when no external clients are considered. The authors completely ig-
nore replica crashes and assume the availability of fair-loss links, and thus con-
sider only temporary network splits.

Mahajan et al. [128, 133] formulate the CAC theorem which shows the trade-
off between consistency, availability and convergence in distributed systems.
The authors prove that natural causal consistency (a variant of causal consistency
in which the causal order of operations needs to respect additional real-time
constraints) is the strongest guarantee that can be achieved for a certain class
of highly available data stores. The considered data stores are assumed to fea-
ture only (invisible) read and write operations and no particular conflict reso-
lution policy (so they might expose concurrent writes to the clients as in MVRs
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[20]). An additional requirement on the data store implementation states that
a pair of processes must be able to converge to a single state in two steps of
one-way communication (provided no intermediate communication with other
processes). The authors consider omission-failure model, thus they assume per-
manent network splits, but no replica crashes and recoveries. The authors also
consider a Byzantine failure model but do not provide a tight upper bound in
this model. The introduced liveness property of convergence is state-based and
relies on explicit message exchanges, and so is similar to SEC. Mahajan et al.
also do not consider external clients.

Both Attiya et al. and Mahajan et al. consider only data stores implementing
MVRs, and not arbitrary replicated data types, as in our case.

Bailis et al. [109] as already mentioned focus on high availability in the con-
text of transaction processing systems. The authors analyze which database iso-
lation properties are compatible with high availability, and which are not. In
terms of failures, they consider network splits, however, they largely abstract
away from server crashes. They do note that certain replication schemes may
become unavailable due to crashes, e.g., when a transaction coordinator fails,
or that certain fault-tolerance requirements are incompatible with high avail-
ability, but do not explore the topic further. On the other hand, the protocol
for handling session guarantees they provide is inherently blocking and does
not guarantee progress in spite of crashes, which seems ill-suited as a solution
aimed at fault-tolerant highly available systems, which strive to gracefully toler-
ate failures. Additionally, in the sticky variant of high availability they consider
clients which always connect to the same replica, which as we have discussed
in Section 5.2, may lead to clients being blocked permanently in case the replica
crashes.

8.5 Highly available system designs

Finally, we discuss some influential highly available system designs. As dis-
cussed earlier, relaxed consistency models were studied in the context of
database management systems before the rapid evolution of the Internet, but
eventual consistency came to prominence only later. Due to the demand for
scalable and highly available services many experimental systems were devised,
including the serminal Bayou system [44], which we discuss in detail in Sec-
tion 2.2. Commercial solutions followed suite. In this regard the design of Ama-
zon Dynamo [20] has been particularly influential, as it has popularized tech-
niques, such as the sole reliance on gossip protocols for (asynchronous) inter-
replica communication, consistent hashing for dataset partitioning, the use of
version vectors to enable handling of concurrent writes to the same data items
and the use of hinted-handoff, sloppy quorum and anti-entropy algorithms to
recover from failures. In effect, Amazon Dynamo, and the plethora of systems
influenced by it (see, e.g., Apache Cassandra [21], Scylla [22], Riak [23], Volde-
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mort [24], Netflix’s Dynomite [25]) are massively scalable, can gracefully tolerate
machine and network failures and still provide low latency responses. The latter
trait can be attributed to the fact that in these systems typically communication
with only a single service replica (that stores a copy of a dataset pertaining to the
client’s request) is sufficient to complete the request. It means that a replica is
able to respond to the request without performing synchronous communication
with other replicas. In the context of the PACELC framework [130], these sys-
tems choose low-latency over consistency even when no network splits occur.

Among all the systems influenced by Dynamo, Apache Cassandra has re-
ceived the most attention in the research community, including work devoted to
analyse its correctness properties [56, 125, 134], as well as attempts to strenghten
them [135, 136].

Some of the systems mentioned above always synchronously write each up-
date to disk before responding to the client, while other ones operate in-memory,
with only asynchronous writes to stable storage. Since we consider both crash-
stop and crash-recovery failure models, and stable storage plays a role only
when recovery is possible, our analysis encompasses both kinds of systems.
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Conclusions

In this dissertation we tackled the problem of correctness of highly available
eventually consistent systems from the theoretical point of view. We explored
the consistency and progress guarantees achievable under various assumptions.
In particular, we investigated mixed-consistency systems, and examined the be-
haviour of highly available systems in the presence of failures. Doing so, not
only we have gained new insights on the correctness of highly available sys-
tems, but we also proposed new useful abstractions such as acute cloud types.

The main goal of this dissertation, as stated in Section 1.2, was to formally
identify and reason about tradeoffs and limitations in highly available systems’
correctness guarantees resulting from mixed-consistency operations and from
machine and network failures. We believe that the goal has been accomplished.
To support this claim, we summarize below the main contributions of this dis-
sertation.

First, in Chapter 2 we defined acute cloud types (ACTs), as an abstraction for
mixed-consistency systems which combine the best features of eventually con-
sistent and strongly consistent systems. ACTs feature two kinds of operations:
weak operations targeted for unconstrained scalability and low response times
(as operations in CRDTs), and strong operations used when eventually consistent
guarantees are insufficient. Strong operations utilize non-blocking consensus-
based synchronization prior to execution. We proposed and analysed acute non-
negative conunter (ANNC), an example ACT. We also analyzed the seminal Bayou
system and showed how it can be improved to become a general purpose ACT
called AcuteBayou. Doing so we identified undesirable phenomena which can
occur in Bayou. In particular, we found that temporary operation reordering is un-
avoidable in systems similar to Bayou which use two incompatbile mechanisms
to order weak and strong operations.

Next, in Chapter 3 we provided a formal framework which enables reason-
ing about ACTs and other mixed-consistency systems as well. Within the frame-
work we have formalized several correctness criteria, including fluctuating even-
tual consistency (FEC). FEC adequately captures the guarantees offered by sys-
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tems, which similarly to AcuteBayou, exhibit temporary operation reordering.
Using the framework we also formally proved the correctness guarantees of the
ANNC and AcuteBayou.

Then, in Chapter 4 we generalized our findings about AcuteBayou and pro-
posed a formal result to show the limitations of mixed-consistency systems. We
proved that mixed-consistency systems which combine the best features of even-
tually consistent and strongly consistent systems, as ACTs do, and which feature
arbitrarily complex semantics, cannot avoid temporary operation reordering.
Thus such systems do not satisfy basic eventual consistency for weak opera-
tions. We explored the possible tradeoffs in terms of correctness guarantees and
properties by analyzing other solutions which circumvent the impossibility re-
sult, by compromising fault-tolerance or sacrificing high availability.

After that, in Chapter 5 we showed how to adequately model real world
highly available systems utilizing client-server architecture, in order to reason
about their correctness in spite of failures. We outlined the possible failure sce-
narios and classified six failure models. We also provided a formal framework
which explicitly considers failures, and thus enables formalizing failure-aware
correctness criteria.

Next, in Chapter 6 we expressed session guarantees in our framework and
discussed their relevance and properties. We showed that classic session guar-
antees can be counter-productive for certain data types and provided a novel
substitute instead, called context preservation.

Finally, in Chapter 7 we analyzed the correctness guarantees which are pos-
sible to achieve under different failure models. In particular we showed that
basic eventual consistency is not achievable if permanent network partitions or
unrecoverable replica crashes occur. We defined eventual variants of two key
sesion guarantees and a family of failure-aware correctness criteria which pre-
cisely capture the correctness guarantees achievable in the considered failure
models. We also identified several undesirable artifacts observable by the clients
when failures occur. We showed how some of them can be remedied.

In the future, we plan to devise novel acute cloud types that can be applied in
practical settings, such as within a NoSQL data store. Moreover, we would like
to investigate which groups of operations can be implemented in ACTs without
temporary operation reordering occuring.
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[1] M. Kokociński, T. Kobus, and P. T. Wojciechowski, “On mixing eventual
and strong consistency: Acute cloud types,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 6, 2022.
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[7] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid transactional
replication: State-machine and deferred-update replication combined,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, July 2018.

[8] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven compar-
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A
StateObject properties

Although in Algorithm 3 we present a referential implementation of StateObject,
in general we treat the state object as a black box with unknown implementation.
The correctness of AcuteBayou depends on the properties of the state object
which we formalize below.

Take the list of requests that were executed on the state , and remove the re-
quests which were rolled back; we call the resulting sequence α the current trace
of the state .1 Since the state encapsulates the state of the system after locally exe-
cuting and revoking requests, we require that the state’s responses are consistent
with a deterministic serial execution of α as specified by the type specification
F when taking into account the relative visibility between requests encoded in
the ctx field of the Req record. In case of any strong operation op (in a request
r), we assume that all requests r′ ∈ α prior to r are visible to r (regardless of
ctx ). This is because op is executed only once r is on the committed list and thus
its position relative to all other operations is fixed and corresponds to the TOB
order.

More precisely, for any given trace α, the state object deterministically holds
the state Sα, and for any operation op ∈ ops(F), the response of the state.execute
function invoked on the state object in state Sα equals F(op, Cα), where Cα =

(Eα, opα, visα, arα) is a context such that:

• Eα consists of all the requests in α,

• opα(r) = r.op, for any request r ∈ Eα,

• visα is the visibility relation based on the ctx fields of the Req record for
the weak operations and on the order in α for strong operations, i.e. for
any r, r′ ∈ Eα such that r visα−−→ r′:

– if r′.strongOp = false , then r.id ∈ r′.ctx ;

– if r′.strongOp = true , then r
arα−−→ r′;

1We omit weak RO operations executed in Algorithm 4 line 4, which are not associated with
any Req record.
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• arα is the enumeration of requests in Eα according to their position in α.

In AcuteBayou, α = executed · reverse(toBeRolledBack), because:

• requests are executed only if toBeRolledBack is empty,2

• whenever a request is executed it is added to the executed list, thus it is
appended to the end of α,

• in the adjustExecution function, some requests move from the executed list
to the end of the toBeRolledBack list, thus not changing their position in α,

• whenever a request is rolled back, it is removed from the head of the
toBeRolledBack list, and thus removed from the end of α, consistently with
the definition of a trace.

2Weak requests are also executed in the invoke block, independently of the toBeExecuted and
toBeRolledBack lists, but they are immediately afterwards rolled back, so they do not influence
the trace.



B
Correctness proofs for ANNC and

AcuteBayou

In this section we provide the formal proofs of correctness for ANNC and Acute-
Bayou anticipated in Section 3.8. We start with an overview of proofs’ structures.

In order to prove correctness of either protocol, we take a single arbitrary
execution of the protocol, and without making any specific assumptions about
it, we show how the visibility and arbitration relations can be defined so that the
appropriate correctness guarantees can be proven. Below we briefly outline our
approach.

In both ANNC and AcuteBayou, strong operations are disseminated solely
by TOB, and weak updating operations are sent using both RB and TOB. On
the other hand weak RO operations are executed completely locally and do not
involve any network communication (strong RO operations are present only in
AcuteBayou and are treated as regular strong operations). Thus, in the proofs,
for the purpose of constructing the arbitration relation (ar ), we order all updat-
ing (strong or weak) operations based on the order of the delivery of their respec-
tive messages broadcast using TOB. In the case of updating operations whose
messages were not TOB-delivered (which can happen in the asynchronous runs),
we order them in ar after all the operations whose messages were TOB-delivered.
Their relative order can be arbitrary in ANNC, and in AcuteBayou it has to con-
form to the order imposed by the Req records. Finally, for completeness, ar
needs to include also weak RO operations. We carefully interleave them with
updating operations in such a way to guarantee no circular causality as well as
equivalence between visibility and arbitration for strong operations.

We construct the visibility relation (vis) by choosing for any two events e, e′

whether one should be observed by the other. We include an edge e
vis−−→ e′

under two, broad conditions: the edge is essential, i.e., e could have influenced
the return value of e′, or the edge is non-essential, i.e., e could not have influenced
the return value of e′ (because, e.g., e is an RO operation), but e occurs before
e′ in real-time or arbitration. Non-essential edges are important to guarantee
eventual visibility for all events.

Now let us make some observations regarding network properties during
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synchronous and asynchronous runs. Since we consider infinite fair executions,
in both types of runs each message RB-cast is guaranteed to be RB-delivered
by each replica. On the other hand, the same delivery guarantee, but for mes-
sages TOB-cast, holds only in the stable runs, and in the asynchronous runs,
some messages can be TOB-delivered while others may remain pending. How-
ever, asynchronous runs still obey other guarantees, which means that, cru-
cially, no messages TOB-cast will be TOB-delivered by any replica out of or-
der. Moreover, if some message was TOB-delivered by one replica, then it will
be TOB-delivered by all replicas. Also, if one replica manages to TOB-cast in-
finitely many messages which are then TOB-delivered, then each replica can
successfully TOB-cast and TOB-deliver its messages. Thus, in the asynchronous
runs, we expect a finite number of TOB-cast messages to be TOB-delivered,
while all other to remain pending.

For each event e let us denote by msgTOB (e) and msgRB (e), respectively,
the message TOB-cast in the event e and the message RB-cast in the event
e (both msgTOB (e) and msgRB (e) can be undefined for a given event e, de-
noted msgTOB (e) = ⊥ or msgRB (e) = ⊥). For any two events e, e′, such that
msgTOB (e) = m, msgTOB (e

′) = m′ and tobNo(m) < tobNo(m′) we introduce
the following notation: e tobNo−−−→ e′, which defines the tobNo order (based on the
tobNo function). Additionally, for any two events e, e′, such that msgTOB (e) = m

(or respectively msgRB (e) = m), we write e
TOBdel−−−−−→ e′ (e RBdel−−−−→ e′), if e′ executes

on a replica that has TOB-delivered (RB-delivered) m prior to its execution.
Finally, let us observe that we model replicas as deterministic state machines

(as discussed in Section 2.4.1), whose specification we give through pseudocode.
The variables declared in the algorithms of ANNC and AcuteBayou represent
the state of the replicas, while the code blocks represent atomic steps that transi-
tion the replicas from one state to another. It means that each such block executes
completely before any of its effects become visible. This allows us to infer the
following rule (in both ANNC and AcuteBayou) for weak operations which ex-
ecute in one atomic transition in some event e, which is either in the TOBdel or
RBdel relation with any other event e′: lvl(e) = weak ∧ (e

TOBdel−−−−−→ e′ ∨ e
RBdel−−−−→

e′) ⇒ e
rb−→ e′ (e returns before e′).

B.1 ANNC correctness proofs

Let us proceed with the proof of the guarantees offered by ANNC in the stable
runs.

Theorem 1. In stable runs ANNC satisfies BEC(weak ,FNNC )∧LIN(strong ,FNNC ).

Proof. For any given arbitrary stable run of ANNC represented by a history H =

(E, op, rval , rb, ss, lvl) we have to find suitable vis , ar and par , such that A =

(H, vis, ar , par) is such that A |= BEC(weak ,FNNC ) ∧ LIN(strong ,FNNC ).
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Additional observations. Note that each subtract operation executed in some
event e finishes when the replica TOB-delivers the message m = msgTOB (e).

It means that for every operation executed in event e′, such that e
rb−→ e′, if

msgTOB (e
′) = m′ (m′ ̸= ⊥), then tobNo(m) < tobNo(m′).

Arbitration. We construct the total order relation ar by sorting all updating
events (additions and subtractions) based on the order in which their respective
TOB-cast messages are TOB-delivered, i.e., respecting the tobNo order.

Next, we interleave the updating events with RO events (gets) in the follow-
ing way: each such an RO event e occurs in ar after the last subtract event e′

such that e ̸ rb−→ e′. Thus, for each subtract event e′ the following holds e ar−→ e′ ⇒
e

rb−→ e′. The relative order of RO operations is irrelevant.
As ANNC does not feature operation reordering, for each event e we simply

let par(e) = ar .
Visibility. For any two events e, e′ ∈ E, we include an edge e

vis−−→ e′ in our
construction of vis , if:

1. op(e) = add(v) or op(e) = subtract(v), op(e′) = subtract(v′) and e
tobNo−−−→ e′,

2. op(e) = subtract(v), op(e′) = get and e
TOBdel−−−−−→ e′,

3. op(e) = add(v), op(e′) = get , and e
TOBdel−−−−−→ e′,

4. op(e) = add(v), op(e′) = get , and e
RBdel−−−−→ e′,

5. op(e) = get , op(e′) = get and e
rb−→ e′,

6. op(e) = get , op(e′) = subtract(v′) and e
ar−→ e′,

7. op(e′) = add(v′) and e
rb−→ e′,

(for some v, v′ ∈ N).
The edges 1-4 are essential, while the edges 5-7 are non-essential. The up-

dates that are visible to a subtract operation depends solely on the tobNo order,
while in case of a get operation, the TOBdel and RBdel relations play a role. It
does not matter which updates are visible to an add operation because it always
responds with a simple ok acknowledgment, hence the edge 7 is non-essential.

Note that in case of edges 3-4, e rb−→ e′ is implied (see the general observa-

tions in Section B), and in case of the edge 6, e rb−→ e′ follows directly from the

construction of ar . Thus, for all edges 3-7, e rb−→ e′.
Having defined A (through vis , ar and par ), it now remains to show that A |=

BEC(weak ,FNNC ) ∧ LIN(strong ,FNNC ), or more specifically A |= EV(weak) ∧
EV(strong) ∧ NCC(weak) ∧ NCC(strong) ∧ RVAL(weak) ∧ RVAL(strong)

∧ SINORD(strong) ∧ RT(strong).
Eventual visibility. We prove now that eventual visibility is satisfied for all
events:

• each add or subtract event e is visible to all subsequent subtract events
from some point, because there is only a finite number of updating events

e′ such that e ̸ tobNo−−−→ e′ (1),
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• each add or subtract event e is visible to all subsequent get events from
some point, because both msgRB (e) and msgTOB (e) are eventually deliv-
ered on all replicas, (2, 3 and 4),

• each get event e is visible to all subsequent get events from some point (5),

• each get event e is visible to all subsequent subtract events from some
point, because by construction of ar there is only a finite number of events
e′ such that e ̸ ar−→ e′ (6),

• each event is visible to all subsequent add events from some point (7).

No circular causality. We need to show that acyclic(hb ∩ (W × W )) and
acyclic(hb ∩ (S × S)), where W ⊆ E,S ⊆ E, are, respectively, the sets of all
weak, and strong events. We elect to prove a more general case of acyclic(hb).

Recall that hb = (vis ∪ so)+. If acyclic(vis ∪ so), then acyclic(hb), because
transitive edges cannot introduce cycles. Thus, we have eight types of edges to
consider: edges 1-7 from vis and the eight edge e

so−→ e′. We divide them into
two groups: the first one consists of edges 1-2, while the second one consists of

edges 3-8. Note that for the second group e
rb−→ e′ always holds.

There can be no cycles when we restrict the edges only to the ones from the
first group, as edge 1 is constrained by the tobNo order, and edge 2 leads to a get

event which cannot be followed using only edges from the first group.
Also, there can be no cycles when we restrict the edges only to the ones from

the second group, as all the edges are constrained by the rb relation, which is
naturally acyclic.

Thus, a potential cycle could only form when we mix edges from both groups.

Let us assume that the cycle contains the following chain of edges: a hb−→ b
hb−→

...
hb−→ c

hb−→ ...
hb−→ d, where a, b, c, d ∈ E, all the edges between b and c belong

to the second group, while the other ones belong to the first group. Notice that

b
rb−→ c, and that op(a), op(c) ∈ {add(v) : v ∈ N} ∪ {subtract(v) : v ∈ N} while

op(b), op(d) ∈ {subtract(v) : v ∈ N} ∪ {get}. Thus, the chain consists of a series
of edges from the first group and a series of edges from the second group. The
whole cycle can be combined from multiple such chains, but for simplicity, let us
assume that it contains only one such chain and that d = a (the same reasoning
as below can be applied iteratively for multiple interleavings of edges from the
two groups).

If op(b) = subtract(v), for some v ∈ N, then a
tobNo−−−→ b (edge 1), and since

b
rb−→ c, also b

tobNo−−−→ c (see the additional observations in the beginning of the

proof). A contradiction: a tobNo−−−→ b
tobNo−−−→ c

tobNo−−−→ a.

If op(b) = get , then op(a) = subtract(v), for some v ∈ N, and a
TOBdel−−−−−→ b

(edge 2). Either a tobNo−−−→ c, or c tobNo−−−→ a. In the former case we end up with a sim-

ilar contradiction as above: a tobNo−−−→ c
tobNo−−−→ a. In the latter case, since c

tobNo−−−→ a,
also c

TOBdel−−−−−→ b (the message msgTOB (c) is TOB-delivered before the message

msgTOB (a)). However, b rb−→ c, which means that the message msgTOB (c) was
not even TOB-cast yet when b executed. A contradiction.
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Return value consistency. We need to show that for each event e ∈ E: rval(e) =
FNNC (op(e), context(A, e)). We base our reasoning below on essential vis edges
and ar order.

Trivially, the condition is satisfied for all add events, which always return ok .
For all subtract and get events, we can exclude from context(A, e) all get events
which by the definition of an RO operation are irrelevant for the computation of
FNNC .

In case of a subtract(v) operation, for some v ∈ N, executed in some event
e, context(A, e) includes all the add and subtract events that precede e in the
tobNo order. When applying the foldl function from the definition of FNNC ,
these add and subtract operations are processed one by one, in the order of their
TOB-delivery (by construction of ar ). Each add(v) operation increases the ac-
cumulator by v, and each subtract(v) operation decreases the accumulator by v,
but only if it is greater or equal v. This matches the pseudocode (lines 24 and
27-28) with the accumulator corresponding to the difference between strongAdd

and strongSub variables. Thus, the computed value of the foldl function corre-
sponds to the difference between strongAdd and strongSub variables at the time
the response to e is computed in line 26. If that value is greater or equal v then
true is returned, which matches the pseudocode’s behaviour.

In case of a get operation executed in some event e, context(A, e) includes
all the add and subtract events that were TOB-delivered before the execution
of e, as well as, (possibly) some add events which were not TOB-delivered,
but only RB-delivered before the execution of e. Note that all the latter add

events are ordered according to ar , after all the former add and subtract events
(have they had been ordered earlier due to lower tobNo value of their respective
TOB-cast message, they would also be TOB-delivered). When processing the
foldl function up to the last TOB-delivered event, the value of the accumulator
corresponds, similarly as in case of subtract events above, to the difference be-
tween strongAdd and strongSub variables. Then, when processing the remaining
add events the final computed value of the foldl function grows by an amount
V , which is equal to the sum of all these add operations’ arguments. Due to
the fact that each TOB-delivered message is first RB-delivered or is processed
as if it were RB-delivered (lines 22-23), the value of weakAdd is always greater
or equal strongAdd . The difference between weakAdd and strongAdd variables
corresponds exactly to V , because it includes events which were RB-delivered,
but not TOB-delivered. Thus, the computed value of FNNC (get , context(A, e))

equals strongAdd−strongSub+V = strongAdd−strongSub+weakAdd−strongAdd

= weakAdd − strongSub at the time of executing e, which matches rval(e).
Single order. Since there are no pending subtract operations (because eventually
every message is TOB-delivered and the operations finish), we have to simply
prove that vis ∩ (E×S) = ar ∩ (E×S), where S = {e : lvl(e) = strong}. In other
words, for any two events e ∈ E, e′ ∈ S: e vis−−→ e′ ⇔ e

ar−→ e′.

Let us begin with e
vis−−→ e′ ⇒ e

ar−→ e′. Either e tobNo−−−→ e′ (edge 1), or op(e) =
get (edge 6). In both cases e ar−→ e′.

Now let us consider e
ar−→ e′ ⇒ e

vis−−→ e′. Either op(e) ∈ {add(v) : v ∈
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N} ∪ {subtract(v) : v ∈ N}, or op(e) = get . In the former case, e tobNo−−−→ e′, and
thus e vis−−→ e′ (edge 1). In the latter case, e rb−→ e′ (by construction of ar ), and thus
e

vis−−→ e′ (edge 6).
Real-time order. We need to show that arbitration order respects the real-time
order of strong operations, i.e., rb ∩ (S × S) ⊆ ar . In other words, for any two

e, e′ ∈ S: e rb−→ e′ ⇒ e
ar−→ e′.

Clearly, if e rb−→ e′, then e
tobNo−−−→ e′ (see the additional observations in the

beginning of the proof). Thus, e ar−→ e′ (by construction of ar ).

Now, let us continue with the proof of the guarantees offered by ANNC in
the asynchronous runs.

Theorem 2. In asynchronous runs ANNC satisfies BEC(weak ,FNNC ) and does not
satisfy LIN(strong ,FNNC ).

Proof. To show the inability of ANNC to satisfy LIN(strong ,FNNC ) in
asynchronous runs, it is sufficient to observe that due to some of the TOB-cast
messages not being TOB-delivered, some of the subtract operations remain pend-
ing. A pending operation’s return value equals ∇ which is irreconcilable with
the requirements of the predicate RVAL(FNNC ).

The proof regarding the guarantees of the weak operations is similar to the
one for the stable runs, thus we rely on it and focus only on differences between
stable and asynchronous runs that need to be addressed. Now for any given
arbitrary asynchronous run of ANNC represented by a history H = (E, op, rval ,

rb, ss, lvl) we have to find suitable vis , ar and par , such that A = (H, vis, ar , par)

is such that A |= BEC(weak ,FNNC ).
Arbitration. We construct the total order relation ar by sorting all updating
events (additions and subtractions) based on the order in which their respective
TOB-cast messages are TOB-delivered, i.e., respecting the tobNo order. Updat-
ing events whose messages are not TOB-delivered are ordered after those whose
messages are TOB-delivered.

Next, we interleave the updating events with RO events (gets) in the follow-
ing way: each such an RO event e occurs in ar after the last non-pending subtract

event e′ such that e ̸ rb−→ e′. Thus, for each non-pending subtract event e′ the

following holds e
ar−→ e′ ⇒ e

rb−→ e′. The relative order of RO operations is
irrelevant.

As ANNC does not feature operation reordering, for each event e we simply
let par(e) = ar .
Visibility. We construct the visibility relation in the same way as in the stable
runs case. However, we remove edges to and from pending subtract events.
Since pending operations do not provide a return value, no edge to a pending
event is essential. Also, as we guarantee only eventual visibility for weak events,
edges to subtract events are not necessary to satisfy EV(weak). Moreover, edges
from pending events are not needed either, because by definition a pending event
is never followed in rb by any other event (which is a requirement to fail the test

for EV). Again, for all edges 3-7, e rb−→ e′.
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Having defined A (through vis , ar and par ), it now remains to show that
A |= BEC(weak ,FNNC ), or more specifically A |= EV(weak) ∧ NCC(weak) ∧
RVAL(weak).
Eventual visibility. We prove now that eventual visibility is satisfied for all weak
events:

• each add or non-pending subtract event e is visible to all subsequent get

events from some point, because msgRB (e) or msgTOB (e) are eventually
delivered on all replicas (2, 3 and 4),

• each get event e is visible to all subsequent get events from some point (5),

• each non-pending event is visible to all subsequent add events from some
point (7).

No circular causality. We use exactly the same reasoning as in the stable runs
case to show that acyclic(hb) holds true.
Return value consistency. Again, we use exactly the same reasoning as in the
stable runs case to show that for each weak event e ∈ E: rval(e) = FNNC (op(e),

context(A, e)). Although this time we only need to prove return value consis-
tency for add and get operations, it can be shown that it also holds for non-
pending subtract events.

B.2 AcuteBayou correctness proofs

The proofs for AcuteBayou are analogous to those for ANNC, but are slightly
more complex due to operation reordering and the more general nature of Acute-
Bayou with unconstrained operations’ semantics (in contrast ANNC features
weak updating operations that always return ok ). Because we strive in this sec-
tion for self-contained proofs we do not refer to the proofs for ANNC even when
doing so would allow us to omit some repetitions.

We begin with the proof of guarantees offered by AcuteBayou in the stable
runs.

Theorem 3. In stable runs AcuteBayou satisfies FEC(weak ,F) ∧ LIN(strong ,F) for
any arbitrary ACT specification (F , lvlmap).

Proof. For any given arbitrary stable run of AcuteBayou represented by a history
H = (E, op, rval , rb, ss, lvl) we have to find suitable vis , ar and par , such that
A = (H, vis, ar , par) is such that A |= FEC(weak ,F) ∧ LIN(strong ,F).
Additional observations. All events besides weak RO ones, have an associated
unique Req record which is disseminated using RB-cast and TOB-cast; let us
denote by req(e) the Req record of the event e.1 Since, the handling of weak RO

1Thus a trace of the state object, which consists of such records, can be translated into a se-
quence of events.
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events, which are local to a replica, differ significantly from other events, which
are shared, we divide the set of all events E into two subsets: Ψ ⊆ E, consisting
of weak updating, strong updating and strong RO events; and Ω ⊆ E, consisting
of weak RO events. We also further divide Ψ into subsets Ψw and Ψs, consisting
of, respectively, weak and strong events.

Upon TOB-delivery of a COMMIT message, the received request r is com-
mitted (Algorithm 4 line 21), i.e., it is appended at the end of the committed list,
and removed from the tentative list (if present there). Note that the position of
r established on the committed list never changes as the list is only appended
to. Once the request is committed, the operation associated with the request is
eventually executed (unless the request was already executed in the order con-
sistent with the commit order) and then the request is never rolled back. This is
so, because:

• the committed list is included in the newOrder list as a prefix in the commit

procedure (Algorithm 2 line 33),

• until the request r executes it has to feature on the list toBeExecuted (Algo-
rithm 2 line 47) and there can be only a finite number of items preceding it
on that list,

• the toBeRolledBack list cannot grow indefinitely without executing some
of the requests from the toBeExecuted list, which means that r is eventually
executed (Algorithm 2 line 55),

• and finally a request which is included in both the committed and executed

lists is never part of the outOfOrder list (Algorithm 2 line 45), which means
it will not be scheduled for rollback.

Weak operations execute atomically in the invoke code block where the re-
sponse is always returned immediately to the client.2 For a given weak event
e the response is computed on the state object in some state Sα, where α is the
current trace of the state object at the time of the operation’s invocation. We let
trace(e) denote the trace α.

On the other hand, strong operations follow a more complicated route. For a
strong event e: firstly the COMMIT message is TOB-cast, then upon its
TOB-delivery the request r = req(e) is committed. Since r is not disseminated
using RB-cast, it is never included in the tentative list, and so it executes for
the first time after its commit. Thus, each strong operation is executed on each
replica exactly once, on a state object in some state Sα, where α is the current
trace of the state object at the time of the execution. Note that the trace α is ex-
actly the same on each replica and it consists exactly of all the requests preceding
req(e) in the committed list (which due to the properties of TOB-delivery has the
same value on each replica upon r’s commit). Again, as in case of weak events,
we let trace(e) denote the trace α.

Note that each strong operation executed in some event e finishes only after

2If due to operation reexecutions multiple responses are returned to the client we discard the
additional ones.
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the replica TOB-delivers the message m = msgTOB (e). It means that for every

operation executed in event e′, such that e rb−→ e′, if msgTOB (e
′) = m′ (m′ ̸= ⊥),

then tobNo(m) < tobNo(m′).
Arbitration. We construct the total order relation ar by sorting all shared events
based on the order in which their respective TOB-cast messages are
TOB-delivered, i.e., respecting the tobNo order.

Next, we interleave the shared events with local events in the following way:

each local event e occurs in ar after the last shared event e′ such that e ̸ rb−→ e′.
Thus, for each shared event e′ the following holds e

ar−→ e′ ⇒ e
rb−→ e′. The

relative order of local operations is irrelevant.
We construct the perceived arbitration order par(e), for each event e, using

the trace α = trace(e). More precisely, we add all the events whose requests ap-
pear in α in the order of occurrence, next we add all the remaining shared events
according to their order in ar . Finally, we interleave the constructed sequence
with local events in a similar way as in case of ar , i.e., for each local event f and

each shared event g, the following holds f
par(e)−−−−→ g ⇒ f

rb−→ g.
Note that for a strong event e, par(e) = ar . This is because e executes once

req(e) is on the committed list, and its position on the list is determined by the
tobNo order, which means that the trace α contains exactly all the shared events
preceding e in ar .
Visibility. For any two events e, e′ ∈ E, such that trace(e′) = α, we include an
edge e

vis−−→ e′ in our construction of vis , if:

1. e ∈ Ψ, e′ ∈ Ψs, and req(e) ∈ α,

2. e ∈ Ψs, e′ ∈ Ψw, and req(e) ∈ α,

3. e ∈ Ψs, e′ ∈ Ω, and req(e) ∈ α,

4. e ∈ Ψw, e′ ∈ Ψw ∪ Ω, and req(e) ∈ α,

5. e, e′ ∈ Ω, and e
rb−→ e′,

6. e ∈ Ω, e′ ∈ Ψ, and e
ar−→ e′.

The edges 1-4 are essential, while the edges 5-6 are non-essential.

Note that in case of edge 4, either e TOBdel−−−−−→ e′, or e RBdel−−−−→ e′, and thus e rb−→ e′

is implied (see the general observations in Section B). Thus, for all edges 4-6,

e
rb−→ e′.

Additionally, observe that in case of edge 1, e TOBdel−−−−−→ e′, because α contains
only requests on the committed list (see the additional observations in the be-

ginning of the proof), and thus e
tobNo−−−→ e′. Similarly, in case of edges 2 and 3,

e
TOBdel−−−−−→ e′, because msgRB (e) = ⊥ and thus req(e) can appear in α only if it

was TOB-delivered by the replica executing e′. Also in case of edge 2, e tobNo−−−→ e′.
Having defined A (through vis , ar and par ), it now remains to show that

A |= FEC(weak ,F) ∧ LIN(strong ,F), or more specifically A |= EV(weak) ∧
EV(strong) ∧ NCC(weak) ∧ NCC(strong) ∧ FRVAL(weak) ∧ RVAL(strong)

∧ CPAR(weak) ∧ SINORD(strong) ∧ RT(strong).
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Eventual visibility. We prove now that eventual visibility is satisfied for all
events:

• each shared event e is visible to all subsequent events from some point,
because msgTOB (e) is eventually TOB-delivered and r = req(e) is placed
on the committed list on each replica, thus r is eventually executed and
never rolled back, and is included in the trace of the state object from some
point (1, 2, 3 and 4),

• each local event e is visible to all subsequent local events from some point
(5),

• each local event e is visible to all subsequent shared events from some
point, because by construction of ar there is only a finite number of events
e′ such that e ̸ ar−→ e′ (6).

No circular causality. We need to show that acyclic(hb ∩ (W × W )) and
acyclic(hb ∩ (S × S)), where W ⊆ E,S ⊆ E, are, respectively, the sets of all
weak, and strong events. We elect to prove a more general case of acyclic(hb).

Recall that hb = (vis ∪ so)+. If acyclic(vis ∪ so), then acyclic(hb), because
transitive edges cannot introduce cycles. Thus, we have six types of edges to
consider: edges 1-6 from vis and the seventh edge e

so−→ e′. We divide them into
two groups: the first one consists of edges 1-3, while the second one consists of

edges 4-7. Note that for the second group e
rb−→ e′ always holds.

There can be no cycles when we restrict the edges only to the ones from the
first group, as the edges 1 and 2 are constrained by the tobNo order, and edge 3
leads to a local event which cannot be followed using only edges from the first
group.

Also, there can be no cycles when we restrict the edges only to the ones from
the second group, as all the edges are constrained by the rb relation, which is
naturally acyclic.

Thus, a potential cycle could only form when we mix edges from both groups.

Let us assume that the cycle contains the following chain of edges: a hb−→ b
hb−→

...
hb−→ c

hb−→ ...
hb−→ d, where a, b, c, d ∈ E, all the edges between b and c belong

to the second group, while the other ones belong to the first group. Notice that

b
rb−→ c, and that a, c ∈ Ψ. Thus, the chain consists of a series of edges from the

first group and a series of edges from the second group. The whole cycle can
be combined from multiple such chains, but for simplicity, let us assume that it
contains only one such chain and that d = a (the same reasoning as below can
be applied iteratively for multiple interleavings of edges from the two groups).

If b ∈ Ψ, then a
tobNo−−−→ b (edges 1 and 2), and since b

rb−→ c, also b
tobNo−−−→ c

(see the additional observations in the beginning of the proof). A contradiction:

a
tobNo−−−→ b

tobNo−−−→ c
tobNo−−−→ a.

If b ∈ Ω, then a ∈ Ψs, and a
TOBdel−−−−−→ b (edge 3). Either a tobNo−−−→ c, or c tobNo−−−→ a.

In the former case we end up with a similar contradiction as above: a
tobNo−−−→

c
tobNo−−−→ a. In the latter case, since c

tobNo−−−→ a, also c
TOBdel−−−−−→ b (the message

msgTOB (c) is TOB-delivered before the message msgTOB (a)). However, b rb−→ c,
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which means that the message msgTOB (c) was not even TOB-cast yet when b

executed. A contradiction.
Single order. Since there are no pending strong operations (because eventually
every message is TOB-delivered and the operations finish), we have to simply
prove that vis ∩ (E×S) = ar ∩ (E×S), where S = {e : lvl(e) = strong}. In other
words, for any two events e ∈ E, e′ ∈ S: e vis−−→ e′ ⇔ e

ar−→ e′.

Let us begin with e
vis−−→ e′ ⇒ e

ar−→ e′. Either e ∈ Ψ, and thus e
tobNo−−−→ e′

(edge 1), or e ∈ Ω (edge 6). In both cases e ar−→ e′.
Now let us consider e

ar−→ e′ ⇒ e
vis−−→ e′. Either e ∈ Ψ, or e ∈ Ω. In the

former case, e tobNo−−−→ e′, and thus e must be included in trace(e′), which means
that e vis−−→ e′ (edge 1). In the latter case, e rb−→ e′ (by construction of ar ), and thus
also e

vis−−→ e′ (edge 6).
Return value consistency. Since for a strong event e, par(e) = ar and
fcontext(A, e) = context(A, e). Thus, for each event e ∈ E, we need to show
that: rval(e) = F(op(e), fcontext(A, e)). We base our reasoning below on essen-
tial vis edges and par(e) order.

Firstly, observe that we can exclude from fcontext(A, e) all local events which
by the definition of an RO operation are irrelevant for the computation of F .
Thus, let C = (EC , op, vis, par(e)), where EC = {e′ ∈ Ψ : e′

vis−−→ e}.
Then, recall that rval(e) is obtained by calling state.execute on the state object

in state Sα, where α = trace(e), and that rval(e) = F(op, Cα), where Cα =

(Eα, opα, visα, arα) is a context constructed from α as defined in Section A. It
suffices to show that the context C is isomorphic with Cα, which we do below.

Clearly, by construction of vis , if e′ vis−−→ e and e′ ∈ EC , then req(e′) ∈ α. Thus,
Eα consists of the Req records of the events in EC . By the way how Req records
are constructed (Algorithm 4 line 9), for any given event e ∈ EC , opα(req(e))

equals op(e). Also, for any two events f, g ∈ EC , f
par(e)−−−−→ g ⇔ req(f)

arα−−→
req(g), which follows trivially from the construction of par(e). It remains to
show that for any two events f, g ∈ EC , f vis−−→ g ⇔ req(f)

visα−−→ req(g).
If g ∈ Ψw and f

vis−−→ g, then req(f) ∈ trace(g), and thus req(f).id ∈ req(g).ctx ,
which implies req(f) visα−−→ req(g).

If g ∈ Ψw and req(f)
visα−−→ req(g), then req(f).id ∈ req(g).ctx , and thus

req(f) ∈ trace(g), which implies f vis−−→ g.

If g ∈ Ψs and f
vis−−→ g, then f

ar−→ g (by Single Order), and thus f
tobNo−−−→ g.

Since req(g) is committed at the time of e’s execution (req(g) ∈ α and lvl(g) =

strong), so is req(f) but its position on the committed list is earlier (f tobNo−−−→ g).
Because the order of requests in the trace is based on the executed list, whose
order is consistent with the order of the committed list, req(f) precedes req(g) in
α, which implies req(f)

arα−−→ req(g). Then, by construction of Cα, req(f) visα−−→
req(g).

If g ∈ Ψs and req(f)
visα−−→ req(g), then req(f)

arα−−→ req(g), and thus req(f)

precedes req(g) in α. Since req(g) is committed at the time of e’s execution, both
req(f) and req(g) belong to the committed list during the e’s execution, which
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implies that f tobNo−−−→ g. Thus, f ar−→ g, and by Single Order, f vis−−→ g.
Thus, C is isomorphic with Cα.

Convergent perceived arbitration. We now show, that for each event e ∈ E

there exist only a finite number of weak events e′, such that the prefixes of
par(e′) and ar up to the event e differ, which is a sufficient condition to prove
CPAR(weak).

If e ∈ Ψ, then eventually on each replica msgTOB (e) is TOB-delivered, and
req(e) is committed and executed. Thus, from some point, the trace of each sub-
sequent event e′ contains req(e), preceded by requests of events e′′ committed

earlier, such that e′′ tobNo−−−→ e. Both ar and par(e′) are constructed by first order-
ing shared events and then interleaving them with local events using the same
procedure. In both ar and par(e′), e is preceded by the same shared events e′′,

such that e′′ tobNo−−−→ e. Then, it is also preceded by the same local events, which
means the prefixes of par(e′) and ar up to e are equal.

If e ∈ Ω, then eventually the requests of all shared events e′′, such that e′′ ar−→
e, are committed and executed on each replica. Then, from some point, the trace
of each subsequent event e′ contains the requests of events e′′, ordered by tobNo.
Thus, e is preceded in both ar and par(e′) by the same shared events e′′. Because
both ar and par(e′) are interleaved with local events using the same procedure,
e is also preceded in both ar and par(e′) by the same local events, which means
the prefixes of par(e′) and ar up to e are equal.
Real-time order. We need to show that arbitration order respects real-time order
of strong operations, i.e., rb ∩ (S × S) ⊆ ar , where S = {e : lvl(e) = strong}. In

other words, for any two e, e′ ∈ S: e rb−→ e′ ⇒ e
ar−→ e′.

Clearly, if e rb−→ e′, then e
tobNo−−−→ e′ (see the additional observations in the

beginning of the proof). Thus, e ar−→ e′ (by construction of ar ).

Now, let us continue with the proof of the guarantees offered by AcuteBayou
in the asynchronous runs.

Theorem 4. In asynchronous runs AcuteBayou satisfies FEC(weak ,F) and it does
not satisfy LIN(strong ,F) for any arbitrary ACT specification (F , lvlmap).

Proof. To show the inability of AcuteBayou to satisfy LIN(strong ,F) in asyn-
chronous runs, it is sufficient to observe that due to some of the TOB-cast mes-
sages not being TOB-delivered, some of the strong operations remain pending.
A pending operation’s return value equals ∇ which is irreconcilable with the
requirements of the predicate RVAL(F).

The proof regarding the guarantees of the weak operations is similar to the
one for the stable runs, thus we rely on it and focus only on differences be-
tween stable and asynchronous runs that need to be addressed. Now for any
given arbitrary asynchronous run of AcuteBayou represented by a history H =

(E, op, rval , rb, ss, lvl) we have to find suitable vis , ar and par , such that A =

(H, vis, ar , par) is such that A |= FEC(weak ,F).
Additional observations. The same observations apply as in case of stable runs,
with the only distinction that some strong events e remain pending due to the
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lack of TOB-delivery of msgTOB (e). In such cases trace(e) is undefined.
Now let us make one more observation: the request of a weak updating

event e whose msgTOB (e) is never TOB-delivered, even though it never com-
mits, eventually settles, i.e. it is eventually executed and is never rolled back
after that execution. It is so, because after r = req(e) is RB-delivered by each
replica and placed on the tentative list, only a finite number of other requests
can commit (due to the properties of TOB in asynchronous runs), and also only
a finite number of other requests can have a lesser Req record (as defined by
the operator < in Algorithm 2) and thus precede r in the tentative list (due to
monotonically increasing clocks on each replica). Thus, once r is placed on the
toBeExecuted list, it eventually executes, and when executed r can be rolled back
at most a finite number of times, due to a commit of other request, or a lesser
Req being inserted into the tentative list.
Arbitration. We construct the total order relation ar by sorting all shared events
based on the order in which their respective TOB-cast messages are
TOB-delivered, i.e., respecting the tobNo order. Shared events whose messages
are not TOB-delivered are ordered after those whose messages are
TOB-delivered, with weak updating events appearing first, ordered relatively
based on their Req records, followed by pending strong events.

Next, we interleave the shared events with local events in the following way:
each local event e occurs in ar after the last non-pending shared event e′ such

that e ̸ rb−→ e′. Thus, for each non-pending shared event e′ the following holds

e
ar−→ e′ ⇒ e

rb−→ e′. The relative order of local events is irrelevant.
We construct the perceived arbitration order par(e) for each event e, in the

same way as in case of stable runs, i.e. using trace(e), the remaining shared
events from ar , and finally interleaving the constructed sequence with local
events as in case of ar (so that for each local event e′ and each non-pending

shared event e′′, the following holds e′
par(e)−−−−→ e′′ ⇒ e′

rb−→ e′′.
For a pending strong event e, which was not executed at all, we let par(e) =

ar .
Note that for a non-pending strong event e, par(e) = ar . This is because

e executes once req(e) is on the committed list, and its position on the list is
determined by the tobNo order, which means that its trace will contain exactly
all the shared events preceding e in ar .
Visibility. We construct the visibility relation in the same way as in the stable
runs case. However, we remove edges to and from pending strong events. Since
pending operations do not provide a return value, no edge to a pending event is
essential. Also, as we guarantee only eventual visibility for weak events, edges
to strong events are not necessary to satisfy EV(weak). Moreover, edges from
pending events are not needed either, because by definition a pending event is
never followed in rb by any other event (which is a requirement to fail the test

for EV). Again, for all edges 4-6, e rb−→ e′.
Having defined A (through vis , ar and par ), it now remains to show that

A |= FEC(weak ,FNNC ), or more specifically A |= EV(weak) ∧ NCC(weak) ∧
FRVAL(weak) ∧ CPAR(weak).
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Eventual visibility. We prove now that eventual visibility is satisfied for all weak
events:

• each non-pending shared event e, such that msgTOB (e) is eventually
TOB-delivered on each replica, is visible to all subsequent non-pending
events from some point, because r = req(e) is placed on the committed list
on each replica, thus r is eventually executed and never rolled back, and is
included in the trace of the state object from some point (2, 3 and 4),

• each weak updating event e, such that msgTOB (e) is not eventually
TOB-delivered on each replica, is visible to all subsequent non-pending
events from some point, because it settles (see the additional observations
in the beginning of the proof) and is included in the trace of the state object
on each replica from some point (4),

• each local event e is visible to all subsequent local events from some point
(5),

• each local event e is visible to all subsequent non-pending shared events
from some point, because by construction of ar there is only a finite num-
ber of events e′ such that e ̸ ar−→ e′ (6).

No circular causality. We use exactly the same reasoning as in the stable runs
case to show that acyclic(hb) holds true.
Return value consistency. Again, we use exactly the same reasoning as in the
stable runs case to show that for each weak event e ∈ E: rval(e) = FNNC (op(e),

fcontext(A, e)). Although this time we only need to prove return value consis-
tency for weak operations, it can be shown that it also holds for non-pending
strong events.
Convergent perceived arbitration. We now show, that for each non-pending3

event e ∈ E there exist only a finite number of weak events e′, such that the
prefixes of par(e′) and ar up to the event e differ, which is a sufficient condition
to prove CPAR(weak).

If e ∈ Ψ and msgTOB (e) is eventually TOB-delivered, then the same logic
can be applied as in case of stable runs to show that from some point for each
subsequent event e′ the prefixes of par(e′) and ar up to e are equal.

If e ∈ Ψw and msgTOB (e) is never TOB-delivered, then it eventually settles
(see the additional observations in the beginning of the proof) and thus also the
same logic can be applied as in case of stable runs, with the distinction that e is
preceded in ar and par(e′) not only by events e′′ whose requests are committed,
but also by events e′′, such that req(e′′) < req(e).

If e ∈ Ω, then eventually the requests of all shared events e′′, such that e′′ ar−→
e (none of which are pending by the construction of ar ), are either committed, or
settled, and executed on each replica. Then, from some point, the trace of each
subsequent event e′ contains the requests of events e′′, ordered by both tobNo,
and based on their Req records. Thus, e is preceded in both ar and par(e′) by the

3We can exclude pending events, because according to the construction of vis they are not
visible to any other event, and thus automatically satisfy the requirements of the CPAR predicate.
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same shared events e′′. Because both ar and par(e′) are interleaved with local
events using the same procedure, e is also preceded in both ar and par(e′) by
the same local events, which means the prefixes of par(e′) and ar up to e are
equal.





Streszczenie

Globalne usługi, które stanowią serce dzisiejszego internetu, takie jak ko-
munikatory, sieci społecznościowe, handel elektroniczny, bankowość, rachunki
maklerskie, czy gry online, są realizowane przez skomplikowane systemy roz-
proszone. Aby sprostać rosnącemu obciążeniu generowanemu przez miliony
użytkowników, te systemy muszą być skalowalne horyzontalnie, co oznacza,
że można zwiększyć ich wydajność poprzez dodanie dodatkowych węzłów ob-
liczeniowych. Spełnienie owych ogromnych wymagań dotyczących skalowal-
ności jest dodatkowo utrudnione przez fakt, że systemy te muszą pozostawać
sprawne przez cały czas. Jako, że żaden sprzęt komputerowy, czy sieciowy,
nie są całkowicie odporne na usterki techniczne, same usługi muszą być zaim-
plementowane w taki sposób, który umożliwi im z łatwością tolerować awarie.
W ten sposób systemy realizujące te usługi mogą stać się wysoko dostępne, tzn.
mogą przetwarzać żądania klientów nawet gdy występują (częściowe) awarie
systemu.

Powszechną techniką stosowaną w celu zwiększenia dostępności systemu
jest replikacja, która polega na utrzymywaniu wielu kopii danych i kodu usługi,
zwanych replikami, na fizycznie niezależnych węzłach, często rozproszonych
geograficznie. Poza zapewnieniem odporności na awarie, replikacja poprawia
skalowalność i obniża czasy odpowiedzi gdy repliki znajdują się geograficznie
blisko klientów. Tradycyjne schematy replikacji, takie jak zreplikowana maszyna
stanowa [15, 16] czy replika główna – replika zapasowa (ang. primary-backup) [17],
utrzymują silną spójność pomiędzy replikami, tzn. repliki koordynują zmiany
swoich stanów w taki sposób, aby system jako całość dla klientów sprawiał wra-
żenie pojedynczego scentralizowanego serwera. Jednakże, utrzymywanie re-
plik w stanie synchronizacji jest kosztowne, ponieważ zazwyczaj wymaga roz-
wiązania problemu rozproszonego konsensusu. Z tego powodu przed wysła-
niem odpowiedzi do klienta repliki muszą wymienić pomiędzy sobą wiele wia-
domości, co znacząco zwiększa czas odpowiedzi. Ponadto, utrzymanie spójno-
ści replik jest niemożliwe gdy występują podziały sieci, a usługa powinna po-
zostać dostępna, jak stanowi słynne twierdzenie CAP [18]. Dlatego tradycyjne
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silnie spójne schematy replikacji gwarantują jedynie dostępność w przypadku
(ograniczonej liczby) awarii replik, ale nie w przypadku awarii sieci powodują-
cych brak łączności pomiędzy grupami replik.

W celu pokonania powyższych ograniczeń, wymagania co do spójności mo-
gą być osłabione. Kiedy stosowana jest jakaś odmiana spójności ostatecznej [19]
repliki mogą synchronizować swoje stany jedynie ostatecznie. Znaczy to, że re-
pliki mogą przetwarzać żądania klientów niezależnie i rozsyłać zmiany stanów
asynchronicznie. Z tego powodu, nawet gdy występują podziały sieci, wysoka
dostępność może być utrzymana. By osiągnąć ten cel, ostatecznie spójne sys-
temy cechują się zdecentralizowaną architekturą i polegają na (asynchronicznej)
komunikacji peer to peer (p2p). Jest to model wprowadzony pierwszy raz przez
Amazon w ich wpływowym magazynie danych Dynamo [20] i który został po-
wielony w wielu popularnych magazynach danych NoSQL (przykładowo w
Apache Cassandra [21], Scylla [22], Riak [23], Voldemort [24] oraz Netflix Dyno-
mite [25]).

Jednakże, osłabione modele spójności oferują słabsze gwarancje i z zasady
dopuszczają pewną ilość niespójności. Jeżeli nie są obsłużone prawidłowo, mo-
gą prowadzić to niepożądanych anomalii, w tym utraty danych. Z tego po-
wodu programiści muszą ostrożnie projektować kod zreplikowanych usług tak
by obsłużyć wszystkie przypadki graniczne i uwzględnić możliwość występo-
wania anomalii. Aby zredukować obciążenie programistów stosowane są spe-
cjalne struktury danych, zwane wolnymi od konfliktów, replikowanymi typami da-
nych (ang. conflict-free replicated data types, CRDTs) [26, 27, 28]. CRDT mogą być
zaimplementowane w sposób całkowicie asynchroniczny i z zasady zapewniają
ostateczną zbieżność stanu replik. Do popularnych CRDT zaliczają się wielo-
wartościowe rejestry (ang. multi-value registers, MVRs), rejestry typu ostatni-zapis-
wygrywa (ang. emphlast-write-wins registers, LWW-registers), pozytywno-nega-
tywne liczniki (ang. positive-negative-counters, PN-counters), zbiory zaobserwowane-
usuń (ang. observed-remove sets, OR-sets) [27], jak i struktury danych do współ-
edytowania tekstu online [29].

Niestety semantyka CRDT jest bardzo ograniczona. Aby zapewnić wysoką
dostępność, niskie czasy odpowiedzi oraz ostateczną zbieżność stanów replik,
struktury te wymagają aby wszystkie operacje były naprzemienne, albo by ist-
niały naprzemienne, asocjacyjne, idempotentne procedury scalania stanów re-
plik. Dlatego struktury te nie nadają się do wszystkich zastosowań. Dla przy-
kładu rozważmy pojedynczy nieujemny licznik całkowitoliczbowy. Operacja
dodania może być trywialnie zaimplementowana w sposób wolny od konflik-
tów, ponieważ operacje dodawania są naprzemienne. Jednakże implementa-
cja operacji odejmowania wymaga globalnego uzgodnienia żeby zapewnić, że
wartość licznika nigdy nie spadnie poniżej zera. Podobnie w systemie aukcyj-
nym współbieżne oferty mogą być uznane za operacje niezależne, więc ich wy-
konanie nie wymaga synchronizacji. Jednakże operacja, która zamyka aukcję
wymaga rozwiązania rozproszonego konsensusu by wybrać jedną zwycięską
ofertę [30].

Z powodu ograniczeń CRDT, i spójności ostatecznej w ogólności, w ostatnim
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czasie podejmowanych było wiele prób, zarówno w przemyśle [31, 32, 33, 34],
jak i w nauce [35, 36, 37, 38, 39, 40, 41, 42], żeby wzmocnić semantykę syste-
mów ostatecznie spójnych poprzez dopuszczenie do wykonywania części ope-
racji z silniejszymi gwarancjami spójności, lub poprzez dodanie funkcji pseudo-
transakcyjnych. W ten sposób wyłoniła się nowa klasa systemów wysoko do-
stępnych, zwana systemami o mieszanej spójności, w której to jedynie część ope-
racji musi być wysoko dostępna. Operacje wykonywane ze słabszymi gwaran-
cjami spójności, zwane słabymi, pozostają wysoko dostępne nawet w obliczu
występowania awarii, podczas gdy operacje wykonywane w trybie silnie spój-
nym, zwane silnymi, mogą się blokować, np z powodu awarii sieci. Analiza i
formalizacja własności poprawności systemów o mieszanej spójności stanowią
główny temat tej pracy.

Motywacje

Tak jak to zostało powyżej omówione, z powodu rosnącego znaczenia wysokiej
dostępności w kontekście współczesnych globalnych usług w internecie, sys-
temy wysoko dostępne, włączając w to rozwiązania warstwy pośredniczącej
(ang. middleware) takie jak magazyny danych NoSQL, dynamicznie się roz-
powszechniają. Z powodu naszego rosnącego uzależnienia od tych systemów,
badanie i weryfikacja ich poprawności stanowi problem najwyższego znacze-
nia. Mimo, że istnieje obecnie znacząca liczba badań w tym obszarze, wciąż
wiele pozostaje do zrobienia.

Przez długi czas spójność ostateczna unikała klarownego ujęcia i sformalizo-
wania. Wiele definicji zostało zaproponowanych (zobacz np. [19, 43, 44, 45, 46,
2, 26, 37, 47, 48, 49]), które różniły się znacząco zarówno pod względem użytych
technik formalizacji, jak i praktycznie oferowanych gwarancji. Z drugiej strony
silna spójność, która jest stosowana od wielu dekad (zobacz np. [50, 51, 52]), jest
dużo lepiej zrozumiana. Jest tak ponieważ silna spójność opiera się na bardzo
prostej zasadzie: system silnie spójny wykonujący żądania współbieżnie po-
winien być nierozróżnialny od systemu wykonującego żądania sekwencyjnie.
W porównaniu do spójności silnej, spójność ostateczna zapewnia gwarancje,
które są nie tylko znacznie słabsze, ale również trudne do zrozumienia z po-
wodu ich skomplikowania albo nieprecyzyjności. Dla przykładu definicja po-
dana przez Vogelsa [19] mówi, że kiedy zapisy ustaną, ostatecznie wszystkie
odczyty zwrócą tą samą wartość, ale definicja ta nie nakłada żadnych ograni-
czeń na zwrócone wartości gdy zapisy nigdy nie ustają. Znowuż typy chmurowe
(ang. cloud types) [37] wymagają od użytkownika myślenia w kategoriach rewi-
zji, które mogą się dzielić i łączyć jak w systemie kontroli kodu źródłowego. Jest
to tzw model spójności rewizji (ang. revision consistency) [47], który został osta-
tecznie porzucony ze względu na nadmierne skomplikowanie [38]. Z tego po-
wodu udowadnianie poprawności konkretnego systemu ostatecznie spójnego,
jak również wnioskowanie na temat takich systemów w ogólności, jest bardziej
wymagające. Co więcej, gdy ostatecznie spójne (słabe) operacje są mieszane z
operacjami silnie spójnymi (silnymi) w jednym systemie o spójności mieszanej,
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klarowność oferowanych gwarancji jest jeszcze mocniej obniżona. Istotnie, nie
ma obecnie konsensusu co do oczekiwanej semantyki tego typu systemów.

Systemom o mieszanej spójności wykorzystywanym w przemyśle brakuje
klarownie zdefiniowanej semantyki, albo mają tę semantykę znacząco ograni-
czoną. Dla przykładu wykonywanie lekkich transakcji w Apache Cassandra [21]
na danych, które są w tym samym czasie modyfikowane przez zwykłe operacje
ostatecznie spójne, prowadzi do niezdefiniowanego stanu systemu (ang. un-
defined behaviour) [53]. Z drugiej strony w Riaku [23] elementy, do których
dostęp jest realizowany przez operacje słabe i elementy, do których dostęp jest
realizowany przez operacje silne, muszą się mieścić w oddzielnych, niezależ-
nych przestrzeniach, zwanych kubełkami, [34], przez co system tak naprawdę nie
posiada semantyki spójności mieszanej. Inne systemy [39, 31, 32] umożliwiają
dobór poziomu spójności jedynie dla operacji odczytu. Klienci mogą wybrać
odczyty świeże albo potencjalnie przestarzałe (ang. stale). Z kolei zapisy w tym
podejściu są zawsze wykonywane jako operacje silne.

Wszystkie znane podejścia, które faktycznie spełniają semantykę mieszanej
spójności posiadają jakieś ograniczenia w kontekście ich działania w obliczu
awarii. Dla przykładu w typach chmurowych [37], jak i w globalnym protokole se-
kwencyjnym [38], wszystkie operacje zapisu (zarówno słabe jak i silne) muszą
być przekazane do scentralizowanego podsystemu, zwanego chmurą, którego
zadaniem jest rozgłaszanie do wszystkich węzłów komunikatów o zmianach
stanów w uporządkowanym strumieniu. Kiedy chmura jest niedostępna, np z
powodu awarii większości serwerów działających w chmurze, albo z powodu
podziału sieci, operacja zapisu wciąż może zostać wykonana i zaaplikowana lo-
kalnie na którymś z węzłów, ale nie będzie widoczna dla innych węzłów. Jako
kolejny przykład rozważmy replikację leniwą [54], spójność niebiesko-czerwoną [35],
oraz częściowe ograniczenia porządku [36], w których to wszystkie repliki muszą
pozostawać sprawne, aby możliwe było wykonanie operacji silnej na dowol-
nej z replik. W związku z tym awaria pojedynczej repliki może zablokować
zdolność systemu do wykonywania operacji silnych, aż do naprawienia usterki.
Typowe silnie spójne systemy zreplikowane wykorzystujące nie-blokujące proto-
koły uzgadniania, takie jak Paxos [55], mogą tolerować awarie aż do połowy
wszystkich replik i wciąż przetwarzać operacje. Tak więc niemożność tolerowa-
nia nawet pojedynczej awarii w systemie wysoko dostępnym, który powinien
z łatwością tolerować awarie, wydaje się głęboko niezadowalająca, nawet jeżeli
owa niemożność dotyczy jedynie operacji silnych.

Rozwiązania omówione powyżej w obliczu awarii idą na kompromis osła-
biając postęp, albo operacji słabych (nie propagując wytworzonych przez nie
zmian), albo operacji silnych (blokując ich wykonanie). Takie kompromisy wy-
nikające z mieszania operacji słabych i silnych są warte zbadania. W szczególno-
ści interesującym pytaniem, na które próbujemy znaleźć odpowiedź w tej pracy,
jest to czy istnieje system o spójności mieszanej, który obsługuje operacje silne
w sposób nie-blokujący (tzn toleruje przynajmniej jakąś liczbę awarii replik),
jednocześnie nie ograniczając postępu operacji słabych. Taki system posiadałby
najlepsze cechy systemów ostatecznie spójnych i silnie spójnych. Mianowicie,
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oferowałby wysoką dostępność i niskie czasy dostępu w przypadku operacji
słabych, oraz silne gwarancje i (ograniczoną) tolerancję awarii w przypadku
operacji silnych. Następnym nasuwającym się pytaniem jest to jakie gwaran-
cje poprawności taki system może oferować.

Niezależnie od tego czy dany system wysoko dostępny posiada dodatkowe
operacje silne czy nie, zapewnienie jego poprawnego działania w obliczu awa-
rii jest krytycznie istotne. Systemy te są celowo projektowane pod kątem sce-
nariuszy, w których w każdej chwili mogą wystąpić awarie. Może być zatem
zaskakującym fakt, że większość prac dotyczących poprawności systemów wy-
soko dostępnych, które można znaleźć w literaturze, całkowicie abstrahuje od
problemu awarii replik lub sieci (zobacz np. [45, 35, 46, 56, 57, 58, 59, 60, 36, 61,
48, 49]). Analizy wykonane w ten sposób mogą być uważane za niekompletne:
protokół, który działa poprawnie tylko gdy awarie nie występują, niekoniecznie
działa poprawnie gdy awarie występują. Z tego względu przeprowadzenie sze-
rokiej, wyczerpującej analizy poprawności systemów wysoko dostępnych z jaw-
nym uwzględnieniem różnorodnych modeli awarii, może dostarczyć nowych
wglądów i wiedzy na temat występujących kompromisów, które dotychczas po-
zostawały niezauważone w środowisku naukowym jak i w przemyśle.

Cele i wkład pracy

Biorąc pod uwagę powyższe motywacje, w następujący sposób formułujemy
główną tezę dysertacji:

Ograniczenia i kompromisy występujące w osiągalnych gwarancjach poprawno-
ści systemów wysoko dostępnych wynikające z operacji o mieszanej spójności, oraz
wynikające z występowania awarii serwerów i sieci, mogą zostać formalnie ozna-
czone i można na ich temat wnioskować.

Potwierdzamy prawdziwość tezy w dwóch częściach. Po pierwsze ozna-
czamy i analizujemy kompromisy dotyczące poprawności wynikające z ope-
racji o mieszanej spójności. Po drugie wykorzystując podejście holistyczne do
analizy poprawności, którego częścią jest stworzenie wiernego modelu rzeczy-
wistych systemów opartych o architekturę klient-serwer oraz uwzględnienie
w sposób jawny występowania awarii, precyzyjnie określamy ograniczenia w
gwarancjach poprawności tego typu systemów wynikające z występowania
awarii.

Poniżej podsumowujemy osiągnięty wkład naukowy naszej pracy.
Po pierwsze w rozdziale 2 definiujemy przenikliwe typy chmurowe (ang. acute

cloud types, ACT), jako abstrakcję dla systemów o spójności mieszanej, które łą-
czą najlepsze cechy systemów spójnych ostatecznie oraz systemów silnie spój-
nych. ACT posiadają dwa rodzaje operacji: operacje słabe nacelowowane na nie-
ograniczoną skalowalność i niskie czasy odpowiedzi (jak operacje w CRDT),
oraz operacje silne używane gdy gwarancje spójności ostatecznej są niewystar-
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czające. Operacje silne wykorzystują nie-blokującą synchronizację na bazie roz-
proszonego konsensusu. Zaproponowaliśmy i przeanalizowaliśmy przykłado-
wy ACT o nazwie przenikliwy licznik nieujemny (ang. acute non-negative counter,
ANNC). Przeanalizowaliśmy również wpływowy system Bayou i pokazaliśmy
jak można go usprawnić aby stał się ACT ogólnego przeznaczenia o nazwie
AcuteBayou. Dzięki temu zidentyfikowaliśmy niepożądane anomalie, które
mogą się pojawić w Bayou. W szczególności odkryliśmy anomalię, którą na-
zwaliśmy tymczasową zamianą kolejności operacji, która okazała się nieodzowną,
nieusuwalną cechą systemu Bayou i innych, które w podobny sposób co Bayou,
używają dwóch niekompatybilnych ze sobą sposobów szeregowania operacji
silnych i słabych.

Następnie w rozdziale 3 wyprowadziliśmy system formalny (ang. formal
framework), który umożliwia wnioskowanie na temat ACT i innych systemów
o spójności mieszanej. W ramach tego systemu sformalizowaliśmy kilka kry-
teriów poprawności, w tym oscylującą spójność ostateczną (ang. fluctuating even-
tual consistency, FEC), która adekwatnie oddaje gwarancje poprawności ofero-
wane przez systemy dla których tymczasowa zamiana kolejności operacji jest
nieodzowna. Korzystając z naszego systemu formalnego udowodniliśmy rów-
nież poprawność ANNC i AcuteBayou.

Potem w rozdziale 4 uogólniliśmy nasze spostrzeżenia dotyczące Acute-
Bayou i zaproponowaliśmy rezultat formalny ukazujący ograniczenia w moż-
liwych do osiągnięcia gwarancjach poprawności. Udowodniliśmy, że systemy
o mieszanej spójności, które łączą najlepsze cechy systemów spójnych ostatecz-
nie oraz systemów silnie spójnych, tak jak ACT, i które cechują się dowolnie
skomplikowaną semantyką operacji, nie mogą uniknąć tymczasowej zamiany
kolejności operacji. Wobec tego, systemy te nie spełniają własności podstawo-
wej spójności ostatecznej (ang. basic eventual consistency) dla operacji słabych.
Zbadaliśmy potencjalnie występujące kompromisy w gwarancjach poprawno-
ści oraz cechach systemów o mieszanej spójności poprzez poddanie analizie in-
nych rozwiązań o mieszanej spójności, które nie posiadają wszystkich pożąda-
nych cech ACT.

Dalej w rozdziale 5 pokazaliśmy jak adekwatnie modelować rzeczywiste
systemy wysoko dostępne o architekturze klient-serwer w celu wnioskowania
na temat ich poprawności w obliczu występowania awarii. Nakreśliliśmy moż-
liwe scenariusze awarii i sklasyfikowaliśmy je w sześciu modelach awarii (ang.
failure models). Podaliśmy również model formalny (ang. formal framework),
w którym można jawnie specyfikować awarie. Model ten umożliwia formuło-
wanie świadomych awarii kryteriów poprawności.

Kolejno w rozdziale 6 wyraziliśmy w naszym modelu gwarancje sesji i prze-
analizowaliśmy ich własności i znaczenie. Pokazaliśmy, że klasyczne gwarancje
sesji mogą być kontrproduktywne w przypadku niektórych typów danych i po-
daliśmy nowy substytut w ich miejsce, o nazwie zachowanie kontekstu.

Na koniec w rozdziale 7 przeanalizowaliśmy gwarancje poprawności, które
są możliwe do osiągnięcia w sześciu różnych modelach awarii. W szczegól-
ności pokazaliśmy, że podstawowa spójność ostateczna nie jest osiągalna gdy
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występują permanentne podziały sieci lub awarie replik, po których niemoż-
liwe jest odtworzenie ich stanu. Zdefiniowaliśmy ostateczne warianty dwóch
kluczowych gwarancji sesji i rodzinę świadomych awarii kryteriów poprawno-
ści, które precyzyjnie oddają gwarancje poprawności osiągalne w rozważanych
modelach awarii. Zidentyfikowaliśmy również kilka niepożądanych anomalii,
które mogą być zaobserwowane przez klientów gdy występują awarie. Pokaza-
liśmy jak można przeciwdziałać występowaniu niektórych z nich.

W przyszłości planujemy zaprojektować nowe przenikliwe typy chmurowe.
W szczególności takie, które mogą być zastosowane praktycznie, np. w magazy-
nie danych NoSQL. Ponadto, chcielibyśmy zbadać, które grupy operacji mogą
być zaimplementowane w ACT bez tymczasowej zamiany kolejności operacji.
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