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Chapter 1

Introduction

1.1 Motivation and Problem Statement
Learning classifiers is the fundamental research area in supervised machine learning, which
focuses on constructing systems that are able to automatically assign instances to a set of
predefined classes basing on their description with a set of attributes [52]. Such a system,
called a classifier, is not explicitly programmed but instead discovers the class assignment
function basing on a dataset of learning examples. Such a generally posed problem led to
the development of numerous algorithms that are widely used in many distinct application
areas such as product recommendation [131], assessment of recidivism risk [148], author-
ship identification [58], traffic prediction [117], etc. Despite prominent research interest
in the problem of classification and considerable successes in many applications, some is-
sues still remain open and hinder widespread usage in specific yet important application
domains. One such issue is learning from class imbalanced data [163, 76].

A dataset is called imbalanced if it contains classes of different sizes and at least one
of the classes is insufficiently represented [25]. We call these underrepresented classes mi-
nority ones, whereas classes that are more prominent in the dataset are called majority
classes. For instance, in the medical domain, one may need to construct a classifier that
filters out urgent cases among patients coming to the hospital’s emergency department.
Typically, only a small fraction of patients must be immediately treated and later hos-
pitalized1 which results in imbalanced class distribution. Note that recognizing minority
(urgent) cases correctly is critical for successfully implementing machine learning methods
in this application.

Besides the medical domain, the effective recognition of minority classes is crucial in
many more application domains of machine learning, such as sentiment classification [22],
automatic graph construction [89], fraud detection [173] or cybersecurity incidents de-
tection [142]. Contrary to the expectations of practitioners who seek high accuracy in
recognizing minority classes, classical machine learning methods construct classifiers that
recognize majority classes more accurately. In extreme cases, the constructed classifier
completely ignores minority classes, not being able to classify any test example into these
classes [89].

1According to the 2018 National Hospital Ambulatory Medical Care Survey (United States), only 12.4%
of emergency department visits result in hospital admission.
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Initially, it was thought that this undesirable behavior of the learning systems emerged
only from the global imbalance ratio, i.e., from the significant discrepancy between class
sizes in the training set. However, the experimental analyses demonstrated that for some
simple classification problems the level of class imbalance has almost no effect on the
finally constructed classifier [64, 127]. It was observed that the class imbalance affects the
construction of classifiers and significantly deteriorates the recognition of minority classes
only if it occurs together with other data difficulty factors [65, 127, 122]. Data difficulty
factors can be roughly divided into global factors that affect all the examples in the dataset
and local factors that concern only a certain subset of instances [86]. One example of a
global data difficulty factor is the discussed class imbalance, whereas class overlapping,
class decomposition into sub-concepts, or a significant number of outlier observations are
typical examples of local factors.

Due to the great practical importance of learning from imbalanced data, a lot of
dedicated methods have been proposed to mitigate this issue [16]. These methods can
be divided into algorithmic methods, methods modifying data distribution, and cost-
sensitive methods [54]. Algorithmic methods try to solve the difficulties resulting from the
construction of classifiers on imbalanced data by modifying the existing learning systems,
e.g., changing the decision rule or weighing the loss function. This category also includes
specialized classifier ensembles that modify voting schemes or the way the base classifiers
are constructed. Unlike algorithmic methods that focus on modifying specific algorithms,
methods modifying the data distribution in the original training data are universal and
independent of the selected classifier. These methods modify an imbalanced dataset in
a way that a classifier learned on such preprocessed data achieves better results on the
minority class. The last group of methods uses cost-sensitive learning algorithms, focusing
the classification system on minority classes by assigning higher misclassification costs to
their examples.

The vast majority of the methods included in the aforementioned categories are de-
signed for binary imbalanced data only. Nevertheless, the phenomenon of class imbalance
also occurs in multi-class datasets. Extending our previous example, the hospital may be
interested not only in identifying urgent cases but also in detecting the cases that should
be treated by general practitioners or those which should be handled in different hospitals
(due to e.g. lack of a specialized unit). Again, the two just described classes will have
fewer examples than the less urgent cases treated onsite that will constitute the majority
class. The presented problem has several minority classes, but other problems with sev-
eral majority classes or with several majority and minority classes also occur in practice in
many important application domains, including text analysis [78], diagnosis of technical
devices [152], or analysis of medical data [154, 135].

Even so, much of the research to date and the proposed learning methods only deal with
two-class imbalanced classification problems and cannot be directly applied to problems
having several classes. The few proposed methods are limited to problem decompositions
into binary tasks and other specialized methods, mostly adaptations of binary preprocess-
ing methods [130]. Nevertheless, straightforward modifications of the binary methods do
not take into account more complex relationships that arise between classes in multi-class
imbalanced problems and do not deal with additional sources of difficulties identified by
practitioners.
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Moreover, the proposed methods are often constructed rather heuristically, without a
clear reference to the issues of multi-class imbalanced learning they are aiming to solve.
This is because the sources of difficulty in classifying multiple imbalanced classes were not
extensively studied. Such theoretical and experimental analyzes of imbalanced classifica-
tion conducted so far, with very few exceptions, were limited to binary problems only and
their results cannot be easily applied to multi-class data. Performing such analysis would
not only deepen the understanding of the problem but also could lead to the development
of new methods for multi-class imbalanced classification, designed in a principled way. It
is worth mentioning that works on analyzing data difficulty factors in binary imbalanced
problems were successfully conducted [122, 138, 125] and resulted in the proposition of
several very effective classification methods [121, 124, 14, 109].

Even though imbalanced data classification has been intensively investigated in the past
quarter of a century, it is still considered an open problem. Notably, there is a recently
growing research interest in the more challenging multi-class variant of the problem, which
is still under-researched and has many potential applications. There is a considerable
need to design new specialized methods for multi-class imbalanced data and thoroughly
characterize the problem.

Based on the above analysis, we formulate the following hypothesis of this dissertation:

Novel, more effective methods for constructing classifiers from multi-class imbalanced
data can be proposed. Such methods could take into account information about the
sources of difficulties related to the data distribution both at the local and global
level.

This hypothesis led us to formulate the following principal goals of this thesis:

• to extend the analysis of difficulty sources in multi-class imbalanced data, particu-
larly by performing experimental analysis of several data difficulty factors, including
global factors such as imbalance ratio, class size configurations, and the number of
classes, as well as local factors such as class overlapping and interrelations between
different class types,

• to extend and adapt a method for identifying data difficulty factors in real multi-class
imbalanced datasets that allow for modeling interdependencies between classes

• to propose a new data-level method for multi-class imbalanced data classification
that adapts their performance on the basis of the detected characteristics of the
data distribution through the analysis of difficulty factors,

• to develop new methods for the classification of imbalanced multi-class data that are
based on ensembles of classifiers.

The main contributions of the conducted research are:

• the experimental study investigating the influence of various data difficulty factors
on the performance of classification algorithms on multi-class imbalanced problems,
also in relation to the balanced optimal Bayes classifier,

• Similarity Oversampling and Undersampling Preprocessing (SOUP) algorithm, which
uses difficulty factor analysis along with expert-based class dependency modeling to
modify the data distribution such that the classifiers learned on it have better mi-
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nority class prediction ability,

• the development of the Multi-class Roughly Balanced Bagging algorithm that ex-
tends bagging ensemble technique for multi-class imbalanced data, which achieves
high prediction quality for complex multi-class imbalanced datasets (including these
with a large number of features),

• the experimental evaluation of the usefulness of multi-class imbalanced data learning
methods, including those proposed in this thesis, for a practical machine learning
problem, namely sentiment analysis. This problem was chosen for the analysis as it
has great practical importance and is considered relatively difficult [83].

Some contributions presented in this thesis have already been presented at international
conferences and published in scientific journals. The list of the author’s publications can
be found in Appendix A.

1.2 Thesis Structure
The thesis is organized as follows: Chapter 2 introduces the reader to the problem of
imbalanced data and provides a brief overview of algorithms for binary imbalanced data.
The chapter also contains the discussion of the research on data difficulty factors as well
as a review of methods for multi-class imbalanced data classification. Chapter 3 presents
an experimental evaluation of the impact of several local and global data difficulty factors
on classification performance on multi-class imbalanced problems. The conclusions from
this analysis of data difficulty factors are used to propose a method for detecting them in
real datasets in Chapter 4. That chapter also presents a new resampling method, called
Similarity Oversampling and Undersampling Preprocessing, that exploits these detected
factors to improve classifiers’ performance. This resampling method is further extended in
Chapter 5 to construct an even more effective bagging ensemble for multi-class imbalanced
data. Furthermore, the chapter also presents another well-performing ensemble for imbal-
anced data. These new bagging ensembles are compared against each other and with other
related ensemble methods, highlighting the benefits of exploiting data difficulty factors in
the design of new learning algorithms. Finally, in Chapter 6 the proposed methods are
used for a challenging and practical task of sentiment classification.



Chapter 2

Learning from Imbalanced Data

2.1 Imbalanced Data
A data set is called imbalanced when the number of instances representing different classes
is not equal. However, to talk about the problem of imbalanced data classification, we usu-
ally have in mind situations where the differences in class cardinalities are significant [54].
The vast majority of related works consider binary imbalanced classification problems
where the class with a smaller number of examples is called minority or positive class and
their counterpart is referred to as majority or negative class.

While learning from an imbalanced dataset, typical learning systems tend to focus their
operation on the most prominent classes at the same time disregarding the classification
performance on the minority classes [16]. It usually comes from the focus on obtaining
overall high classification accuracy that can be more easily achieved by assigning examples
to more frequent classes, e.g., when the decision is uncertain. Such behavior of a learning
system can stem from optimizing a loss function that is calibrated for 0-1 loss, but also
from preferring more general rules that cover more instances during classifier construction.
Even though classification accuracy is a relevant metric in some applications and such
operation of learning systems is beneficial, in other domains, classifiers with insufficient
recognition of minority classes are of little use.

One example of such an application domain is medicine. For instance, in cancer screen-
ing testing, the goal is to filter out as many healthy patients as possible while not discarding
any infected patient from additional, more thorough testing. The dataset in this domain
will be strongly imbalanced since the number of positive cases (infected patients) is com-
paratively small, making a classifier trained with standard classification methods unuseful
since it will tend to classify more examples to the majority class and potentially fail to
send unhealthy patients for proper cancer testing.

Imbalanced data classification aims at solving the aforementioned problem by con-
structing classifiers that are particularly focused on achieving high classification perfor-
mance on minority classes. Therefore, apart from the imbalanced class distribution, the
imbalanced classification problem is characterized by the practical importance of minority
class recognition rather than the focus on the general recognition of any instances [138].
Besides the medical domain, such problems arise in many other domains such as fault
diagnosis in engineering [146], object recognition [128], customer relationship manage-
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ment [8], power engineering [174], bioinformatics [93], finance [132] and natural language
processing [89].

Imbalanced datasets are characterized in the literature by the imbalance ratio coeffi-
cient, which frequently is defined as:

IR = N−
N+

where N− and N+ are the cardinalities of majority and minority class, respectively. Such
definition is standard for binary imbalanced problems, however, in the case of multi-class
imbalanced data, N− is the size of the biggest majority class and N+ is the cardinality of
the smallest minority class. The lowest possible value of imbalance ratio is 1, indicating a
perfectly balanced dataset. Any value above 1 means that the dataset is, to some extent,
imbalanced. Even though some researchers consider that a dataset poses an imbalanced
classification problem when the imbalance ratio is bigger than a certain value, e.g., 1.5 [38],
there is no consensus on the particular threshold value in the imbalanced learning com-
munity. The researchers usually point out that the most important characteristic of an
imbalanced learning problem is that it requires constructing classifiers biased towards less
frequent classes, rather than it has a particularly high value of imbalance ratio [39].

Note that some researchers use a different definition of the imbalance ratio, e.g., they
use the percentage of examples belonging to the minority class or ratios like 1:100 [39].

2.2 Classification Measures for Imbalanced Data
Since our aim is to construct classifiers that accurately classify minority class instances,
without losing too much on the classification performance on majority classes, the use of
standard accuracy measure for imbalanced problems in unsuitable. The classifier assigning
everything to the majority class on a dataset with IR = 99 has very high accuracy of
99%, despite completely ignoring minority instances. Therefore, in imbalanced learning
we use other more appropriate classification metrics. Even though many metrics have
been proposed for imbalanced problems, in this chapter we will present only the most
frequent ones that will be later used in this thesis. For the more comprehensive review of
classification metrics for imbalanced problems, one should refer to e.g. [39, 55].

To assess the classifier performance on binary imbalanced data, one of the most pop-
ular measures is F-score, which is defined as the harmonic mean of two other measures,
namely precision and recall. These two measures are focused on assessing the predictive
performance of a classifier on minority class. Precision is calculated as the ratio of exam-
ples correctly assigned to the minority class to all examples assigned to the minority class
by the classifier. On the other hand, recall (also called true positive rate or sensitivity) is
the number of minority instances correctly recognized as such divided by the number of
all minority examples. More concretely, these measures can be defined by the following
equations:

Precision+ = TP

TP + FP

Recall+ = TPRate = TP

TP + FN
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F-score = 2
1

P recision+
+ 1

Recall+

where TP is the number of true positives, FP is the number of false positives and FN is
the number of false negatives. Aside from reporting aggregated precision and recall in the
form of the F-score, both these measures are often reported additionally to give a better
insight into classifier’s working on the minority class.

Another very popular measure for binary imbalanced classification is G-mean i.e. the
geometric mean of recall and true negative rate (also called specificity). The latter is
simply a recall calculated for the majority class instances and can be defined as

Recall− = TNRate = TN

TN + FP

where TN is the number of true negatives and FP is the number of false positives. There-
fore, the G-mean can be defined as

G-mean =
√
Recall+ ·Recall−

In the recent study analyzing theoretical properties of many different metrics for imbal-
anced data classification, G-mean was indicated as the measure possessing many useful
properties [19]. Also, the analysis of metrics’ visualizations showed the superiority of
G-mean over e.g. F-score [19].

G-mean can be also easily extended for the multi-class classification, where it can be
defined as the geometric mean of all classes’ recalls. Nevertheless, while using such defined
G-mean on multiple classes one problem arises. Given that the data set is imbalanced,
there is a chance that one of the heavily underrepresented minority classes will have recall
of zero, which causes collapse of the whole G-mean value to 0. In the binary case, this
property, i.e. zeroing measure for a classifier ignoring any of the classes, was beneficial
because it allowed discarding classifiers that ignore the minority class. However, in multi-
class data this property makes indistinguishable classifiers that work well on many minority
classes (except one) with classifiers that completely ignore all minority classes. This issue
is usually solved by replacing zero recalls with a small constant value e.g. ε = 0.001 during
geometric mean computation. The G-mean values reported in this work are calculated in
this way, i.e. with equation:

G-mean = |C|

√√√√√ |C|∏
i=1

max{Recalli, ε}

where |C| is the number of classes and Recalli is calculated with the same equation as
Recall+ while treating instances of class i as positives and all the other classes as negatives.

The extension of F-score for multi-class imbalanced data is called macro-averaged F-
score. In order to compute this measure, one should compute average precision and average
recall over all classes first. Then, macro-averaged F-score is simply a harmonic mean of
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these two values.

F-scoremacro = 2
1

1
|C|
∑|C|

i=1 P recisioni

+ 1
1

|C|
∑|C|

i=1 Recalli

Other measures used in multi-class imbalanced classification include: AveragedAccuracy [38]
(computed as an arithmetic mean over each class recall), Kappa coefficient [6] or MAUC [172]
(sometimes called M-measure) for classifiers with probabilistic output.

2.3 Data Difficulty Factors of Imbalanced Data
In the first subsection, we characterized imbalanced classification problems by means of
their global imbalance ratio. Even though this property of imbalanced data is the most
distinctive one, it was discovered to be not the most influential one. For instance, Wallace
et al. [153] shown that on linearly separable imbalanced problems, optimal separating
hyperplane has zero cost regardless of the value of imbalance ratio. Similarly, standard
classifiers obtain a pretty good classification performance on some real datasets with a
high imbalance ratio [127]. Therefore, the imbalance ratio itself does not determine the
difficulty of the problem.

Naturally, in real datasets, aside from class imbalance, may occur other data difficulty
factors that also pose difficulties for constructing classifiers. These difficulty factors in-
clude various forms of class overlapping, division of classes into several non-homogeneous
subconcepts, and data rarity [39]. Even though these factors alone lead to the deteriora-
tion of classifiers’ performance, adding to them the class imbalance results in much more
significant performance drops. Moreover, the performance loss comes primarily from the
reduction of minority class recognition that is critical in practice. Therefore, many re-
searchers [66, 68, 64, 65, 157, 127, 121] consider understanding the relationship between
these additional data difficulty factors and class imbalance crucial for the development of
algorithms dealing with imbalanced data.

The first data difficulty factor that will be considered here is class overlapping, by which
we mean a situation in which there are regions in the feature space that do not clearly
belong to any of the classes since they contain mixed instances from several classes. Since
there are no clear boundaries between classes, then naturally the induction of decision
boundary is more difficult. Nevertheless, in the case of imbalanced data, the induced
decision boundary will usually be moved too much towards the minority class region, i.e.,
assigning a lower number of instances to this class. This is a consequence of the fact that
in the overlapping region, the minority class will be weaker represented due to its rarity,
so the overlapping region typically will be assigned by the classifier to the more prevalent
majority class. For instance, experiments conducted on C4.5 decision tree classifier and
the completely overlapped classes from a normal distribution (both classes are generated
from normal distributions with the same mean and standard deviations) demonstrated
that the classifier learned to always respond with the majority class when class imbalance
was present [127]. Similarly, experiments performed on other standard classifiers like SVM,
J48, MLP, or kNN demonstrated a substantial negative impact of class overlapping on the
minority class recognition and pointed out the local characteristics of data distribution
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can be more important than the global imbalance [45].
Another difficulty factor is the decomposition of minority class into several subcon-

cepts, i.e., examples of the class do not constitute one compact group, but they are rather
split into several, potentially remote, groups in the feature space. This difficulty is related
to two other phenomena: 1) construction of small disjuncts by algorithms such as decision
trees and rules that are less accurate [57] and 2) more complex forms of class imbalance,
namely within-class imbalance [54]. The latter characterizes datasets with a minority class
separated into subconcepts of which some are much less dense. Since the minority class
has a relatively low number of examples, in extreme cases, very small subconcepts can be
interpreted as noise and, consequently, not be reflected in the learned model. The prob-
lem of very small subconcepts was investigated e.g. in [68], where it was experimentally
demonstrated that they are more responsible for the decrease of classification performance
than global class imbalance.

Yet another difficulty factor that is often considered in the imbalanced data litera-
ture is so-called data rarity or the lack of data, which is related to the small number of
examples of a class or a concept that makes accurate classifier construction more challeng-
ing [157]. Unfortunately, imbalanced data often arise in domains such as medicine where
the collection of large datasets is problematic.

Detecting and measuring the prevalence of these difficulty factors in real datasets is
not a trivial task. Some authors proposed using the number of support vectors in the SVM
classifier as a measure of class overlapping [32] or using the k-means algorithm to detect
class subconcepts [68]. Others suggest estimating noise examples by checking if they are
misclassified by the majority of classifiers in an ensemble [150].

Nevertheless, Napierała and Stefanowski [123] proposed a more general method that
allows assessing many different difficulty factors at once. The method consists of calcu-
lating the prevalence of four example types in a dataset, called safe, borderline, rare, and
outlier. Safe examples lie in a homogeneous region in the feature space, dominated by its
class. Borderline examples belong to the class overlapping region where locally neither of
the classes is strongly dominating the other. Rare examples are very small groups of two
(or three) examples that potentially represent some underrepresented subconcept. Finally,
outlier examples are single instances that lie in the region dominated by the other class.
The distribution of example types is usually reported for the minority class only, since the
majority classes have mostly safe examples. These four example types are illustrated in
Figure 2.1.

Each of these example types can be identified by analyzing the classes of the example’s
nearest neighbors. For instance, if k = 5 nearest neighbors are used for assigning the ex-
ample types, then five or four neighbors that belong to the example’s class are indicators
of a safe example. If only three or two neighbors belong to the same class as the consid-
ered example, it is labeled as a borderline example, etc. Another variant of this method is
using kernel estimation with predefined thresholds on locally measured conditional class
probability. The authors of these methods demonstrated that for datasets with differ-
ent dominating example types, the best performing method handling class imbalance is
different [123].

Another method that allows not only for the detection of the example types but also
detects the class subconcepts and allows for measuring the with-in class imbalanced was
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Figure 2.1: Four types of examples for binary imbalanced classification. Minority
instances are depicted as circles and majority ones as yellow squares.

proposed by us in [84]. ImGrid is a dedicated grid-based clustering algorithm that, rather
than dividing a dataset into clusters of similar examples, splits the minority class exam-
ples into groups of the same type. An additional procedure of the algorithm constructs
representations of subconcepts from the type-oriented clusters.

Note that all the aforementioned methods for detecting data difficulty factors in imbal-
anced data are dedicated to binary problems only. Previous to this work, to the best of our
knowledge, there was only one work using the methodology of Napierała and Stefanowski
directly on multi-class data by treating all the other classes as one majority class [130]. In
that work, Sáez et al. obtained promising results by using the obtained example types to
direct oversampling towards examples of one selected type, which indicates that design-
ing methods for multi-class imbalanced data that take into account other data difficulty
factors can be beneficial. Nevertheless, the impact of data difficulty factors on multi-class
imbalanced data as well as more advanced methods for detecting them were not proposed
in the literature.

2.4 Selected Methods for Imbalanced Data
Classification

2.4.1 Methods for Binary Imbalanced Data
The methods for binary imbalanced classification are usually divided into data-level,
algorithmic-level, and cost-sensitive methods [54]. Data-level methods are the most general
ones since they alter the original dataset with the goal of constructing a more balanced
dataset that would be more convenient for learning classifiers. Therefore, they can be
used with virtually any learning method. Some of the simplest approaches of this type
are random undersampling (RUS) and random oversampling (ROS).

RUS preprocesses the original dataset by randomly eliminating majority instances until
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the dataset is perfectly balanced or until a given proportion between class cardinalities
is achieved. Therefore, RUS constructs a much smaller dataset that makes the training
faster while improving the classifier performance on the minority class. Nevertheless, it
can potentially discard useful majority instances and, in the case of the majority class with
several sub-concepts, there is a risk of removing one of them entirely from the dataset.

Contrary to RUS, random oversampling duplicates randomly selected minority in-
stances as long as the cardinalities of the classes are not equal. Even though ROS does
not remove any important knowledge from the dataset, learning on the randomly oversam-
pled dataset can lead to classifier overfitting, especially if there are outliers in the dataset
that will be repeatedly duplicated during the preprocessing.

Aside from random methods, also more informed under- and oversampling approaches
have been proposed. The most popular such method is Synthetic Minority Oversampling
Technique (SMOTE) [24], that instead of duplicating minority instances during oversam-
pling, automatically constructs completely new, artificial ones. In order to create a new
minority instance, SMOTE selects one of the minority instances and looks for its k near-
est neighbors that belong to the same class. Then, a new instance is constructed as the
linear interpolation between the instance and one randomly selected nearest neighbor.
Typically, k = 5 is used and the new instances are constructed until the dataset is fully
balanced (even though, originally the number of generated instances was a parameter of
the method). In the case of the nominal features, the constructed instance is given the
most frequent value among the k nearest neighbors.

During dataset preprocessing, SMOTE completely ignores majority class examples and
sometimes leads to overgeneralization of the minority class, e.g., by constructing examples
between two minority class subconcepts separated by the concept of the majority class.
Therefore, many extensions of SMOTE has been proposed such us Borderline-SMOTE [49],
MWMOTE [10] and SMOTE-IPF [145]. The interested reader can find the list of about
85 different SMOTE extensions in [73].

Learning algorithm Examples of modifications for imbalanced learning
rule-based learners BRACID [121]
decision trees Hellinger-distance decision trees [28], DKM splitting crite-

rion [35], Class Confidence Proportion Decision Tree [105]
random forest Weighted Random Forest [27]
k nearest neighbours k Exemplar-based Nearest Neighbor [98], gravitational-

based Nearest Neighbor [23]
support vector machines asymmetric kernel scaling [112], zSVM [61], Fuzzy

SVM [101]
neural networks weighting loss functions [6, 29]

Table 2.1: Examples of algorithm-level approaches that modify existing learning algorithms for imbal-
anced learning.

Another group of methods, algorithmic-level approaches, modify a particular learning
algorithm in order to improve its performance on imbalanced tasks. One common way of
making the classifier focus on the minority class is to modify the optimized loss function,
for example, by weighting examples proportionally to the inverse of its class frequency [6].
Other methods include asymmetric margins in SVM [60], special modifications of the
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Figure 2.2: The categorization of data-level approaches along with references to sev-
eral illustrative approaches of each type.
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distance function in k nearest neighbor classifier [98], changing the splitting criterion
in decision trees [105] and modifications of hypothesis search strategies and evaluation
measures in rule induction algorithms [121].

The algorithmic-level group also includes specialized classifier ensembles that are usu-
ally based on the extensions of bagging [17] or boosting [41]. As we mentioned before,
one of the disadvantages of random undersampling is that it produces smaller datasets,
therefore increasing the variance of the learner. This disadvantage can be easily overcome
by bagging classifiers constructed on datasets produced by the undersampling technique
since bagging is known for its variance reduction abilities. In fact, one of the few theo-
retical works on imbalanced data classification [153] recommends using bagging together
with undersampling to obtain good performance on imbalanced problems.

One of such approaches, which will be explored in further chapters, is Roughly Balanced
Bagging (RBBag) [56]. RBBag constructs classifier ensembles by training component clas-
sifiers on different datasets constructed from the original data by a special undersampling
procedure. That procedure works as follows: N+ examples from minority classes are
copied to the new dataset by random sampling with replacement, then majority examples
are randomly copied to the new dataset, but their amount is sampled from the Pascal
distribution (negative binomial distribution) with the number of successes k = N+ and
probability of success p = 1

2 . The procedure will, on average, produce balanced datasets
since the expected value of the Pascal distribution is equal to (1−p)k

p = (1−0.5)N+
0.5 = N+.

Besides RBB, many other bagging extensions were proposed for imbalanced data such
as OverBagging [155], Unevenly Balanced Bagging [99], Neighborhood Balanced Bag-
ging [14]. Also, various modifications of boosting have been proposed, such as RUS-
Boost [134] or SMOTEBoost [26].

The last group of methods transforms the problem to cost-sensitive learning by ob-
taining the cost matrix from the expert or estimating it from data [39]. Cost-sensitive
learning methods include: methods converting any learning algorithm to a cost-sensitive
one (e.g. MetaCost [36]) and direct approaches (e.g. AdaCost [37], RBF with costs [5]).

For a more detailed review of class imbalanced methods, please refer to [16, 39, 54].

2.4.2 Methods for Multi-class Imbalanced Data
The problem of multi-class imbalanced data is considered as more difficult than its binary
counterpart [171, 76, 156] as one cannot focus the algorithm only on one minority class
to improve classifier’s performance. The problem also received considerably less research
attention, therefore the number of proposed methods is much smaller. The approaches for
multi-class imbalanced data can be roughly divided into:

• methods that transform the multi-class problem into the binary classification ones,
relying on previously proposed algorithms for binary imbalanced data;

• specialized approaches, dedicated for multi-class data.

2.4.2.1 Methods that cast the multi-class problem into binary classification

The most popular way to cast the multi-class problem into binary classification is through
classifier ensembles that decompose the problem into a series of binary problems. Such
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methods have initially been proposed for standard classification tasks to enable binary
classifiers to handle multi-class problems [7]. In imbalanced learning, they allow using
previously proposed binary imbalanced classification methods to tackle multi-class imbal-
ance.

One of such methods is one-versus-all ensemble (OVA, also: one-against-all OAA) [113,
129] that constructs |C| base classifiers, each responsible for detecting a particular class.
The training set for each base classifier contains all the instances, but all the classes
apart from the selected one are aggregated to one common negative class. Then, a binary
classifier is trained to distinguish between positive and negative class, i.e., between the
selected class and all the others. During prediction, the test instance is classified by all
base classifiers and is assigned to the class of the most confident base classifier.

In the case of multi-class imbalanced data, OVA constructs binary problems that often
have a much higher imbalance ratio than the original problem, potentially constructing a
more challenging problem for the binary classification methods. This issue does not occur
in one-versus-one ensemble (OVO, one-against-one OAO) [42, 67], that constructs a base
classifier for all pairs of classes. In OVO, the training set for the base classifier contains
only examples of the selected pair of classes. Therefore, it constructs binary problems that
have smaller or equal imbalance ratios than the original problem. Then, similar to OVA, a
binary classifier is trained to distinguish between the two classes in the prepared training
data. The final decision during the test phase can be taken by majority voting or another
function aggregating base classifiers decision such us the sum of confidence scores [51], the
sum of scores weighted with class priors [133] or calculating weighted votes against each
class [30].

Another possibility to construct an ensemble of binary classifiers to handle multi-class
data is through predicting error-correcting output codes (ECOC) [34]. ECOC assigns a
binary code of a constant length to each class and trains classifiers for predicting each bit
of that code. The prediction is made by assigning the class with the most similar code
to the predicted one (measured e.g. by Hamming distance). One can say that OVA and
OVO are just special cases of ECOC. For instance, OVA is an ECOC ensemble that uses
codes constructed by one-hot encoding the class value.

Since all aforementioned techniques train multiple classifiers on binary imbalanced
problems, they can be easily used in combination with standard techniques for binary
imbalanced data. OVO and OVA are often used with oversampling or undersampling
approaches applied on each binary training set of base classifiers [38, 100]. The appli-
cation of preprocessing technique can depend on the severity of class imbalance in the
constructed problem, measured e.g. with imbalance ratio [170] or different preprocessing
approaches can be used depending on the subproblem characteristic [94]. Besides data-
level approaches, also algorithmic-level approaches for binary imbalanced data can be used
in decomposition ensembles. For instance, as base classifiers in OVO/OVA ensembles spe-
cialized approaches such as SMOTEBagging [169] as well as one-class methods [79] has
been used.

There were also several works on the design of functions aggregating base classifiers
decisions in decomposition ensembles working on imbalanced data. These works include
optimizing voting weights for each classifier in an aggregation function with genetic algo-
rithms [44], taking into account global class affinity [151] and adjusting decision thresh-
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olds [75, 168]. In the case of more general ECOC ensembles, the authors of [107] proposed
a weighted distance function between the class codes whose weights are obtained by solving
a quadratic programming problem.

Apart from decomposing the problem with classifier ensembles, one can also adapt
binary data-level methods to multi-class problems by applying them iteratively to a single
dataset with only temporally binarized labels. One of such methods is Static-SMOTE [40]
that in each iteration selects the smallest class as the minority class and all the other
classes are treated as a single majority class. The method makes |C| iterations, in which
it applies the standard SMOTE technique to duplicate the selected minority class. Since
the currently smallest class is oversampled in each iteration, a single class can be selected
for oversampling in several iterations of the Static-SMOTE procedure. In such a case,
SMOTE algorithm is run only on the original instances (i.e. excluding artificial instances
constructed in previous iterations).

In a similar vein are designed Multi-Class Combined Cleaning and Re-sampling (MC-
CCR) [74] and Multi-Class Radial-Based Oversampling (MC-RBO) [77] methods. Both
works present a new binary resampling algorithm that is later applied to multi-class data
by a very similar iterative procedure. The algorithm iterates over all classes in descending
order and runs resampling only if there are classes that are bigger than the currently
processed class Ci. The resampling procedure is run on a specially constructed dataset
consisting of all instances of Ci class and a randomly selected subset of instances from
bigger classes. The same number of examples is taken from each class bigger than Ci, while
their total number is equal to the size of the biggest class in the dataset. The instances
from bigger classes are treated as one common majority class in the binary resampling
method, and the instances from Ci are considered minority ones. All modifications made
to such constructed binary dataset by the resampling algorithm (i.e. newly constructed
instances) are transferred back to the original multi-class dataset after the resampling is
performed.

Mahalanobis distance-based over-sampling technique (MDO) [3] is yet another example
of informed resampling technique for multi-class imbalanced data that one can see as a
binary method applied iteratively to each class. MDO oversamples randomly selected mi-
nority instances by generating an artificial instance within the same Mahalanobis distance
from the class center. The method iterates over all the classes and oversample them to
the size of the biggest class in the dataset.

2.4.2.2 Specialized methods for multi-class imbalanced data

The specialized methods for multi-class imbalanced data can be divided, similarly to the
methods for binary imbalanced data, into data-level, algorithmic-level, and cost-sensitive
methods. Nevertheless, their number is very limited.

The simplest resampling method for multi-class imbalanced data is Global-CS [172]
that duplicates the whole set of instances for each class smaller than the biggest. The
duplication is repeated iteratively until the class does not reach the size of the biggest
class. In the last iteration, if the further class duplication would exceed the biggest class
size, only the number of instances required to achieve a balanced dataset is randomly
selected and oversampled.
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SMOTE and Clustered Undersampling Technique (SCUT) [4] integrates oversampling
of minority classes with the undersampling of majority classes to obtain a balanced dataset
in which every class has the cardinality equal to average class size. The method runs
expectation-maximization algorithm to fit Gaussian Mixture Model for each majority class,
and randomly undersamples instances from each cluster. The number of removed instances
depends on the cluster size, and is set to finally obtain the same number of samples from
each class’ cluster. On the other hand, the minority class instances are oversampled with
SMOTE algorithm.

Another idea of modifying SMOTE for multi-class data denominated Synthetic Minor-
ity Oversampling Method (SMOM) is presented in [175]. As mentioned earlier, the classic
SMOTE algorithm can construct instances that lead to minority class overgeneralization.
SMOM tries to solve this issue by assigning lower weights to neighboring examples whose
linear interpolation would go through the region dominated by other classes. Addition-
ally, SMOM uses the NBDOS clustering algorithm to detect safe1 regions of minority class
whose oversampling will not lead to overgeneralization.

Lin et al. [102] proposed random oversampling of all classes, followed by a dynamic
under-sampling procedure for classifiers trained in an online fashion (e.g., MLP with
stochastic gradient descent). In every epoch of training, only the randomly selected exam-
ples are used for updating classifier parameters. The probability of being selected depends
not only on the instance’s class size but also on the classifier’s confidence score of the
correct class. In particular, the misclassified examples are never undersampled i.e. they
are always selected to update the model.

The second group of approaches, i.e. algorithmic-level includes various modifications
of loss functions such as class-balanced cross-entropy [29], symmetric focal loss [103] and
symmetric margin loss [106], often applied in the context of deep neural networks. Other
algorithms have also been adjusted for multi-class imbalanced problems. One of such
algorithms are decision trees, for which a special split construction criterion, concretely
adapted Hellinger distance [28] were proposed. Another example is Extreme Learning
Machine with decision outputs compensation [167].

Moreover, several specialized ensemble algorithms have been proposed. MDOBoost [2]
incorporates Mahalanobis distance-based over-sampling into boosting algorithm to im-
prove minority classes recognition. Wang and Yao [156] use a version of AdaBoost that
increases base classifier diversity through negative correlation learning on randomly over-
sampled dataset to obtain good results on multi-class imbalanced data.

Another method is Dynamic Ensemble Selection-Multiclass Imbalance (DES-MI) [46]
that adjust bagging ensemble to multi-class data by modifying training sets construction
strategy for component classifiers and by introducing a new dynamic voting schema. The
training set for each component classier is a balanced dataset whose size is determined by
r|C|, where r is a random integer between 1 and the size of the biggest majority class.
The dataset is constructed by randomly oversampling or undersampling instances to get
exactly r instances from each class. During the prediction, the prediction is made basing
only on the decision of selected, most locally competent classifiers. The competence of
each base classifier is evaluated with weighted accuracy of k nearest neighbors of testing

1The authors of SMOM call such instances „outstanding” and refer to instances in the overlapping
regions as „trapped”.
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instance, with weights inversely proportional to class frequencies in the neighborhood.
The last group of methods are cost-sensitive methods, with the most popular Rebal-

ance [172] that assigns equal costs to each class and later uses multi-class cost-sensitive
learners. This method was a direct inspiration for the aforementioned Global-CS method.
The cost matrix for multi-class problem can also be optimized by a genetic algorithm in
order to maximize some quality measure appropriate for imbalanced data. For instance,
[143] optimize cost matrix in order to obtain the highest possible G-mean with AdaC2 [144]
boosting algorithm.





Chapter 3

Studying Data Difficulty Factors of
Multi-class Imbalanced Data

3.1 Motivation
Most of the current research on multi-class imbalanced data is devoted to proposing new
methods that improve the classifiers’ predictive performance. Meanwhile, the characteris-
tics of multi-class imbalanced data have not been still sufficiently studied.

Multi-class imbalanced problems are usually characterized only with some form of
the imbalance ratio. Wang and Yao [156] also distinguished between multi-majority and
multi-minority problems, referring to the datasets with only one minority or only one
majority class having all the other classes of the opposite type. One more type of multi-
class distribution is defined in [20], namely: linear imbalance or gradual imbalance, which
contains classes of linearly growing sizes. Note that in such class size configuration, there
is no clear separation of minority and majority classes since the dataset also has some
classes of intermediate size.

Furthermore, a more general question about difficulty factors in multi-class imbalanced
data that are the most influential in the degradation of classifier’s performance was also not
thoroughly studied. In general, the multi-class learning problems are recognized as harder
than the two-class ones. Even for balanced data, decision boundaries between many classes
are considered as more complex and challenging to learn [82]. In the context of multi-
class imbalanced data, some authors also claim that multi-class imbalanced problems are
more challenging than their binary counterparts [171] and a few hypotheses about possible
difficulty factors can be found in the literature. However, most of them were not validated
in experimental nor theoretical studies, and the works on the characteristics of these data
are very limited.

The impact of increasing the number of classes in different configurations of so-called
multi-majority and multi-minority datasets was investigated in [156]. Other class config-
urations, especially with several minority and/or majority classes, were not studied, even
though such datasets with small, big, and intermediate-sized classes can often be encoun-
tered in many related works. All experiments were performed on the artificial datasets
with the same imbalance ratio of 10, and the results showed that multi-majority class
configuration is more difficult than multi-minority one in this limited setup.
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Other issues such as overlapping between two (or more) minority classes, changes
of global imbalance ratio (IR), and types of local class imbalance were not thoroughly
investigated. Similarly, the hypothesis stated e.g. in [76] that interrelations between classes
are difficult as some classes may be majority ones with respect to smaller ones but at the
same time act as minority ones for the remaining classes was also not experimentally
studied.

The authors of [130] adopted Napierala’s example types described in Section 2.3, to the
multi-class setting in a one-vs-all manner. They examined the performance of classifiers
trained on a dataset with oversampled minority examples of one type. This strategy was
effective for almost all datasets, although the authors did not present methods for tuning
the degrees of oversampling nor selecting the type to be oversampled automatically. That
work shows that analyzing data difficulty factors can lead to improvements in classifier
performance in multiclass imbalanced setting, however it also does not answer questions
about the impact of various difficulty factors on classifiers’ performance.

Based on the analysis of the literature, we focus attention on the following multi-class
data difficulty factors:

• overlapping between multiple classes,

• imbalance ratio,

• different configurations of class sizes (including multi-minority, multi-majority ones
as well as these with gradually growing class sizes),

• increasing the number of classes.

The current research on these factors in multiple class data is insufficient. On the other
hand, the data difficulty factors in the binary problems have already been more intensively
studied as mentioned in Chapter 2.3, also see experimental studies [66, 68, 45, 127]. Most
of these studies were carried out firstly with synthetic data, but then their observations
were transferred to real-world datasets, see e.g. [123]. These studies demonstrated that
considering aforementioned data difficulty factors helps in estimating the difficulty of the
given data, explains differences in classifiers’ classification performance, and assists in
evaluating their competence areas. Finally, the results of such analyses were used to
develop new algorithms for learning classifiers or developing pre-processing methods for
binary imbalanced data, see e.g. [14, 130, 121].

Interestingly, such kind of analysis has not been still carried out for multiple class
imbalanced problems. Furthermore, several hypotheses on the nature of these problems
were often just mentioned in related papers but not supported with the appropriate ex-
perimental examination.

3.2 Research Questions
The analysis of related works has led us to the conclusion that the hypotheses on the
difficulty of multi-class imbalanced data are based almost only on the observation of un-
satisfactory classification results. Furthermore, it is unclear what is the impact of different
difficulty factors on the classifier’s performance. In order to fill this gap in the current
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body of knowledge, we will carry out comprehensive experiments, where we want to answer
the following research questions:

1. How much does the increase of overlapping between multiple imbalanced classes
influence classifier performance? Does its impact depend on imbalance ratios?

2. What is the impact of different class size configurations on classification?

• Is the multi-majority class configuration more difficult than the multi-minority
one?

• Is the gradual change of class size more influential than a sharp transition
between minority and majority classes?

• Does the overlapping between classes interact with the different class size con-
figurations?

3. Does the overlapping between minority and majority classes decrease classification
performance more than the overlapping between minority classes alone?

4. What is the influence of increasing the number of imbalanced classes on the classi-
fication of multiple classes.

In order to examine these issues, we carry out the experiments in a controlled en-
vironment based on synthetically generated data (similarly to many earlier studies on
binary data e.g. [127, 65]), studying the impact of the multi-class imbalanced data diffi-
culty factors on classification performance of two popular classifiers. Using artificial data,
each factor can be easily modeled and parameterized, which allows us to analyze each
isolated factor (i.e. single factor without the presence of others in the data). The usage of
pre-defined class distributions will also allow us to compare classifiers’ predictions to the
optimal Bayesian classifier.

3.3 Experimental Setup

3.3.1 Generators of synthetic data
Three synthetic data generators were constructed. Triangle and square generators were
designed to answer research questions 1-3, while line generator is specially constructed for
examining question 4. All of them generate data from multivariate normal distributions,
each associated with a different class. By default, the covariance matrices of normal
distributions are set to be multiplicities of an identity matrix with the same multiplier for
all classes.

The triangle generator produces data with three classes whose centroids (means) are
set to be at the apexes of an equilateral triangle. The length of each triangle edge was
chosen to be 5 units as setting the standard deviations to 1 unit produces a dataset
with virtually1 no overlapping cases (see Fig. 3.1a). Using the generator with growing
values of the standard deviation produces datasets with an increasing level of overlapping

1Gaussian distribution has non-zero density function for the whole domain, so it is not possible to
achieve no overlapping at all.
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between classes (see Fig. 3.1b). The standard deviation can be interpreted in our case as
an equivalent measurement of overlapping in the generated data.

The square generator is designed in a similar way. It is a generalization of the triangle
one and produces datasets with four classes from normal distributions whose means are
located at the apexes of a square. The side length also equals to 5 units.

On the other hand, the line generator produces datasets with an arbitrary number of
classes. The classes in the generated datasets are arranged along the line at equal intervals
of 5 units.

Even though the generators can produce data with practically any number of dimen-
sions, we decided to use them in a simplistic 2-dimensional scenario for the experiments.
The training sets consisted of 1000 examples. The test sets contained 4000 examples and
were balanced i.e. each class had the same number of test examples to better estimate
evaluation measures.

In order to better explain a class overlapping, we refer to measures of overlapping
already proposed in the literature, see e.g. [147]. One of the most popular measures is
Fisher’s discriminant ratio, which is defined as follows:

F = min
c1,c2∈C

max
i

µc1,i − µc2,i

σ2
c1,i + σ2

c2,i

where C is the set of all classes, µc is the mean vector of the examples belonging to class
c, analogously σc is the vector of standard deviations of these examples and i iterates
over features. The notation µc,i denotes i-th element of the vector µc. Other measures
of overlapping proposed in the literature include calculating the volume of overlap region
(approximated by a hypercube) or estimating feature efficiency [147].

In further experiments, we measure the class overlapping by the standard deviations
of normal distributions used to generate datasets. They can be easily transformed into
Fisher’s discriminant ratio, but have a simple interpretation in our setting. For instance,
generating data with σ = 1 will result in a dataset with F = 5

12+12 = 2.5 regardless of
the type of generator (triangle, square, linear) being used. Similarly, σ = 3 transforms to
F = 0.27 which can be interpreted as moderate class overlapping and σ = 10 to F = 0, 025
which indicates a very strong class overlapping.

To measure the level of class imbalance, we use the imbalance ratio as defined in
Chapter 2.1.

3.3.2 Evaluation measures
The performance of the classifiers trained on the generated data will be assessed with
two standard measures that are appropriate for multi-class imbalanced data. Firstly, we
choose Recall of each class, being a recognition rate of correctly classified examples with
respect to all examples from a class. Secondly, we use the balanced accuracy to aggregate
the single class Recalls into one measure. Both measures have a good intuitive meaning,
provide a more detailed view on the classifier performance, and allow for comparing the
impact of difficulty factors for different classes.

Having the artificially generated data, we can compare the performance of the learned
classifier to a theoretically computed optimal solution. More concretely, we refer to the
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(a) Dataset generated with σ =
1.

(b) Dataset generated with σ = 3. (c) Dataset generated with σ =
1 and one-sided overlapping
σleft = 3 between top (yel-
low) and left (navy blue) class.

Figure 3.1: Exemplary datasets from the triangle generator with the imbalance ratio
IR = 1

optimal Bayes classifier that uses knowledge about the true data distribution. Its typical
formulation [52] maximizes classification accuracy and takes the following form:

ŷ = arg max
y∈C

P (y|x) = arg max
y∈C

P (x|y)P (y)∑
y′∈C P (x|y′)P (y′)

where the probability distributions are the true distributions behind the data generation
process. Since classification accuracy is not a proper measure for imbalanced data, we
used the optimal Bayes classifier derived for balanced accuracy – a measure often used in
related works [38]. This modification is based on replacing the class frequencies P (y) to
uniform distribution, i.e. 1

|C| .
By comparing class recalls obtained by a real classifier to the recalls of such a defined

optimal model, one can notice whether a classifier insufficiently learns concepts related to
a class or focuses too much on recognizing another. In the experiments, we report a ratio
of class recall obtained by an optimal model to the recall of real classifier, which is called
OC Ratio (Optimal to Classifier Ratio):

OCRatioy = Recalloptimal(y)
Recallclassifier(y)

The value of OC Ratio = 1 for a given class y would mean that the classifier obtains True
Positive Rate for y as high as the best classifier calibrated for the imbalanced distribution.
Values higher than one indicate that the class is recognized poorer than in the optimal
classifier – that means that values slightly higher than 1 are expected even for a pretty
successful real classifier. The values below 1 mean that the recall obtained by a learning
algorithm for a particular class is actually too high to get a well-balanced classification
performance. We will show in the experiments that values below 1 are characteristic for
majority classes.

The usage of OC Ratio (so a reference to known optimal classification) extends knowl-
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edge from earlier typical analysis of real classifiers with such measures as class recalls. For
illustration, let’s analyze a simple situation with two datasets, one with no overlapping
and the other with the medium overlapping, where the optimal classifier can achieve 100%
and 80%, respectively. If one looks at the studied real classifiers with results of 90% and
78%, it may be claimed that the classifier does not work well with the overlapping data.
However, following OC ratio measurements, its classification performance could be treated
as sufficiently acceptable while comparing to the optimal one.

3.3.3 Classifiers
We chose two popular standard classifiers: CART tree2 and k-Nearest Neighbors. CART
was always run with default parameters, especially without pruning, whereas Euclidean
metric and k = 5 was used in kNN. Both classifiers were selected as they are often used
in the most related multiple class imbalanced works [130, 63] or even more often in exper-
iments with binary imbalanced data [45]. Moreover, they represent different learning and
representation paradigms.

Due to the considerable amount of results and to make this chapter more compact,
we present selected detailed plots of decision trees only. The observations and conclusions
drawn from these results remained consistent with those for kNN. Nevertheless, the results
of both classifiers will be commented in the text, and the complete results are available at
the supplement website3.

All reported results were averaged over 20 runs.

3.4 Experimental Results

3.4.1 Impact of class overlapping and imbalance ratio on the
performance of classifiers

In order to address the first research question, the experiments have been carried out
with a series of datasets produced by the triangle and square data generators with the
imbalance ratio systematically being increased from IR = 1 to 20 and with overlapping
ranging from σ = 1 to 10.

The most representative results on triangle data are presented in Figure 3.2, where
classes no. 2 and 3 are minority ones while class 1 denotes the majority one. The first
row of the plots in Figure 3.2, depicts changes of class recalls with respect to an increasing
overlapping for selected three imbalance ratios.

As expected, problems with the highest class overlapping are more difficult. Recalls
of all classes (minority and majority ones) decrease gradually with growing overlapping.
However, in the imbalanced datasets (IR > 1) the recognition of minority classes decreases
much faster than for majority ones. Analyzing the corner cases, one can notice that
adding high class imbalance seems to have a relatively small effect for non-overlapping
data distributions, resulting in a few percent lower recall of minority classes only, e.g.,

2More precisely its implementation in sklearn Python package.
3http://www.cs.put.poznan.pl/mlango/publications/difficulty-analysis.html

http://www.cs.put.poznan.pl/mlango/publications/difficulty-analysis.html
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Figure 3.2: Class recalls (first row) and OC Ratio (second row) for the triangle datasets
with three selected imbalance ratios (columns) versus class overlapping measured by
σ. In the second and third column (IR = 3 and IR = 10), class 1 is the majority class
whereas classes 2 and 3 are minority classes while the first column corresponds to the
balanced case.

from 97.8% for the balanced multi-minority triangle dataset to 95.3% for IR = 10 and
94.1% for IR = 20. On the other hand, for highly overlapping data (σ = 10) it is
visible that increasing IR from 1 to 3 results in approx. 10% drop of minority class recall.
Increasing the imbalance ratio further up to 10 results in a similar decrease of 13%.

Looking merely at recall plots, one may say that the class overlapping degrades the
class recognition more significantly than the imbalance ratio. Nevertheless, the additional
analysis with the optimal classifier demonstrates that it is a more complex phenomenon
and the imbalance ratio can be recognized as the influential difficulty factor as well. Re-
ferring to the second row of plots in Figure 3.2 that visualize OC Ratio, note that the tree
classifier achieves about 25% lower recall than the optimal Bayes classifier on datasets with
balanced and highly overlapping classes. That seems to be only a moderate decrease com-
paring it to approximately 250% lower recall when a high class imbalance of IR = 10 to
this highly overlapped dataset is added. On the other hand, incorporating class imbalance
to the non-overlapping distribution has a minor impact.

The next observation from these plots is that the relation between the class overlapping
measured in standard deviations of class distributions and OC Ratio (Optimal to Classifier
Ratio) seems to be linear for minority classes in the studied datasets. The slope of the
least-squares regression line is 0.024 for balanced datasets, 0.05 for IR = 3, 0.077 for
IR = 6 and 0.128 for IR = 9 demonstrating that the impact of class overlapping grows
considerably for the imbalanced datasets.

This result is also confirmed for square generated datasets with four classes where the
slopes of the linear regression for the same imbalance ratios are 0.028 (IR = 1), 0.074
(IR = 3), 0.110 (IR = 6) and 0.169 (IR = 9), respectively. All obtained slopes were
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statistically significant using standard F-test [52] with p < 0.0001.
Such trend lines and statistically significant coefficients are also obtained in our exper-

iments with k-NN classifier. The recalls obtained by this classifier are a bit higher than
these of the decision trees for the balanced dataset. However, while increasing the imbal-
ance ratio, the advantage of kNN over trees decreases to finally become a disadvantage
of about 8% for minority classes (IR = 20, σ = 10). Nevertheless, the observations and
conclusions made here for decision trees generalize smoothly to the kNN classifier.

Conclusions and answers to the research question:

• The increase of class overlapping strongly deteriorates the recognition of the mi-
nority classes, particularly on datasets with higher imbalance ratios. Changing the
imbalance ratio presented a limited impact on the recognition of datasets without
class overlapping, whereas class overlapping impacts the classifiers’ performance even
for balanced datasets. Results demonstrated that that combination of both factors
degrades classifiers’ performance more significantly, which is consistent with earlier
experimental studies on binary imbalanced data such as [45].

• The majority class is recognized more accurately by considered standard classifiers
than the optimal classifier (see OC Ratio below 1), which supports designing methods
for imbalanced data that improve recognition of minority classes at the cost of slight
worsening the classifier performance on majority classes.

Finally, we claim that the possibility of using a reference of the optimal classifier’s recall
for the performance of real classifiers extends our knowledge on dealing with overlapping
by the latter. When its recall decreases (what is expected), we may now estimate whether
it is closer or farther from the optimal solution.

3.4.2 The role of the different class size configurations
We proceed with the next set of experiments to answer the second research question.
Recall that in the binary datasets, we do not face any problem in indicating which class
is the minority one and which one is not, but the situation becomes a different one when
dealing with multiple classes.

For instance, if data contains three classes of 100, 300, and 900 instances, respectively,
the role of the intermediate class is not clear. On the one hand, it is three times smaller
than the biggest class, which would suggest its minority status, but on the other hand, it is
also three times bigger than the smallest class. The presence of such intermediate classes
was often noticed in the related works [76, 130, 63], but their impact on classification
difficulty was not evaluated.

In our further experiments, apart from two class configurations without intermediate
classes i.e. sharp ones consisting of clearly distinguishable minority and majority classes,
we also consider configurations with intermediate classes.

We again use the triangle and square data generators and measure the classifier per-
formance on three types of class distributions: multi-majority, multi-minority (with a
sharp difference in class sizes), and gradual (with intermediate classes) for varying imbal-
ance ratio IR from 1 to 20 and three class overlapping setups: class separation (σ = 1),
moderate overlapping (σ = 3), strong overlapping (σ = 10). Multi-majority datasets con-
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tain only one minority class and several majority classes of equal size. On the contrary,
multi-minority datasets have one majority class with the highest cardinality and several
same-sized smaller classes, according to the selected imbalance ratio.

For the gradual dataset, we generate three or four classes of different sizes for a selected
imbalance ratio IR (calculated as a ratio between the largest and smallest of them). The
size of the intermediate class is defined so that the ratio between its size and the majority
class size is equal to the analogous inverted ratio with the size of the minority class (just
as in the example in the previous paragraph). If there are more intermediate classes, they
are generated to maintain the same ratio between classes of consecutive sizes e.g. 60, 120,
240, 480 for four classes and IR = 8. The values of OC Ratio obtained for the triangle
generator and decision trees are presented in Figure 3.3 while the other results are available
in the online supplement.

Analyzing the first column of Figure 3.3, one can again observe that the impact of
increasing the imbalance ratio on data with virtually no class overlapping is almost none.
When class distributions do overlap, growing the class imbalance ratio causes a higher
discrepancy between the predictive performance of the decision tree classifier and the
optimal Bayes classifier. Independently of the class size configuration type, increasing the
imbalance ratio degrades the recognition of minority classes. However, the extent of that
degradation depends on the class configurations.

Let us analyze the dataset with IR=20 and highly overlapping classes (σ = 10) for
different configurations of class sizes. For the smallest class in the multi-minority configu-
ration, the tree classifier achieves OC Ratio of 3.1. On the other hand, in the same setting
but multi-majority class distribution, the tree classifier recognizes the smallest class 7
times worse than the Bayes classier. That demonstrates a significant impact of the type
of class size configuration on the performance of classifiers. Generalizing this observation
to other cases, the OC Ratio of the smallest class in the multi-majority datasets is always
higher than for the multi-minority configuration for all studied values of IR with moderate
or strong class overlapping. Our experiments show that the classification performance of
minority classes more strongly deteriorates in the multi-majority variant.

The difficulty of the gradual configuration of classes lies somewhat in-between the two
earlier discussed configurations with the smallest class obtaining OC Ratio of 4 on the
dataset with IR=20 and σ = 10. Interestingly, the recognition of the intermediate sized
class only slightly deteriorates with the increase of the imbalance ratio. Its OC Ratio
did not exceed 1.5 even for IR=20 which is comparable to the recognition of the smallest
class in the easiest, i.e., multi-minority configuration with IR of only 2.5 with the same
class overlapping. Similarly, looking at the raw values of class recalls, the intermediate
class losses only 5% of recall in comparison to the balanced data for highly overlapping
distribution whereas the smallest class lost almost 20% in the same setting.

The same conclusions can be drawn from the similar experiments with k-NN classifier,
even though this classifier was less successful in dealing with class overlap in our datasets
i.e. the OC Ratio values were generally higher, obtaining even 14 in the worst case (multi-
majority with IR = 20 and σ = 10). Similarly to the decision trees, the minority class
obtained better OC Ratios in multi-minority than in the gradual setup, however, the dif-
ferences were smaller (for high IR from 0.5 to 0.76). The intermediate class in the gradual
setting again had almost the same OC Ratio independently of growing class imbalance.
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Figure 3.3: The values of OC Ratio obtained by the decision tree classifier on triangle
datasets for the imbalance ratio IR growing from 1 to 20 with three different class
overlapping σ ∈ {1, 3, 10} (columns) and three different types of class distributions
(represented in next rows).

This experiment was repeated for four-class square data where the observations were
in-line with previously discussed ones for multi-minority and multi-majority data. On
gradual data we observed that the second biggest class has almost constant OC Ratio
while moving towards more imbalanced data. On the other hand, the recall of the second
smallest class was deteriorating for gradual datasets with increasing imbalance ratio. The
smallest class was the one loosing recall the most quickly.

Conclusions and answers to the research question:

• The type of class size configuration strongly influences recognition of minority classes.
The multi-majority class configuration is more difficult than multi-minority one. The
difficulty of the gradual class case (with intermediate size classes) falls between two
of them, but is more similar to the easier multi-minority case.

• In the gradual class sizes configuration, the intermediate class is rather well recog-
nized by both considered classifiers, which may suggest that the development of new
methods for imbalanced data should be focused on improving recognition of mainly
the smallest classes.



3.4 Experimental Results 31

3.4.3 Overlapping and interrelation between different class
types

The results of experiments discussed in the previous section demonstrated that class over-
lapping strongly deteriorates the classifier performance. In this section we take a closer
look on the influence of class overlapping with respect to interrelations between different
types of classes. More precisely, we want to examine whether the overlapping between
two minority classes is less harmful for the classifier performance than overlapping of mi-
nority and majority classes. Furthermore, overlapping with the intermediate class will be
assessed.

To address these questions, we use the triangle generator with several configurations
of class sizes. These classes were generated in different class configurations scenarios:
either the sharp difference between two equal sized minority class vs. the majority one;
or the gradual changes of class sizes with the intermediate one. For each of them the
series of experiment was organized as follows: the class overlapping was systematically
increased only between the selected pair of classes, leaving the level of overlap between
other classes without a change. More precisely, we select one class from dataset and
perform two experiments. Firstly we gradually increase the overlap of selected class with
another class in the dataset (look at Fig. 3.1c for an example of such generated dataset),
measuring classifier performance. Then, as a control experiment, we repeat this procedure
for analogous datasets but with overlap being increased between the selected class and the
third class. Referencing triangle generator, the class in the upper apex of the triangle is
increasingly overlapped with the class on the left-down apex (look at Fig. 3.1c) and later,
analogous experiment is performed where the upper class is overlapped with right-down
class. We have studied various imbalance ratios between classes.

Figure 3.4 presents results of experiments on datasets representing two different class
size configurations. The first investigated dataset (first row of plots) is multi-minority one
(class sizes: 800, 100 and 100 examples), and the second is of gradual type, with class
cardinalities of 640, 280, and 80 (two next rows). Consider, for instance, the second row
in the first column, where we present recalls of the selected minority class while increasing
overlapping toward the majority class and in the second column its recall while it overlaps
with the intermediate class. The third column compares results of the selected class in
both experiments. In both datasets, IR between the majority and the smallest minority
is equal to 8. We do not present results on multi-majority datasets here since the overlap
between a minority class and two equal-sized majority classes does not cause differences
in the results.

As one could expect, a continuous increase of overlap between any of the two classes
always decreases recalls. However, the extent of the decrease depends on the type of
overlapping classes. While increasing the overlapping between two minority classes causes
a strong decrease of Recall of about 12% for both minority classes, the overlap between
minority and majority class is considerably more harmful (the decline is approx. 26%).

The role of the intermediate class is more sophisticated. Increasing overlapping be-
tween the minority and intermediate class causes decreases of the recognition of the former
only slightly smaller than while overlapping minority with the majority class. On the other
hand, when the intermediate class overlaps with the majority class, its recognition quickly
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Figure 3.4: Results of Recalls on the triangle datasets (IR=8), where the class overlap
was increased only with the selected class. Each row presents the results for one dataset
configuration (the class cardinalities distribution is indicated in the plot title). The first
two plots in each row (form the left) shows class recalls when the selected class (green
line) was overlapped with one of the two other classes. The third plot (the right
column) shows comparison of green lines from the first two plots for the selected class.

deteriorates (like the minority class). The overlap between the intermediate and minority
class results in slow decrease of the intermediate class recall and a faster worsening of the
recognition of the minority one. It seems that the intermediate class has a "twofold" role–
it acts like a minority class when interacting with bigger classes and works like a majority
class in the context of smaller classes. Indeed, looking at the OC Ratios we see that the
intermediate class is recognized too strongly by the classifier while overlapping with the
minority class (OC = 0.97 with σ = 10) and recognized too poorly while interacting with
the majority class (OC=1.04 with σ = 10).

This observation is also true for k-Nearest Neighbors classifier, where the intermediate
class obtained OC = 0.96 (σ = 10) while overlapping with the minority class and OC=1.05
(σ = 10) for overlapping with the majority one. Comparing the difference between the
recognition of the minority class while overlapping with majority and intermediate class
shows that, as expected, the overlapping with the latter is a bit easier. For the most severe
investigated overlapping (σ = 10), the minority class was recognized by kNN with OC =
1.17 and OC = 1.13 while overlapping with majority and intermediate class, respectively.
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Conclusions and answers to the research question:

• An increase of overlapping between minority and majority classes is more harmful for
performance of the classifier than the analogous increase of overlap between minority
classes.

• For the gradual class size configuration, the recognition of the intermediate class
quickly worsen while increasing overlapping with the majority class. Conversely,
while interacting with the minority class it causes fast deterioration of the recognition
of minority class, similarly to majority classes.

3.4.4 Increasing the number of classes
In this section, we will study the research question regarding the impact of the number of
classes with data produced by the line generator.

Figure 3.5 collects the selected results for a decision tree classifier. Again three types
of class size configurations correspond to rows of plot in this figure, i.e. multi-minority,
multi-majority, and gradual increase of class size. In y axis we report values of recall of
the worst recognized class (which is selected among all classes in the given case). Trend
lines in these plots are categorized with respect to three levels of overlapping (σ = 1, 3, 10,
columns); three imbalance ratios IR = 1, 3, 10 (line colors) and class number ranging from
2 to 20 (x axis).

The main observation is that increasing the number of classes always decreases the
recall of the worst recognized minority class. However, this impact depends mainly on
the size of overlapping. The recall decreases are much more substantial for the higher
overlapping levels, while being much smaller for no overlapping cases (e.g., only 0.3 – 0,4
for std 1; see the left column in Fig 3.5).

The most interesting and unexpected observation is that the highest decrease for
datasets with class overlapping always occurs while moving from the binary imbalanced
case to the variants with four or five classes. Adding the next class to the generated
dataset also causes slightly weaker recognition, but the trend line’s shape is clearly flatter.
Furthermore, such trend characteristic of recall values occurs for all studied imbalance
ratios. Naturally, datasets with the higher imbalance between classes are more difficult,
hence, the recall values are lower for them, but again the general trend lines follow the
same patterns.

Moreover, the class size configurations do not seem to influence this result – compare
rows in Figure 3.5. Finally, the quite similar observation could be made for k-NN classifier.

Conclusions and answers to the research question:

• Datasets with more classes are more difficult than ones with a smaller number.
Imbalance ratios and class size configurations do not seem to enlarge this effect.

• The increasing size of class overlapping is the next influential data factor with respect
to the recall decreases.

• Interestingly, the increase of the number of imbalanced classes from two to a four
/ five classes leads to a stronger decrease of recall than adding more classes to an
already multi-class imbalanced dataset.
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Figure 3.5: The Recall of the worst recognized class vs. the number of classes in the
dataset for the tree classifier. Each row presents the results for datasets with different
type of class size configuration (multi-minority, multi-majority and gradual), whereas
each column presents results for datasets with different level of class overlapping (no-
overlapping - std=1, moderate overlapping - std = 3 and strong overlapping - std=10).

3.5 Relation to real data

In this chapter, we are focused on the experiments in a controlled framework with specially
generated synthetic data, which allows us to parametrize data difficulty factors. Moreover,
it was possible to refer the results of the classifiers to the Bayesian optimal ones. As a re-
sult, one may better understand the impact of data factors on the classifier’s performance.
Nevertheless, it is interesting to verify our observations also in the context of real-world
data.

Firstly, we analyzed datasets often considered in experiments with multi-class im-
balanced data, such as [38, 63, 130]. However, there were no discussions on class size
configuration, an important difficulty factor identified in our study. Only the paper [156]
studies multi-majority and multi-minority datasets. Nevertheless, all of them completely
ignore gradual datasets with intermediate classes to whose our research brings attention
to.

Interestingly, despite the lack of research attention, such data with gradual class charac-
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teristics seem to be more common in the real world than multi-majority or multi-minority
types. For instance, in the work [156] authors perform experiments with 12 standard
real-word multi-class imbalanced datasets. Nine of them have gradual characteristics,
two datasets are multi-majority ones, and only one represents the multi-minority group.
However, this data factor is not used in the discussion of experiments and to analyze the
differences in the classifiers’ predictions more deeply.

dataset class config. # classes b. acc. majmaj majmin minmin intmaj intmin intint
cleveland gradual 5 0,30 0,00 0,37 0,06 0,36 0,12 0,00
winequality gradual 4 0,37 0,55 0,09 0,00 0,25 0,01 0,00
yeast gradual 9 0,42 0,40 0,04 0,01 0,30 0,06 0,07
cmc multi-maj 3 0,46 0,44 0,48 0,00
balance-scale multi-maj 3 0,57 0,14 0,27 0,00
glass gradual 6 0,67 0,31 0,29 0,02 0,02 0,04 0,00
ecoli gradual 5 0,73 0,00 0,01 0,00 0,14 0,27 0,02
led7digit multi-maj 6 0,78 0,29 0,29 0,02
vehicle multi-min 3 0,90 0,00 0,23 0,00
dermatology gradual 6 0,93 0,00 0,01 0,00 0,07 0,02 0,32
newthyroid multi-min 3 0,94 0,00 0,20 0,00

Table 3.1: Balanced accuracy (b. acc.), class size configuration, number of classes and overlapping
for selected datasets. Overlapping is reported between different class types: minority (min), majority
(maj) and intermediate (int) classes.

The role of overlapping between different types of classes has been highlighted in our
experiments with synthetic data. To examine it and its connections with other factors
on real-world data, we carried out additional experiments with 11 real datasets coming
from [38, 63]. For each dataset, we manually recognized its distribution type (gradual,
multi-minority, multi-majority) and calculated the prevalence of different types of over-
lapping. We detect these types of class overlapping with a very simple method based on
the analysis of 5-nearest neighbors, which provides only a rough estimation of it but still,
we hypothesize that this approximation of the overlapping is sufficient in this experiment.
For each example, we checked the class labels of its neighbors. If most of these neighbors
did not belong to the example’s class, we labeled it to be in the overlapping region4. Then,
we identify the types of classes between which the overlapping has occurred based on each
class’s previous manual assignment to distribution types. The result of our analysis is
presented in Table 3.1, where the number of examples from different types of overlapping
is presented as the ratio of all examples in the dataset. For each dataset, we evaluated the
predictions of the decision tree by means of the balanced accuracy measure.

First, we observe that datasets of multi-minority types are among the easiest ones,
which is in line with our previous observations done on synthetic data. The dermatology

dataset, which is of the gradual type, is put among the few easiest data. However, most
of its classes do not overlap, while there is a medium overlapping between intermediate
classes only. Next datasets in the ranking, such as led7digits represent slightly bigger
overlapping (over 0,5) of minority and majority classes, which is associated with the lower
balanced accuracy. It is followed by other gradual type datasets, such as glass, which has
the stronger overlapping, including relations with majority classes. More difficult ones are

4This analysis may also cover so-called rare single examples located more deeply in the region of another
class, which is one of the limitations of this simplistic method. In the following chapter, a more complex
method will be proposed.
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multi-majority data, such as cmc and balance-scale. For instance, balance-scale has an
average amount of overlapping (41%), however, contrary to easier datasets with a similar
amount of overlapping, see e.g. dermatology, its overlapping is between minority and
majority classes that has been identified as more difficult in our earlier experiments. As
expected, the classification performance of this dataset is much lower. The most difficult
dataset is cleveland which has a very high overlapping of approx. 91%. Additionally,
this overlapping is of majority-minority and intermediate-majority types, which are most
difficult. A bit easier is winequality data which also has a very strong class overlapping
of 90%, but its considerable amount is between majority classes.

To sum up, although these real-world datasets have more complex characteristics with
many factors occurring together and compound relations between different types of classes,
we claim that the experimental results are consistent with earlier experiments on the
influence of isolated data factors.

3.6 Discussion
The main aim of this chapter is to investigate the following mutli-class data factors: over-
lapping between multiple classes, its interaction with various imbalance ratios, different
configurations of class sizes (including multi-minority, multi-majority ones and those with
gradual increases of the size), and the increasing number of classes. We experimentally
study their role to characterize the difficulty of imbalanced multi-class data. To the best
of our knowledge, these data factors were not previously systematically investigated.

The obtained experimental results led us to the following main observations:

• The class overlapping was the very influential factor when combined with the high
imbalance or some types of class size configurations.

• The types of the class size configurations with multiple majority classes were more
difficult than multi minority ones (the recalls of the smallest classes were clearly
worse). The gradual class size configurations with the intermediate classes played a
special role between them.

• The analysis of interrelations between different types of classes showed that the
increase of overlapping between the minority and majority classes led to the stronger
deterioration of classifier performance than between minority ones. The impact of
the intermediate classes depended on the direction of overlapping.

• An increasing the number of classes was the most influential while considering
changes between two and five classes.

Some of our results provided confirmations of previous hypotheses stated by few re-
searchers. However, we think that other results extended the current body of knowledge
on the difficulty of multi-class imbalanced data. For instance, knowing earlier literature
on the binary imbalanced data one could expect that an increase of overlapping strongly
deteriorates the recognition of the minority class. Still, our experiments showed that its
impact is much stronger for various types of multiple class interrelations.

Krawczyk [76] made a statement on the possibility that some classes may act as ma-
jority and minority ones with respect to different classes. This hypothesis was confirmed
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and extended in our experiments by showing that while adding overlap between minor-
ity and intermediate classes, the recognition of the latter was improving in terms of OC
Ratio – similarly to majority classes. On the other hand, increasing overlapping between
the intermediate and majority classes caused a decrease in classifier performance on the
intermediate class, just like for minority classes.

Some earlier works discussed that majority classes were usually better recognized at
the cost of poor classifier’s performance for the minority classes. By using the reference
to the optimal Bayes classifier, we showed that, in fact, investigated classifiers achieved
higher recalls of majority classes than the optimal solution. This observation justifies the
usage of imbalanced learning methods such as re-sampling that may worsen recognition
of the majority class and focus the learning process more on minority classes.

Note that the usage of OC Ratio (so reference to known optimal classification) extends
knowledge coming from the typical analysis of classifiers with such measures as Recalls,
that were performed for evaluating difficulty factors in the binary imbalanced data setting.

The experiments also highlighted differences in handling overlapping between different
class types. We postulate a deeper consideration of the gradual sized class configuration
and the specific role of the intermediate classes. In our opinion, they should be taken into
account while testing the performance of new classification methods. This additionally
raises the question about measuring class imbalance in the multi-class setting. The typical
imbalance ratio, which was also used in this study, seems too simplistic as it hides the
important information about the gradual, multi-majority or multi-minority characteristics
of the classes.

This research also push forward the necessity of a deeper analysis and better handling
of different types of class overlapping in preprocessing methods for multi-class imbalanced
data. As the overlapping between various types of classes has proved to be an important
factor, it seems reasonable to construct methods that focus oversampling in the overlap-
ping regions of particular class types. This has not been still exploited in the current
preprocessing methods. In the following chapter, we will address these issues.





Chapter 4

Similarity Oversampling and
Undersampling Preprocessing

4.1 Motivation
As we have shown in the previous chapter, multi-class imbalance problems contain addi-
tional data difficulty factors that impact the performance of learned classifiers and do not
occur in binary problems. These additional difficulty factors come from the more complex
relations that occur between classes in multi-class imbalanced datasets. Therefore, they
were not considered while designing binary imbalanced learning methods.

Such more complex relations between classes also can not be taken into account while
using typical decomposition methods that are very popular for handling multi-class imbal-
anced data. These methods lose information about the complexities of decision boundaries
with several neighboring classes and are unable to model the regions with overlapping of
several classes. In particular, the characteristic of one class influencing several neighboring
classes in different ways, such as in the case of intermediate classes, is completely lost.
Therefore, there is a need to design new methods for imbalanced data that consider these
additional difficulty factors that were not previously exploited in the studies on binary
imbalanced data.

The first step towards exploiting the characteristic of data difficulty factors is to detect
and model them in real datasets properly. Note that our experimental studies on data
difficulty factors were performed on artificial data, which permitted us to control data
distributions and occurring difficulty factors, but no concrete method for real data was
presented.

In this chapter, we extend one popular method for analyzing data difficulty factors in
real binary imbalanced datasets [122] to the multi-class scenario. The proposed extension
models interactions between various classes with the class similarity factor that can be
predefined by the user or computed heuristically exploiting the observations from Chap-
ter 3. Basing on this data difficulty factors detection method, a new resampling algorithm
called Similarity Oversampling and Undersampling Preprocessing (SOUP) is proposed.
The method takes advantage of the local and global difficulty factors, oversampling the
most important instances of minority class and undersampling these majority samples
that harm the minority classes’ recognition the most. The experimental evaluation of the
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method demonstrates its effectiveness and shows that exploiting the information about
data difficulty factors in the design of resampling methods can lead to improvements in
classification performance.

4.2 Modelling Data Difficulty Factors in Multi-class
Datasets

The global data difficulty factors of imbalanced data such as imbalanced ratio, number of
classes, or class type configuration can be relatively simply identified from basic dataset
statistics. However, measuring local data difficulty factors can be more challenging and
requires more sophisticated methods.

4.2.1 Detecting local data difficulty factors in real datasets
Among the most important local data difficulty factors of multi-class datasets identified
in the previous chapter were class overlapping and interrelations between different classes.
In particular, increasing class overlapping between minority and majority classes resulted
to be more harmful to the classifier performance than the overlapping between minority
classes. Additionally, the overlapping between intermediate and minority classes more
strongly hinders the recognition of minority class, whereas the overlapping between inter-
mediate and majority classes more significantly influences the classifier’s performance on
the intermediate class. These observations will be taken into account while designing our
method for detecting data difficulty factors in multi-class imbalanced datasets.

Recall that Napierała and Stefanowski [122] proposed to characterize real imbalanced
datasets with the distribution of four so-called example types (see Chapter 2.3). These
example types can be identified by thresholding the value of locally estimated conditional
probability P (y|x), denominated as safe level. For instance, in the most popular case
of estimating this probability with k nearest neighbors, the safe level takes the following
form:

safe_level(x) = P (y = Cx|x) = kCx

k
(4.1)

where Cx is the true class of the example x, kCx is the number of neighbors belonging to the
class Cx and k is the total number of analyzed neighbors. The value of an example’s safe
level can be converted to a particular example type (safe, borderline, rare, outlier) through
discretization, however, it can also be used as-is to measure the example’s difficulty.

The aforementioned definition of safe level via measuring k nearest neighbors can be
straightforwardly applied to multi-class data [130]. Nevertheless, such usage of the safe
level is equivalent to using one of the decomposition methods. More concretely, the safe
level values of given class examples will not change if one will merge all the other classes
to one big majority class and convert the problem to a binary one. Clearly, the more
nuanced difficulty of class overlapping that depends on class types and their cardinalities
is not modeled.

Our approach will extend the aforementioned definition of the safe level to model vari-
ous forms of class overlapping with pre-defined similarity values between classes. The goal
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of introducing additional class similarity degrees is to capture the fact that the difficulty
of class overlapping varies depending on which classes overlap. The method assumes that
neighboring with examples of more similar classes is safer, i.e., leads to smaller perfor-
mance degradation, than having interactions with more dissimilar classes. Note that the
degree of similarity between classes is a globally defined value and, understandably, the
set of nearest neighbors most probably contains examples that all are similar to each other
in terms of the feature values.

Example. In order to give some better intuition, let us start with an example previously
discussed in our paper [63]. Assume that we want to analyze the safeness of an example
x that belongs to the minority class Cmin1 in a classification problem between Cmin1 and
two other classes: the minority class Cmin2 and the majority class Cmaj . We will consider
three possible configurations of nearest neighbors described in Table 4.1.

Table 4.1: Considered three possible class distribution among the neighbors of example x

No. Class Cmin1 Class Cmin2 Class Cmaj

a 5 0 0
b 1 2 2
c 1 0 4

Clearly, situation (a) is the most preferred since the considered example x is in a
non-overlapping region occupied by examples from its class. The situations (b) and (c)
are more interesting, especially because they would be treated as the same ones while
measuring the safeness of x with the binary method directly applied to multi-class data.
However, following our observations from Chapter 3 the neighborhood (c) should be con-
sidered as more difficult than the neighborhood (b), as overlapping with majority class
more strongly impacts minority class performance than overlapping with other minor-
ity classes. Therefore, while analyzing various example’s neighborhoods, the ones with a
higher number of neighbors from class Cmin2 should be considered safer than those with
more neighbors from Cmaj . Evidently, the neighbors from the example’s class Cmin1 are
the most preferred ones to construct safe neighborhoods. The strength of this preference
between having neighbors from different classes in the neighborhoods of class Cmin1 is
modeled with the similarity degrees between Cmin1 and other classes. In this example, the
similarity between Cmin1 and Cmin2 should be set to a higher value than the similarity
between Cmin1 and Cmaj , and the similarity between the class itself should be fixed to the
highest possible value.

More formally, we assume that the degree of similarity µi,j between each pair of classes
Ci and Cj can be defined. We restrict the possible values of similarity degree µi,j to be
in the range from 0 to 1 (µi,j ∈ [0, 1]). The similarity between class itself is a priori set to
its maximal value µi,i = 1 and, for simplicity, in this work, we assume that the similarity
degrees are symmetric, i.e., µi,j = µj,i.

Even though the degrees of similarity can be defined individually for each dataset, our
general recommendation is to select higher values of similarity between minority classes
(µmin1,min2 → 1) and relatively low values of similarity degrees between majority and
minority classes (µmin,maj → 0). Moreover, to capture the specific characteristics of over-
lapping with intermediate classes, one should select µi,j values in such a way that similarity
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between smaller minority class and the intermediate class is higher than the similarity be-
tween intermediate and majority class (µmin,inter > µinter,maj). These recommendations
come from our observations from Chapter 3.

Apart from these general recommendations, we also propose a heuristic formula for
µi,j that not only produces similarity configuration consistent with our guidelines but also
captures additional intuition that overlapping between classes with higher disproportion
in their cardinalities should be treated as less safe than the overlapping between classes of
similar size (e.g. two minority classes). The proposed formula is as follows:

µi,j = min{|Ci|, |Cj |}
max{|Ci|, |Cj |}

(4.2)

where |Ci| denotes the cardinality of class i.

Example. To better illustrate the working of this formula, consider the standard car

dataset from the UCI repository, which contains four classes. The cardinalities of these
classes are as follows: |C1| = 65, |C2| = 69, |C3| = 384 and |C4| = 1210. Following
the recommendations mentioned above, the similarity between minority classes should be
high and effectively µ1,2 is equal to 0.94 according to the presented heuristic. On the
other hand, the similarity degree between minority classes and majority one is of only
µ1,4 ≈ µ2,4 ≈ 0.05 as expected. Our heuristic also captures the fact that intermediate
class examples can act as majority ones in minority class regions and as minority ones
in a region with a high prevalence of majority examples. The similarity values between
intermediate class C3 and minority classes are approximately equal to µ1,3 ≈ µ2,3 ≈ 0.17,
whereas the similarity to the majority class is µ3,4 ≈ 0.32.

Having defined the degree of similarity, we present the modified formula for computing
the safe level of an example in multi-class imbalanced dataset.

safe_level(x) = 1
k

∑
c∈C

kcµC(x),c (4.3)

where k is the size of the analyzed neighborhood, kc is the number of neighbors belonging
to the class c, C is the set of all classes and µC(x),c is the similarity degree between class
c and the true class of example x.

Example. Returning to the example from the beginning of this section, we will revisit the
situations from Table 4.1 additionally assuming that similarity between minority classes
is set to 0.5 and their similarity to the majority class is set to 0. Then, the safe level for
the situation (a) is equal to

safe_level(xa) = 1
5(5× 1 + 0× 0.5 + 0× 0) = 1

i.e., the highest possible safety. Note, that the similarity of class Cmin1 to itself is equal to
1. This was the easiest considered scenario, whereas cases (b) and (c) were more complex.
Recall that (c) should be recognized as more difficult than (b).

safe_level(xb) = 1
5(1× 1 + 2× 0.5 + 2× 0) = 0.4
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safe_level(xc) = 1
5(1× 1 + 0× 0.5 + 4× 0) = 0.2

To sum up, the situation (a) is recognizes as the most safe one, the next easiest situation
is (b) and the most difficult situation among considered is (c), as expected.

4.2.2 Experimental study
We conclude this section by presenting a computational experiment on three real datasets
in which we calculate the proposed safe levels and show their relation to classification
performance. In the experiment, we consider three popular imbalanced datasets from
UCI repository: new thyroid, ecoli, and cleveland which binarized versions were used
in many related works. According to these studies, they represent different levels of dif-
ficulty [123, 138]. Cleveland was identified as a difficult dataset with a high amount of
outlier and rare examples, ecoli has borderline characteristics, and new thyroid has pri-
marily safe examples. The basic information about these datasets is presented in Table 4.2.

We computed safe levels with two configurations of similarity degrees. In the first
configuration, all similarity degrees µi,j are set to 0, except similarity degrees to the
class itself that by definition are equal to 1. This configuration gives the same results as
the baseline solution, i.e., applying the definition of safe level for binary data directly to
multi-class data, hence we will refer to it as the binary safe level. The second configuration
assumes that the similarity degree between minority classes is equal to µmin1,min2 = 0.8
and no similarity between minority and majority classes (µmin,maj = 0). This configuration
will be referred to as the multi-class safe level.

The average safe levels for each class are presented in Table 4.4. Additionally, the
recalls of minority classes obtained by decision tree (C4.5), decision rules (PART), Naive
Bayes, and 3-nearest neighbors classifier are given in Table 4.5. All classifiers were used
with default values of hyperparameters as implemented in WEKA framework [48]. The
results were obtained through 5-fold stratified cross-validation.

For the new thyroid dataset, we can observe that the safe levels for both similarity
configurations are the same, which indicates that minority classes do not overlap. Effec-
tively, looking at the multidimensional scaling (MDS) [80] visualization of this dataset in
Figure 4.1, we can confirm this observation. High values of the safe level also correspond
to high recall values for all minority classes, which are among the highest recalls obtained
in this study for all classifiers.

On the visualization of ecoli dataset, we can observe that its class overlapping struc-
ture is more complicated. The minority classes Min1 and Min3 overlap with the majority

Table 4.2: Total number of examples in considered real datasets and the cardinalities of minority
classes. For simplicity, all majority classes were merged into one majority class in this experiment.

Min1 Min2 Min3
dataset Size name size name size name size
new thyroid 215 2 35 3 30
ecoli 336 imU 35 om 20 pp 52
cleveland 303 2 36 3 35 4 13
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Table 4.3: Class similarity configurations used in the experiment

Configuration name µmin1,min2 µmin,maj µmaj1,maj2
binary safe level 0 0 0
multi-class safe level 0.8 0 0

Table 4.4: Average safe levels for studied datasets and similarity configurations.

binary safe levels multi-class safe levels
dataset Min1 Min2 Min3 Min1 Min2 Min3
new thyroid 0.77 0.78 0.77 0.78
ecoli 0.57 0.74 0.82 0.57 0.91 0.86
cleveland 0.14 0.13 0.08 0.29 0.32 0.34

class, and additionally Min3 also overlaps with another minority class Min2. We can de-
duce these relations also from the results of safe level values. The safe levels for Min1
are again the same for both similarity configurations as it only overlaps with the majority
class. The binary safe level for Min2 is much lower than the multi-class safe level, which
indicates that it overlaps only with another minority class that causes smaller drops in
predictive performance. Similarly, the multi-class safe level is slightly higher than the
binary one for Min3 because it also partially overlaps with another minority class. This
dataset is also more difficult to classify than new thyroid, with class Min1 being the most
challenging class for all classifiers (except Naive Bayes).

According to average safe levels, cleveland dataset is the most difficult one, which is
also reflected in the reported low recall values for all classifiers. Also, in Figure 4.1 one
can see that the overlapping is very high, with the examples from minority classes having
neighborhoods with other minority and majority classes.

4.3 Proposed Method
To further show the usefulness of the proposed method for detecting local data difficulty
factors in multi-class imbalanced datasets, we propose a new resampling algorithm called
Similarity Oversampling and Undersampling Preprocessing (SOUP) that apart from global
difficulty factors also exploits local information provided by safe levels.

The method constructs a balanced dataset by resampling all classes to the same size
that is equal to the average taken from the sizes of the biggest minority and the smallest
majority class. Such a selected post-resampling class size means that the method needs
to undersample majority classes while oversampling minority ones. Such method design

Table 4.5: Minority class recalls for studied datasets and classifiers.

CART Naive Bayes 3NN PART
dataset Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3
new thyroid 0.94 0.83 0.94 0.86 0.71 0.80 0.94 0.83
ecoli 0.60 0.85 0.78 0.68 0.30 0.90 0.48 0.75 0.84 0.46 0.80 0.79
cleveland 0.28 0.11 0.07 0.14 0.25 0.15 0.08 0.00 0.00 0.20 0.11 0.08



(a) new-thyroid

(b) ecoli

(c) cleveland

Figure 4.1: MDS visualizations of studied imbalanced datasets, from left to right:
new-thyroid, ecoli and cleveland. All MDS visualizations have stress value below
0.1 which is usually considered as a good fit [141].
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is partially inspired by SCUT method (see Sec. 2.4.2.2) and comes from the observation
that both under- and oversampling have their drawbacks. Undersampling can remove
important information about the majority classes distribution from the dataset, whereas
oversampling can make noise and outlier examples too strongly pronounced. These draw-
backs are much more harmful to classifier performance when the differences between class
sizes are large, i.e., the number of removed or oversampled examples is very high. There-
fore, by resampling the classes to the aforementioned average value, we partially limit
their negative impact while constructing a fully balanced dataset.

SOUP under- and oversamples training examples in a principled way: it removes the
most harmful majority examples and strengths the representation of clear minority regions.
First, the majority classes are processed from the largest to the smallest. The examples
with the lowest safe levels are removed from each class until the required number of
examples is reached. Therefore, the algorithm concentrates on removing examples that
are close to minority ones, cleaning the overlapping region from majority examples.

Then, the method oversamples minority classes starting from the smallest class to the
biggest by duplicating the instances with the highest safe level. All examples of a minority
class are stored in a list sorted according to the safe level. The algorithm iterates over
the list, duplicating currently processed examples, until the class size reaches the required
number of examples. If the method reaches the last element in the list, which means that
the number of examples to generate is bigger than the class size, the method continues its
operation by starting from the beginning of the list.

The pseudocode of SOUP can be found in Algorithm 1. The computational complexity
of the method is O(n2 + n|C|) where n is the total number of instances and |C| is the
number of classes. The computational complexity can be reduced by using special data
structures for nearest neighbors search known from the machine learning and big data
literature. For instance, while using kd-trees [12] the computational complexity in the
average case is of O(n logn+ n|C|).

4.4 Experiments

4.4.1 Setup
The experiments described in this section have the following goals:

• to check how the similarity degree values used in safe levels computation impact the
SOUP performance,

• to compare the classification performance of the most relevant approaches for multi-
class imbalanced data,

• to compare selected most related approaches with SOUP in terms of classification
performance.

The methods were tested with three popular classifiers: C4.5 decision tree, PART
decision rules, and k-nearest neighbors. These methods were selected as they are sensitive
to the class imbalance and can be conveniently used with both preprocessing methods and
decomposition ensembles. They are also typically used in related experimental studies
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Algorithm 1 Similarity Oversampling and Undersampling Preprocessing (SOUP)
Input: D: original training set of |D| examples with |C| classes; Cmin: indexes of minority
classes; Cmaj : indexes of majority classes; µij similarities between classes
Output: D′: balanced training set
1: Split dataset D into |C| homogeneous parts D1, D2, ..., D|C|. Each Di contains all

examples from i class
2: D′ ← ∅
3: m ← mean(mini∈Cmaj |Di|,maxj∈Cmin |Dj |)
4: for all i ∈ Cmaj do
5: for all x ∈ Di do
6: find k nearest neighbors of x
7: calculate safe level of x, according to Eq. 4.3
8: end for
9: sort examples in Di by the decreasing value of safe level

10: remove |Di| −m examples with the lowest safe level values from Di

11: D′ ← D′ ∪Di

12: end for
13: for all j ∈ Cmin do
14: for all x ∈ Dj do
15: find k nearest neighbors of x
16: calculate safe level of x, according to Eq. 4.3
17: end for
18: sort examples in Di by the decreasing value of safe level
19: duplicate m− |Di| examples with the highest safe level values in Dj

20: D′ ← D′ ∪Dj

21: end for
22: return D′

with imbalanced data, e.g. [40, 38]. The hyperparameters of the classifiers were selected to
default values in the WEKA framework, except for k = 3 in kNN and pruning deactivation
in decision trees since we have found in our earlier studies that they generally offer better
performance.

SOUP was used with similarity configurations (SIM1-6) described in Table 4.6 and
with similarity degrees obtained by earlier presented heuristic (SIM Heur, see Eq. 4.2).
Selected similarity configurations contain configurations from our earlier study (SIM1-
2) [87], baseline configuration (i.e., all similarities are equal to 0, SIM3), and configurations
presenting extreme cases (SIM4-6).

Table 4.6: Different configurations of similarity degrees

Similarity µmin1 min2 µmin maj µmaj1 maj2
SIM1 0.8 0 0.1
SIM2 0.7 0.15 0.2
SIM3 0 0 0
SIM4 1.0 0 1.0
SIM5 0 0.5 0
SIM6 1.0 0 0
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The classification performance will be evaluated on 19 datasets, presented in Table 4.7.
Our testbed includes fifteen real-world datasets selected from popular UCI and KEEL
repositories, as they are often used in related studies on imbalanced data. They come from
a broad spectrum of application areas and present different imbalanced ratios and numbers
of features. The datasets used in the experiment also contain four artificial datasets, that
present different difficulties for learning classifiers: art1 has two minority classes and one
majority class with no overlapping, art2 is the same dataset but with additional overlap
between minority and majority classes, art3 introduces even stronger overlap between
minority class, and art4 additionally has rare and outlier examples belonging to both
minority classes. Visualizations and further descriptions of these artificial datasets can be
found in [87], the description of the used data generator can be found in [160].

As indicated by our analysis in Sec. 3.5, this is also a diversified collection that contains
datasets with studied data difficulty factors, including different levels and types of class
overlapping as well as various class configurations: multi-majority, multi-minority, and
gradual with intermediate classes. Diversified difficulty of this data can be well seen
when one calculates average safe levels separately in minority and majority classes. These
averaged safe levels for all datasets are presented in Table 4.8.

Due to the significant amount of numerical results obtained during the experiments,
only selected results on G-mean measure are presented in this work. The extended version
of the results (including measurements of average accuracy and F-score) can be found in
the supplementary material1. G-mean is selected for more detailed discussion as it has
some important theoretical advantages [19], is often used in practice, and has an intuitive
interpretation.

4.4.2 Classification performance of SOUP with various
similarity setting

Table 4.9 shows results of decision tree classifier on G-mean measure for SOUP used with
different similarity configurations described in Table 4.6. The result of post-hoc Nemenyi
analysis of Friedman test ranks is presented in Figure 4.2.

First, we can observe that SOUP in all similarity configurations improves over the
baseline, i.e. lack of preprocessing. We also notice significant differences in classification
performance on individual datasets while using different similarity configurations, particu-
larly on more challenging datasets. The most significant difference in SOUP performance
is on cleveland2 dataset, where changing similarity configuration can lead to over 30%
of improvement for the decision tree. On this dataset, the difference for kNN is 10% and
35% for PART. Different similarity configurations works best for different datasets, for
instance SIM6 lead to superior results for wine quality or cleveland2, SIM5 for glass,
cmc or flare etc.

Despite differences observed on individual datasets, the global Friedman rank test
does not detect statistically significant differences averaged over all datasets. The best
performing configurations among all datasets are configurations obtained by the proposed
heuristic, inspired by our earlier observations from Chapter 3. The worst performing

1http://www.cs.put.poznan.pl/mlango/publications/soup.html

http://www.cs.put.poznan.pl/mlango/publications/soup.html


Table 4.7: Characteristics of multi-class imbalanced datasets. Names of classes are given in the first
row, while their cardinalities in the second row.

dataset Minority classes Majority classes

balance scale B L R
49 288 288

car good vgood unacc acc
69 65 1210 384

cleveland_1 1 2 3 4 0
55 36 35 13 164

cleveland_2 2 3 4 0+1
36 35 13 219

cmc 2 1 3
333 629 511

dermatology 6 1 2 3 4 5
20 112 61 72 49 52

ecoli pp imUimS omomL cpimL im
52 37 25 145 77

flare 4 5 1 2 3 6
116 51 212 287 327 396

glass vwf con tab bwf bwnf head
17 13 9 70 76 29

hayes roth 3 1 2
31 65 64

led7digit 5 10 1 2 3 6
52 49 98 94 108 99

new thyroid 2 3 1
35 30 150

vehicle bus van opel_saab
218 199 429

yeast 2 3 5 6 7 1 8 9 10
20 30 35 44 51 463 168 244 429

wine quality 7 8 5 6
199 81 681 638

art1 MIN1 MIN2 MAJ
120 240 840

art2 MIN1 MIN2 MAJ
120 240 840

art3 MIN1 MIN2 MAJ
120 240 840

art4 MIN1 MIN2 MAJ
120 240 840
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Table 4.8: Average safe levels for all Minority and all Majority classes calculated for SIM2 class
similarities.

dataset Minority Majority
balance scale 0.16388 0.88009
car 0.90716 0.96745
cleveland_1 0.62374 0.83104
cleveland_2 0.51762 0.89210
cmc 0.45580 0.59982
dermatology 0.96488 0.97110
ecoli 0.66316 0.83252
flare 0.48246 0.78493
glass 0.51795 0.74309
hayes roth 0.45710 0.66891
led7digit 0.76267 0.77206
new thyroid 0.85092 0.98073
vehicle 0.89434 0.89142
wine quality 0.46754 0.64299
yeast 0.56089 0.60316
art1 0.94994 0.96924
art2 0.77986 0.92512
art3 0.61383 0.84882
art4 0.79836 0.90873

configurations are SIM1, SIM2, and SIM4, the only ones in our study that assume some
level of similarity between majority classes. Note that even the worst-performing SOUP
configuration has a much higher rank than the baseline.

4.4.3 Comparison of related multi-class imbalanced learning
methods

To compare the classification performance of SOUP with the best of the related methods,
we decided to first perform an experimental evaluation of both preprocessing and decom-
position methods in order to select the best performing methods for further comparison.
We compared the results of Global CS, Static-SMOTE, and decomposition methods: OVA
and OVO used together with random oversampling (ROS), random undersampling (RUS),

Figure 4.2: Visualization of Nemenyi post-hoc analysis results for SOUP with different
similarity degree configurations on G-mean measure and decision tree classifier.



Table 4.9: G-mean values obtained by a decision tree learned on datasets preprocessed with SOUP
using different similarity configurations.

SOUP
dataset SIM1 SIM2 SIM3 SIM4 SIM5 SIM6 Heur
balance scale 0.598 0.614 0.598 0.576 0.598 0.598 0.585
car 0.938 0.938 0.938 0.932 0.938 0.940 0.941
cleveland_1 0.272 0.285 0.285 0.208 0.275 0.208 0.266
cleveland_2 0.256 0.256 0.000 0.305 0.000 0.305 0.303
cmc 0.520 0.520 0.528 0.518 0.531 0.528 0.535
dermatology 0.960 0.960 0.960 0.960 0.960 0.960 0.962
ecoli 0.717 0.721 0.762 0.745 0.710 0.727 0.735
flare 0.586 0.575 0.573 0.560 0.568 0.571 0.566
glass 0.662 0.667 0.672 0.715 0.671 0.672 0.667
hayes roth 0.818 0.817 0.828 0.825 0.833 0.828 0.835
led7digit 0.780 0.790 0.772 0.772 0.774 0.777 0.778
thyroid 0.922 0.922 0.922 0.922 0.922 0.922 0.922
vehicle 0.909 0.909 0.909 0.910 0.909 0.910 0.915
wine quality 0.449 0.448 0.465 0.454 0.469 0.482 0.472
yeast 0.371 0.398 0.407 0.464 0.434 0.410 0.451
art1 0.960 0.960 0.960 0.960 0.960 0.960 0.960
art2 0.777 0.777 0.777 0.793 0.779 0.793 0.777
art3 0.609 0.594 0.605 0.605 0.602 0.605 0.608
art4 0.899 0.899 0.899 0.899 0.899 0.899 0.899
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and neighborhood cleaning rule (NCR)2. The results for C4.5 classifier are presented in Ta-
ble 4.10. The Friedman rank test indicated statistically significant differences (p < 0.001).
The performed post-hoc Nemenyi analysis is summarized in Figure 4.3.

According to the average rank on G-mean measure, the best-performing methods were
ex aequo OVO ensemble with random oversampling and OVO with random undersampling.
In general, approaches based on OVO decomposition were much more effective than those
based on OVA, which were even worse than the baseline. Among prepossessing methods,
Global CS was the most effective (4.11), which results were followed by Static SMOTE
(5.65). According to the post-hoc analysis, the results of both these methods were not
statistically different from the best OVO approaches. Therefore, in further comparisons,
all these approaches will be taken into account.

4.4.4 Comparing the classification performance of SOUP with
other approaches

The evaluation of SOUP performance will be performed twofold. First, we will compare
SOUP with other pre-processing methods: Global-CS and Static-SMOTE. Then, the per-
formance of SOUP will be compared with the best ensemble approaches identified in the
previous section: OVO with ROS, OVO with RUS, and OVO with NCR.

Furthermore, we investigate the possibility of using SOUP-inspired resampling in OVO
ensembles. To this end, we developed two binary resampling algorithms: Similarity Over-
sampling (SO, see Alg. 2) and Similarity Undersampling (SU, Alg. 3). These algorithms
were constructed by extracting from SOUP the respective under- and over-sampling parts.
SOUP is used with similarity configuration calculated by the proposed heuristic since it
provided the best results and was also inspired by our earlier analysis of data difficulty
factors. Since SU and SO methods are for binary classification, they use binary safe levels
(Eq. 4.1), i.e., without class similarities.

The left part of Table 4.11 shows G-mean values obtained by the C4.5 classifier learned
on datasets preprocessed with various methods. P-values of performed paired Wilcoxon
rank tests between SOUP and other preprocessing methods can be seen in Table 4.12 for
C4.5, PART, and kNN classifiers.

The results demonstrate that the best-performing preprocessing method is SOUP. The
difference between SOUP and other resampling methods is statistically significant for all
classifiers with α = 5% (except Global-CS and PART classifier). On the C4.5 decision

2see Chapter 2 for references and descriptions of these methods

Figure 4.3: Visualization of Nemenyi post-hoc analysis results for preprocessing and
decomposition methods.



Table 4.10: Comparison of G-mean for decomposition methods and Global-CS for using decision trees
as a basic classifier.

dataset baseline Global
CS

Static
SMOTE

OVO
ROS

OVO
RUS

OVO
NCR

OVA
ROS

OVA
RUS

OVA
NCR

balance
scale

0.000 0.340 0.080 0.526 0.602 0.474 0.302 0.297 0.000

car 0.847 0.940 0.897 0.939 0.876 0.919 0.112 0.184 0.130
cleveland_1 0.227 0.000 0.052 0.255 0.287 0.262 0.254 0.259 0.000
cleveland_2 0.000 0.000 0.037 0.288 0.285 0.000 0.280 0.287 0.000
cmc 0.483 0.478 0.452 0.509 0.514 0.526 0.510 0.511 0.529
dermatology 0.945 0.952 0.927 0.921 0.929 0.948 0.000 0.000 0.000
ecoli 0.728 0.710 0.738 0.805 0.767 0.000 0.000 0.000 0.000
flare 0.446 0.570 0.421 0.544 0.568 0.522 0.000 0.000 0.000
glass 0.625 0.715 0.322 0.699 0.697 0.691 0.000 0.000 0.000
hayes roth 0.843 0.832 0.835 0.843 0.843 0.838 0.000 0.000 0.000
led7digit 0.786 0.770 0.756 0.771 0.779 0.722 0.120 0.162 0.156
thyroid 0.889 0.922 0.879 0.922 0.886 0.913 0.904 0.927 0.898
vehicle 0.912 0.912 0.915 0.916 0.923 0.915 0.133 0.141 0.164
wine quality 0.432 0.464 0.356 0.492 0.476 0.434 0.459 0.489 0.356
yeast 0.000 0.406 0.184 0.442 0.479 0.000 0.000 0.000 0.000
art1 0.945 0.961 0.947 0.958 0.949 0.949 0.039 0.000 0.039
art2 0.686 0.734 0.741 0.758 0.777 0.762 0.250 0.253 0.244
art3 0.410 0.534 0.535 0.615 0.612 0.559 0.307 0.304 0.236
art4 0.785 0.829 0.856 0.840 0.872 0.839 0.000 0.000 0.000

Algorithm 2 Similarity Oversampling (SO)
Input: D: original training set of |D| examples with two classes;
Output: D′: balanced training set
1: Split dataset D in two parts containing examples from a single class, denoted Dmin

and Dmaj

2: D′ ← ∅
3: diff ← |Dmaj | − |Dmin|
4: if diff > 0 then
5: for all x ∈ Dmin do
6: find k nearest neighbors of x
7: calculate safe level of x
8: end for
9: duplicate diff examples with the highest safe level values from Dmin

10: end if
11: D′ = Dmaj ∪Dmin

12: return D′
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Algorithm 3 Similarity Undersampling (SU)
Input: D: original training set of |D| examples with two classes;
Output: D′: balanced training set
1: Split dataset D in two parts containing examples from a single class, denoted Dmin

and Dmaj

2: D′ ← ∅
3: diff ← |Dmaj | − |Dmin|
4: if diff > 0 then
5: for all x ∈ Dmaj do
6: find k nearest neighbors of x
7: calculate safe level of x
8: end for
9: remove diff examples with the lowest safe level values from Dmaj

10: end if
11: D′ = Dmaj ∪Dmin

12: return D′

tree classifier, SOUP obtains on average 5.4% improvement with respect to the second-
best performing method, i.e., Global-CS in terms of G-mean. It also yields better results
on the kNN classifier, where the improvement over Global-CS is on average 4.9% with
the median of 1.3%. Similarly, on PART classifier (where the result was not statistically
significant), SOUP offered an improvement of 0.8% (both median and average).

We proceed with the comparison of SOUP with the best decomposition methods as
well as decompositions with similarity resampling (SU, SO). The right part of Table 4.11
presents the results of G-mean obtained by the decision tree classifier. The Friedman
rank test indicated statistically significant differences with α = 5%. The result of post-
hoc Nemenyi analysis is presented in Figure 4.4. The averaged ranks obtained by the
compared methods on C4.5, PART and kNN are presented in Table 4.12.

SOUP obtained the lowest average rank for all classifiers. For decision tree it was
followed by OVO RUS and three methods of quite similar ranks: OVO SO, OVO SU, and
OVO ROS. OVO with NCR obtained the highest (i.e. the worst) rank. While using kNN,
the second-best performing method was OVO with SU, followed by OVO NCR ex aqueo
with OVO RUS. Nevertheless, the difference in average rank between SOUP and OVO
SU is relatively high (2.5 vs. 3.45). Finally, on PART classifier the best result of SOUP
is followed by OVO RUS and OVO SO. Quite comparative results of OVO ensembles
with random resampling and resampling based on safe levels is an indicator that the high
performance of SOUP comes from exploiting class interrelations in the proposed safe levels
with class similarities and not merely from incorporating standard safety information.

4.5 Discussion
In this chapter, we have proposed a new resampling method called Similarity Oversam-
pling and Undersampling Preprocessing. Contrary to previous approaches for multi-class
imbalanced data, this method exploits the observations about data difficulty factors in
multi-class imbalanced data observed in the previous chapter. More concretely, it uses the



Table 4.11: Comparison of best methods and SOUP with tree J48 algorithm and G-mean.

dataset Global
CS

Static
SMOTE

SOUP OVO
ROS

OVO
RUS

OVO
NCR

OVO
SO

OVO
SU

balance scale 0.340 0.080 0.585 0.526 0.602 0.474 0.542 0.547
car 0.940 0.897 0.941 0.939 0.876 0.919 0.940 0.794
cleveland_1 0.000 0.052 0.266 0.255 0.287 0.262 0.268 0.302
cleveland_2 0.000 0.037 0.303 0.288 0.285 0.000 0.284 0.312
cmc 0.478 0.452 0.535 0.509 0.514 0.526 0.522 0.524
dermatology 0.952 0.927 0.962 0.921 0.929 0.948 0.925 0.939
ecoli 0.710 0.738 0.735 0.805 0.767 0.000 0.791 0.739
flare 0.570 0.421 0.566 0.544 0.568 0.522 0.582 0.506
glass 0.715 0.322 0.667 0.699 0.697 0.691 0.701 0.697
hayes roth 0.832 0.835 0.835 0.843 0.843 0.838 0.843 0.775
led7digit 0.770 0.756 0.778 0.771 0.779 0.722 0.765 0.704
thyroid 0.922 0.879 0.922 0.922 0.886 0.913 0.897 0.896
vehicle 0.912 0.915 0.915 0.916 0.923 0.915 0.904 0.880
wine quality 0.464 0.356 0.471 0.492 0.476 0.434 0.524 0.490
yeast 0.406 0.184 0.451 0.442 0.479 0.000 0.000 0.484
art1 0.961 0.947 0.960 0.958 0.949 0.949 0.959 0.951
art2 0.734 0.741 0.777 0.758 0.777 0.762 0.754 0.804
art3 0.534 0.535 0.608 0.615 0.612 0.559 0.627 0.634
art4 0.829 0.856 0.899 0.840 0.872 0.839 0.831 0.878

Table 4.12: p-values of the paired Wilcoxon signed rank test between SOUP and other preprocessing
methods on G-mean measure for various classifiers.

classifier baseline Global-CS Static-SMOTE
C4.5 < 0.001 0.036 < 0.001
PART < 0.001 0.153 < 0.001
kNN < 0.001 0.005 0.002

Table 4.13: The average rank of compared algorithms (the lower, the better) from Friedman tests on
G-mean measure for various classifiers.

classifier SOUP OVO RUS OVO SO OVO ROS OVO SU OVO NCR
C4.5 2.87 3.18 3.39 3.42 3.45 4.68
PART 3.25 3.35 3.35 3.7 3.6 3.75
kNN 2.5 3.55 3.95 4.0 3.45 3.55

Figure 4.4: Visualization of Nemenyi post-hoc analysis results for SOUP and best
ensemble methods.
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information about imbalanced ratio, class overlapping as well as class sizes configuration.
The usage of the last one was enabled by extending an existing method for examples’
safe level computation with the class similarity degrees. The proposed extension allows
modeling class interrelations and, similarly to its predecessor, can be used to detect and
measure class overlapping or prevalence of outliers. The provided safe levels for multi-
class imbalanced data can also be further discretized into example types, enabling similar
analysis as in the case of binary imbalanced problems.

The performed experimental analysis demonstrated that exploiting information about
data difficulty factors through SOUP leads to very good classification performance. The
results indicated that the proposed method obtains better G-mean scores than other pre-
processing methods. It also has higher classification performance than the best decompo-
sition ensembles on three popular classifiers.

The performance gains in classification performance come at the price of higher com-
putational complexity in comparison with random resampling methods such as Global-CS.
However, this complexity is on par with other informed resampling approaches like Static-
SMOTE. The method requires additional parameters, namely class similarity degrees µi,j

that, in practice, can cause an additional effort of fine-tuning. Nevertheless, this issue was
mitigated as a simple heuristic that allows automatic computation of these parameters
was presented. This heuristic was successfully used in our final comparisons with related
methods, obtaining superior results. Therefore, fine-tuning similarity degrees for a par-
ticular dataset can lead to even better results but is not required to obtain satisfactory
results with SOUP.



Chapter 5

Bagging-based Ensemble Methods For
Multi-class Imbalanced Data

5.1 Motivation

Classification ensembles are very effective learning methods that exploit the possibility of
improving classification performance by constructing several classifiers that work together.
As mentioned in Chapter 2, ensembles are also very useful methods for dealing with class
imbalance, obtaining superior classification results.

Most of the works on ensembles for imbalanced data, mainly concerning binary clas-
sification problems, are extensions of bagging and boosting. Such ensembles are usually
constructed by coupling one of these ensembling techniques with data resampling methods.
Even though there are not many detailed comparison studies of ensembles for imbalanced
data, the existing experimental studies [43, 69] demonstrated that the generalizations of
bagging work better than boosting-based approaches. It was also noticed by Khoshgoftaar
et al. [69] that bagging gains a particularly strong advantage over boosting on more diffi-
cult imbalanced data with noise. Other studies [15, 137] have shown that undersampling
strategies used within the bagging framework are more effective than oversampling ones.
According to these studies, one of the most effective ensemble methods for binary im-
balanced data is Roughly Balanced Bagging (RBBag) [56] that incorporates a particular
random undersampling to bagging ensemble.

In this chapter, we will propose two new bagging-based ensembles for multi-class im-
balanced data. First, we will extend the very effective RBBag for binary imbalanced
classification to the multi-class setting. The proposed reformulation of the RBBag sam-
pling strategy allows its usage both as under- and oversampling method. Then, we will
propose a bagging-based extension that incorporates our Similarity Oversampling and
Undersampling Preprocessing (SOUP), verifying if it can be used to construct effective
ensembles for multi-class imbalanced data.
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5.2 Proposed Methods

5.2.1 Multi-class Roughly Balanced Bagging

Classical bagging [17] constructs an ensemble by running the same learning algorithm on
many different training sets. These training sets are a result of resampling with replace-
ment of the original dataset. Typically, the resampled datasets have the same size as the
original dataset, therefore each contains on average 1 − (1 − 1

N )N percent of the unique
instances. For a large dataset, this quantity can be approximated by 1− 1

e ≈ 63.2%. While
classifying a test instance, the final decision is made by averaging the outputs of all base
(also called: component) classifiers.

Roughly Balanced Bagging (RBBag) [56] adjusted the original bagging to better han-
dle binary imbalanced problems by replacing standard resampling with replacement with
a form of undersampling. Each resampled dataset is constructed in the following way.
First, N+ minority instances are sampled with replacement from the set of minority class
instances C+. Then, majority instances are added to the dataset also with random re-
sampling with replacement, but their number k is determined by a random draw from the
negative binomial distribution. The probability mass function of this distribution is given
by

P (X = k) =
(
k + r − 1
r − 1

)
(1− p)kpr

with the probability of success set to p = 0.5 and number of failures fixed to r = N+. This
means that the training sets have different proportions of minority and majority examples,
but on average they are balanced. Hence, the name of "roughly balanced" bagging.

Hido et al. [56] claimed that this approach better reflects the philosophy of bagging
than most of the related bagging extensions for imbalanced data since in the original
bagging the class proportions in samples are also varying. Nevertheless, we note that the
classical bagging constructs samples of equal size, but RBBag uses resampling that outputs
datasets of different sizes. Similarly, the number of minority class examples is constant
in RBBag, whereas in the standard bagging it varies. These issues will be solved by our
proposal of Multi-class Roughly Balanced Bagging that additionally extends RBBag to
the multi-class setting.

Recall that in the standard bagging, the component classifiers’ training sets are con-
structed by sampling instances from the uniform joint distribution P (x, c) where x is
an example of a class c. Using the chain rule, this distribution can be rewritten as
P (x, c) = P (c)P (x|c), suggesting a two-step sampling procedure that leads to the same
results. More concretely, while sampling an instance, one can first select a class c from the
distribution P (c) i.e. selecting the class according to its frequency. Then, randomly select
an element x only from the subset of selected class c instances. Note that the first step
of the resampling procedure, i.e., selecting a class according to P (c), is the only step that
is sensitive to class imbalance. In Multi-class Roughly Balanced Bagging (MRBBag), we
modify this step by selecting the class c from the uniform distribution.

The number of instances from each class in such resampled training set follows the
multinomial distribution. The probability mass function of the multinomial distribution
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is given by the following equation:

P (n1, n2, ..., n|C|) = n!
n1!n2! · · ·n|C|!

pn1
1 pn1

2 · · · p
n|C|
|C|

where n =
∑|C|

i=1 ni and p1, p2, ..., p|C| ≥ 0;
∑|C|

i=1 pi = 1 are the parameters of the distribu-
tion.Therefore, MRBBag will construct training datasets by first drawing a sample from
the multinomial distribution to determine how many instances need to be drawn from each
class. Subsequently, the indicated number of examples from each class will be sampled
randomly (with replacement).

To conclude the description of the algorithm, we have to establish the parameter values
of the multinomial distribution. As mentioned earlier, in MRBBag we assume that the
classes are selected with uniform frequency (i.e. the dataset is balanced), therefore we set
p1 = p2 = · · · = p|C| = 1

|C| . The parameter n of the distribution, which determines the
size of the constructed sample, can also be considered as the parameter of the MRBBag
algorithm since different its settings lead to under- or oversampling procedures.

Setting n parameter to the size of the dataset will cause the construction of training
sets of the same size as the original dataset, just like in standard bagging. It will also cause
oversampling of smaller classes since all classes will have the same number of instances, on
average. Even though such a setting of n goes in line with the classical bagging, related
works on binary imbalanced data indicated that undersampling bagging ensembles proved
to be more effective. Therefore, another considered possibility is to set n to the size
of the smallest minority class multiplied by the number of classes, which will cause the
undersampling of bigger classes. In such a setting, each class should have, on average, the
same size as the smallest minority class. Later, we refer to the first setting as oversampling
MRBBag (oMRBBag) and to the latter as undersampling MRBBag (uMRBBag). The
pseudocode of the algorithm is given in Algorithm 4.

5.2.2 SOUP-Bagging
As seen in the previous chapter, Similarity Oversampling and Undersampling Procedure
(SOUP) is a very effective method for handling multi-class imbalanced data. Taking into
account that many other preprocessing methods for imbalanced data were often later used
to construct classification ensembles that frequently obtained even better results, the ques-
tion about the possibility of further improvements by proposing a SOUP-based ensemble
seems natural. In particular, combining resampling methods like SOUP with bagging
seems very promising since, as we have mentioned in Sec. 5.1, bagging-based ensembles
obtain better performance than boosting-based ensembles while working on difficult im-
balanced data [69, 15, 137]. Moreover, combining bagging with methods that undersample
majority classes brings the advantage of limiting the information loss from potentially re-
moving important majority instances since different ensemble components can learn - due
to resampling - from different majority instances. In this way, the ensemble utilizes all
majority instances in the dataset while having components learned from balanced datasets.

Therefore, we propose the SOUP-Bagging algorithm that incorporates SOUP into the
bagging framework. The algorithm trains its base classifiers on datasets preprocessed
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Algorithm 4 Multi-class Roughly Balanced Bagging
Input: D = ∪c

j=1Dj : original training set with c classes, N : size of each bootstrap sample,
k: number of bootstrap samples, LA: learning algorithm;
Output: C∗ bagging ensemble with k component classifiers
Learning phase:
1: for i = 1→ k do
2: Si ← ∅
3: [n1, n2, ..., nc] ← following multinomial distribution with n = N and pi = 1/c

for i = 1, 2, ..., c
4: for j = 1→ c do
5: Si,j ← nj-element bootstrap sample drawn with replacement from Dj

6: Si ← Si ∪ Si,j

7: end for
8: Ci ← LA(Si)
9: end for

Prediction phase:

C∗(x) = arg max
y

k∑
i=1

pCi(y|x)

with the SOUP algorithm. Since SOUP is mostly deterministic procedure1, to introduce
the diversity of base classifiers, the dataset is first resampled with a standard, stratified
sampling with replacement. The final prediction of the ensemble is made by averaging the
decisions of base classifiers. The pseudocode of SOUP-Bagging is presented in Alg. 5.

SOUP-Bagging from the computational perspective is much more complex than MRB-
Bag since the latter requires only random resampling of each class’ examples with a specific
proportion. Contrary, SOUP-Bagging exploits in each iteration SOUP that requires cal-
culating safe levels through nearest neighbors search, which results, as mentioned in the
previous chapter, in the complexity of O(n2 + n|C|). This makes MRBBag a significantly
faster method, especially for large datasets. In fact, in one of our studies [83] performed
on 12 real datasets, training uMRBBag with 100 decision trees was on average 30% faster
than training a single decision tree on the original dataset and 40% faster than the fastest
tested decomposition ensemble.

5.3 Experiments
In this section, the classification performance of the proposed algorithms will be evaluated.
First, we will evaluate the effectiveness of the proposed Multi-class Roughly Balanced Bag-
ging and compare its performance with a simplistic, straightforward extension of Roughly
Balanced Bagging. We will also verify the differences in performance of the two proposed
versions of MRBBag, namely oversampling MRBBag and undersampling MRBBag. Then,
we will compare the performance of the best version of MRBBag with SOUP-Bagging and
other state-of-the-art approaches identified in the previous chapter: SOUP, OVO RUS,
OVO ROS, and OVO NCR.

1SOUP is deterministic except handling ties in safe level sorting or determining the set of nearest
neighbors within equally-distant neighbors.
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Algorithm 5 SOUP-Bagging
Input: D: original training set of examples of size N , k: number of bootstrap samples,
LA: learning algorithm;
Output: C∗ bagging ensemble with k component classifiers
Learning phase:
1: for i = 1→ k do
2: Si ← N -element sample drawn with replacement from D
3: Si ← SOUP (Si)
4: Ci ← LA(Si)
5: end for

Prediction phase:

C∗(x) = arg max
y

k∑
i=1

pCi(y|x)

5.3.1 The comparison of the performance of Multi-class
Roughly Balanced Bagging with Roughly Balanced
Bagging

We begin the evaluation of MRBBag performance with a preliminary experiment on arti-
ficial datasets with different difficulty factors. The datasets have 900 examples generated
by a method proposed in [160] and have one majority and two minority classes. The
imbalance ratio is equal to 6. The smallest minority class has 100 instances, the second
minority class has 200, and the remaining instances belong to the majority class. Each
minority class has a predefined spherical shape within which the instances are randomly
sampled. In the area surrounding these two spheres are sampled majority instances.

Three configurations of interactions between minority classes are considered:

• lack of overlapping between classes - the spheres have empty intersection,

• small overlapping – there is a slight overlapping on the borders of the spheres, in-
volving approx. 10% of the smallest class instances,

• overlapping – the spheres have a larger common part of about 30% for the smallest
class.

The last two versions of the dataset are visualized in Figure 5.1.
Additionally, the majority and minority instances are generated in a way ensuring

for each minority class the same distribution of example types, as introduced by Napier-
ala [123]. Since the dataset is imbalanced, Napierala’s algorithm to identify examples
types uses the safe level definition for multi-class data introduced in the previous chap-
ter. The degrees of similarity between minority classes were set to its maximal value
µmin1,min2 = 1, and the similarities between other classes are set to 0. We consider three
possible distributions of minority examples’ types:

• 50% of safe examples, 35% of borderline, 10% of rare and 5% of outliers (later
denoted as 50-35-10-5 configuration);

• 50% of safe, 30% of borderline, 10% of rare and 10% of outliers (50-30-10-10);
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• 70% of safe and 30% of borderline examples (70-30-0-0).

In total, we obtained nine artificial datasets that combine three possible interactions of mi-
nority classes with majority classes and three overlapping configurations between minority
classes.

The performance of MRBBag will be compared against a single C4.5 decision tree, the
classical bagging, and a more simple modification of original Roughly Balanced Bagging
(denoted as RBBag*), adjusted to multi-class data. To construct bootstrap samples,
RBBag divides the training set into a set of minority examples and a set of majority
examples, which are later used to sample from both classes separately and to set negative
binomial distribution parameters. In the multi-class scenario, such partitioning of the
dataset is not possible since there are many classes. To enable RBBag to handle multiple
classes, we a) determine the negative binomial distribution parameters as if there were two
classes only, constructed by merging all minority and all majority instances, respectively
b) perform stratified sampling of minority and majority classes.

The results of G-mean measure obtained by averaging over five runs of 10-fold cross-
validation, as well as the average rank for each method (as in the Friedman test), are
presented in Table 5.1. All the ensembles had 30 component classifiers and used C4.5 un-
pruned decision trees as base learners. This particular number of components was chosen
based on our earlier work [88] that investigated the impact of the number of base classifiers
on the classification performance of imbalanced data, showing that RBBag ensemble does
not need a high number of components to obtain good results.

The best performing ensemble in our experiment is undersampling MRBBag, followed
by oversampling MRBBag and RBBag*. All these methods offered improvements over
the classical bagging and single decision tree, which obtained the lowest average rank.
RBBag* obtained a better G-mean value than our MRBBag only for one dataset that
happened to be the simplest one, as it contained neither minority class overlapping nor
rare and outlier examples. The classification performance of oMRBBag is comparable
to that of RBBag*, which is reflected in very similar average rank values. oMRBBag
obtained better results than RBBag* on 4 out of 9 datasets, but some of the differences
are negligible. Undersampling MRBBag, on the other hand, is almost always better than
RBBag*, and even when it is not, the differences are very small. On more difficult datasets
the disparities between uMRBBag and RBBag* are considerably bigger. In particular, on

Figure 5.1: Visualization of two artificial datasets with different levels of overlapping:
“small overlap” (a) and “overlap” (b). Minority classes in both datasets contains 70%
of safe and 30% of borderline examples.
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Table 5.1: G-mean and average ranks (the lower, the better) of MRBBag and related approaches on
artificial datasets

Example
types dis-
tribution

Minority
class over-
lapping

Bagging uMRBBag oMRBBag RBBag* C4.5

50-30-10-10 no overlap 0,7863 0,8111 0,7980 0,8104 0,7853
50-30-10-10 small overlap 0,7735 0,7945 0,7989 0,7962 0,7666
50-30-10-10 overlap 0,6822 0,7293 0,6839 0,6955 0,6576
50-35-10-5 no overlap 0,8195 0,8523 0,8522 0,8444 0,8101
50-35-10-5 small overlap 0,8169 0,8438 0,8428 0,8345 0,8010
50-35-10-5 overlap 0,6686 0,7449 0,7193 0,7280 0,6168
70-30-0-0 no overlap 0,9401 0,9496 0,9525 0,9566 0,9340
70-30-0-0 small overlap 0,9154 0,9378 0,9402 0,9386 0,9045
70-30-0-0 overlap 0,8245 0,8707 0,8335 0,8439 0,8022
average rank 4,0000 1,6666 2,2222 2,1111 5,0000

the most difficult dataset (i.e., with the most prominent minority class overlapping and
the highest number of hard examples - 50-30-10-10), uMRBBag outperforms RBBag* by
more than 3%.

We have also performed an experiment to assess the performance of MRBBag on real
datasets representing various levels of difficulty. We collected 15 datasets that represent
three rough categories: easy i.e. mostly safe datasets with average safe level for minority
class from 0.85 to 1.0 (see Chapter 4); intermediate with safe level from 0.6 to 0.85;
and difficult with safe levels from 0.40 to 0.6. Some of the datasets were additionally
preprocessed by removing classes with less than five examples (such datasets have added
suffix -sm to its name) or merging examples into one common majority class, leaving
only two selected minority classes (suffix -3). Finally, each category is represented by
five datasets in our testbed. Other details of the experimental setup were left as in the
previous experiment.

The results of G-mean obtained by bagging ensembles and a single decision tree are
presented in Table 5.2. The Friedman rank test indicated significant differences between
tested algorithms with a very small p-value (p < 0.0001). The post-hoc Nemenyi analysis
confirms a significant difference between a single decision tree, the classical bagging, and
specialized approaches. However, the obtained value of critical distance CD = 1.575 does
not confirm statistically significant differences between RBBag extensions.

The method with the lowest (best) rank is undersampling MRBBag, followed by our
oversampling MRBBag. The differences between uMRBBag and RBBag* are sometimes
very significant e.g. over 10% for glass-3 and yeast-sm, which belong to the dataset
category with the lowest average safe levels. We observe that the differences between
uMRBBag and RBBag* are higher for more difficult datasets. The average difference
within the easy category is 0.005, indicating a rather negligible superiority of uMRBBag.
However, the average difference for datasets of medium difficulty is 0.016 and 0.055 for
difficult datasets, which can be significant in practice. The average improvement over all
datasets is 0.025, the median is 0.015.

oMRBBag is competitive with uMRBBag on 6 datasets (the difference is smaller than
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Table 5.2: G-mean and average ranks (the lower, the better) for multi-class real datasets. Horizontal
lines separate three categories of datasets: easy, medium and difficult (top to bottom).

dataset Bagging uMRBBag oMRBBag RBBag* C4.5
car 0,8603 0,9016 0,9516 0,8680 0,7890
dermatology 0,9542 0,9668 0,9658 0,9512 0,9436
dermatology-3 0,9494 0,9602 0,9569 0,9569 0,9275
thyroid 0,9425 0,9232 0,9455 0,9383 0,9420
vehicle 0,7162 0,7141 0,7181 0,7243 0,6825
cleveland 0,0000 0,0128 0,0034 0,0000 0,0037
cleveland-sm 0,0833 0,1746 0,1238 0,1910 0,0755
ecoli 0,6534 0,7800 0,7460 0,7108 0,6095
ecoli-3 0,6872 0,8474 0,8004 0,8272 0,6613
new thyroid 0,8937 0,9224 0,9215 0,9276 0,8778
glass 0,2819 0,4169 0,4424 0,4229 0,2591
glass-3 0,1386 0,6191 0,5236 0,5076 0,2885
yeast 0,0000 0,0336 0,0348 0,0000 0,0058
yeast-sm 0,0000 0,1307 0,0699 0,0109 0,0058
yeast-3 0,5602 0,8296 0,7104 0,8150 0,5874
average rank 4,0000 1,7142 2,0000 2,73331 4,5454

1%), better on 3 datasets (of which two belong to the easiest category), and worse on
6 datasets (of which three belong to the most difficult category and the remaining three
to the medium category). The average differences between uMRBBag and oMRBag are
0.05 for difficult, 0.028 for medium, and −0.014 for easy datasets (indicating that for the
last category oversampling obtained a better average). The superiority of uMRBBag is
also reflected in a lower average rank. Therefore, we will use the undersampling version
of Multi-class Roughly Balanced Bagging for further experiments.

5.3.2 Evaluation of the performance of proposed bagging
ensembles with state-of-the-art methods

Finally, we performed an experiment comparing the classification performance of MRB-
Bag, SOUP-Bagging, and other decomposition approaches, namely OVO RUS, OVO ROS,
and OVO NCR. These ensembles were selected as, according to our earlier experiments,
they offered the highest G-mean values. Additionally, to compare SOUP-Bagging perfor-
mance with standard SOUP, we also included this preprocessing method into our study.
All other experimental setup details were left as before (in particular, bagging ensembles
used 30 component classifiers). The experiment uses the same collection of datasets as in
Chapter 4.

The results are presented in Table 5.3. We have also performed the Friedman rank test
that rejected the null hypothesis about the lack of significant differences between methods
in the study (p = 0.0032). The results of the Nemenyi post-hoc analysis are presented
in 5.2.

The best performing method was SOUP-Bagging that obtained the lowest average
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rank (2.61), followed by SOUP (3.13) and MRBBag (3.32). Although SOUP-Bagging
obtained a better rank than SOUP, the Wilcoxon paired test does not detect significant
differences (p = 0.312). In fact, the median of differences in G-mean between SOUP
and SOUP-Bagging is 0.3%. Nevertheless, SOUP-Bagging offered improvements on 12
datasets, including several significant ones e.g. on ecoli, led7digit and wine quality (all
above 2%).

5.4 Discussion
In this chapter, we introduced two ensemble methods for multi-class imbalanced data. One
of these ensembles, SOUP-Bagging, builds upon our previous method for analyzing data
difficulty factors in imbalanced datasets. The proposal of the second ensemble, Multi-class
Roughly Balanced Bagging, is motivated by the good performance of previous bagging
approaches on imbalanced datasets with more difficult characteristics e.g. with a higher
number of rare and outlier example types. Nevertheless, this approach does not directly
handle particular data difficulty factors nor use any form of its analysis.

The experimental results demonstrated that SOUP-Bagging ensemble, which uses our
analysis of data difficulty factors, obtains better results than MRBBag with random un-
dersampling. Interestingly, SOUP preprocessing that uses only one component classifier
also obtained better results than MRBBag. This demonstrates the importance of prop-
erly handling the data difficulty factors in the design of bagging-based approaches for
multi-class imbalanced data.

Even though MRBBag generally obtains weaker classification performance than SOUP
and SOUP-Bagging, it outperforms classical decomposition ensembles. It is worth noting
that MRBBag, contrary to SOUP and SOUP-Bagging, is simplistic and therefore does
not require the calculation of nearest neighbors, resulting in lower computational cost.
Additionally, undersampling MRBBag used in final experiments trains base classifiers on
datasets that on average have |C| ·mini |Di| examples i.e. the size of the smallest minority
class times the number of classes. This means that for datasets with a high imbalance
ratio MRBBag constructs small datasets, which will result in even fast training of base
classifiers.

Finally, one possible future research direction would be to extend the proposed methods
by combining some elements of MRBBag with SOUP-Bagging. Note that SOUP-Bagging
applies a rather complex informed resampling procedure that exploits data difficulty fac-

Figure 5.2: The visualization of post-hoc Nemenyi analysis for G-mean obtained by
related ensemble methods
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Table 5.3: Values of G-mean obtained by ensemble methods and SOUP on real datasets

dataset OVO ROS OVO RUS OVO NCR SOUP MRBB SOUP-Bagging
balance scale 0.526 0.602 0.474 0.585 0.683 0.591
car 0.939 0.876 0.919 0.941 0.907 0.938
cleveland_1 0.255 0.287 0.262 0.266 0.021 0.247
cleveland_2 0.288 0.285 0.000 0.303 0.055 0.000
cmc 0.509 0.514 0.526 0.535 0.517 0.537
dermatology 0.921 0.929 0.948 0.962 0.959 0.972
ecoli 0.805 0.767 0.000 0.735 0.768 0.771
flare 0.544 0.568 0.522 0.566 0.542 0.569
glass 0.699 0.697 0.691 0.667 0.400 0.655
hayes roth 0.843 0.843 0.838 0.835 0.823 0.828
led7digit 0.771 0.779 0.722 0.778 0.778 0.800
thyroid 0.922 0.886 0.913 0.922 0.932 0.940
vehicle 0.916 0.923 0.915 0.915 0.943 0.933
wine quality 0.492 0.476 0.434 0.471 0.525 0.499
yeast 0.442 0.479 0.000 0.451 0.201 0.439
art1 0.958 0.949 0.949 0.960 0.960 0.977
art2 0.758 0.777 0.762 0.777 0.808 0.773
art3 0.615 0.612 0.559 0.608 0.631 0.619
art4 0.840 0.872 0.839 0.899 0.893 0.899

tors. On the other hand, MRBBag has a particular formula for establishing the number
of examples sampled from each class but uses random resampling. Therefore, it is viable
to propose a bagging algorithm that uses roughly balanced training sets obtained with
informed resampling, inspired by SOUP.



Chapter 6

Case Study: Multi-class Sentiment
Classification

6.1 Motivation
Problems with imbalanced data arise in many different research domains and areas of
application. The issue of imbalanced classes may be one of the main research consid-
erations in such application area, but sometimes this issue does not receive sufficient
research attention and goes somehow unnoticed while the research concentrates on other,
often equally important, domain problems and complexities. Nevertheless, the proper
treatment of the issue of imbalanced data can result in a considerable classification perfor-
mance improvement. This can be illustrated with many different real-world problems, but
we have selected the sentiment classification task for further consideration in this work.
This problem was selected as, apart from the dissertation author’s interests in natural
language processing, it demonstrates well the specifics of imbalanced classification with
several classes and can show the practical usefulness of the previously introduced methods.

Sentiment analysis gained high research interest in recent years due to its possible
high economic and social impact. First, companies want to seize the opportunity to gain
information about their customers and the reception of their products through the sen-
timent of posts and reviews published on social media and other online platforms. The
opinions expressed on the Internet can be very helpful in assessing or directing marketing
campaigns, constructing recommendation systems, improving product designs, and ana-
lyzing the stock market [62, 31]. Furthermore, automatic sentiment analysis enables the
construction of very useful tools to deal with hate speech and other negatively polarized
messages that unfortunately are abundant on the web. It has been shown that such mes-
sages can cause a wide range of mental problems, including depression or anxiety [13, 119].
Moreover, even the exposure to hate speech towards another person on the Internet can
have negative impacts such as emotional distress [161, 140].

Sentiment classification is the fundamental task of sentiment analysis, which aims
to detect sentiment polarity (e.g. strongly negative, negative, neutral, etc.) of a given
text. Even though the task can be seen just as a special case of text classification, it
is usually treated as a separate task since it is much more difficult than the typically
considered tasks of assigning texts to a certain set of topics [126]. The task also requires
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distinctive text preprocessing techniques and more advanced feature construction methods.
For instance, the word "not" is often treated as a stop word and is removed in the standard
topic-oriented text classification, but it is a key word that requires special treatment in
sentiment classification ("not good" vs. "good"). Except for proper negation handling,
other difficulties include sarcastic or ironic utterances, words changing polarity over time,
or handling of adverbial sentiment modifiers.

Besides these domain-specific adversities that most of the research focuses on, the
problem of sentiment classification is inherently imbalanced, with positive and neutral
sentences overwhelming the negative ones. This phenomenon is sometimes ascribed to
product makers’ and vendors’ marketing efforts, as well as the fact that buyers are more
likely to choose products with positive evaluations, resulting in even more generally pos-
itive reviews [95]. Recently, there were increasing efforts to address this issue by using
imbalanced learning techniques for sentiment classification [97, 96, 162, 85, 78, 136], how-
ever, most of these works were performed on binary sentiment classification problems. It
is worth noting that the usage of 5-star or other multi-level ordinal scales is widespread
in modern review platforms, so the usefulness of works on binary classification can be
somewhat limited in practice. Furthermore, even if binary classification is needed, it has
been demonstrated that adding a third, neutral class to binary sentiment classification
problems can facilitate better recognition of positively and negatively polarized texts [72].

The works on multi-class imbalanced sentiment classification are rather limited. The
usefulness of several binary-class SMOTE extensions applied iteratively to each class in
the Chinese Emotion Corpus was tested in the experiments of Xu et al. [162]. A more
complex pipeline consisting of OVO decomposition ensemble, standard SMOTE and Mul-
tiple Correspondence Analysis [1] was proposed in [118] for constructing classifiers for
SemEval2016 Message Polarity dataset. Nevertheless, except our work [83] there are no
other more comprehensive comparisons of multi-class imbalanced methods on multiple
sentiment datasets and several types of data representation.

In this chapter, we will investigate the usefulness of the ensemble algorithms proposed
in this thesis, namely SOUP-Bagging and MRBBag, to the practical task of sentiment
classification. We will evaluate the performance of four standard classifiers and two types
of data representation: one low-dimensional with handcrafted features and the other more
high-dimensional with features extracted automatically through distributional semantic
methods. The evaluation will be performed on 12 diversified datasets that range from
short text from social media to fully-fledged professional reviews.

6.2 Experimental Setup

6.2.1 Datasets and feature representations
One of the important aspects of successful usage of classical machine learning algorithms
is proper feature engineering. In our study, we will use two sets of features designed for
sentiment detection.

The first representation (low-dim) consists of 30 handcrafted features constructed from
special data resources, called sentiment lexicons. Sentiment lexicons basically contain a
list of words with assigned sentiment polarity. Some of them contain just a list of positive
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and negative words, but some are more detailed and assign words to different emotions
like "anger" or "happiness", sometimes even with a kind of intensity degree or polarity
value. We use five popular lexicons: the Opinion lexicon [59], SentiWordNet [9], the NRC
Hashtag Affirmative/Negated Context Sentiment lexicon [71], the NRC emotion lexicon
[116], and the Multi-perspective Question Answering corpus [158]. A feature counting
word concurrence in a given text and the dictionary was constructed for each sentiment
or emotion listed in each dictionary. If a lexicon apart from a word list contained also
concrete polarity values, the sum of these polarities were used instead of the word count.

The second representation (high-dim) has 300 features of continuous bag-of-word rep-
resentation constructed from a popular word2vec model [115]. This representation is com-
puted as an average of pre-trained vectors associated with each word in the text. These
pre-trained vectors, usually called word embeddings, can model many semantic properties
of words, including sentiment, since they come as a result of solving a simplified language
modeling task. In our case, they were pretrained on the Google News corpus.

These two representations were constructed for each of the 12 datasets presented in
Table 6.1. The datasets contain problems with a different number of classes, ranging
from 3 to 10, and represent different types of text. Four datasets (movie_aut1-4) con-
tain full-length movie reviews written by professional critics, another four datasets (book,
electronics, dvd, housewares) are reviews written in an online shop, two datasets con-
tain posts from Twitter and the last two contain users opinions from TripAdvisor and
Citysearch. A more detailed description of these datasets can be found in our work [83].

Table 6.1 also contains average safe levels for instances of minority classes encoded in
both representations. In this experiment, by a minority class we mean a class whose size
is smaller than the average class size in the dataset. The similarity configuration used for
safe level calculation was computed according to the earlier presented heuristic (Eq. 4.2).

In general, one can note that the safe level values are relatively low, indicating the
difficulty of the sentiment classification task. Interestingly, the safe levels for datasets
containing short utterances are not lower than for longer texts, even though many works
indicated that extracting sentiment from short text is more challenging [85, 120]. We also
find that the continuous bag of words representation is safer than the handcrafted features
for most of the datasets.

6.2.2 Classifiers
The experiments were performed with four popular learning algorithms from sklearn
python package: decision trees (DT), Naive Bayes (NB), Multinomial Logistic Regression
(MLR), and k-Nearest Neighbors (kNN). For each dataset and feature representation, we
selected the best hyperparameters values through grid search with a 10% validation set.
We have tested 0.01, 0.1, 1, 10, and 100 as the values of L2 regularizer in MLR, kNN was
tested with k ranging from 1 to 9 (only odd values), and the decision tree had tuned the
maximum depth parameter (10, 20, 40, 80 and full tree). All reported results come from
the 5-fold cross-validation, with the hyperparameter tuning performed within each fold.

Apart from methods proposed in this thesis, SOUP-Bagging and MRBBag, we will test
the best performing ensemble methods from our previous experiments. Concretely, we will
use one-versus-one decomposition with random oversampling and random undersampling.
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Table 6.1: Basic characteristics of datasets under study.

avg. safe level
dataset IR # classes # examples low-dim high-dim
books 2.72 4 2000 0.223 0.283
dvd 2.5 4 2000 0.258 0.269
electronics 2.12 4 2000 0.224 0.269
housewares 3.07 4 2000 0.150 0.203
movie_aut1 10.08 8 1027 0.078 0.125
movie_aut2 26.08 10 1306 0.078 0.143
movie_aut3 11.87 10 902 0.078 0.081
movie_aut4 52.75 9 1768 0.134 0.174
restaurants 3.17 4 1325 0.373 0.306
tripadvisor 6.37 5 20491 0.266 0.225
tweeter5point 33.31 5 9090 0.159 0.202
tweeter3point 3.13 3 9090 0.227 0.298

Moreover, MRBBag will be tested in its both versions proposed in the earlier chapter:
undersampling MRBBag (uMRBB) and oversampling MRBBag (oMRBB).

As in our previous experiments, the classification performance is measured with G-
mean measure and additionally, due to its high popularity in the text classification com-
munity, with F-score. Since the number of computed results is quite large, only the relevant
results summaries are presented here. The interested reader can check the detailed results
on the webpage 1.

6.3 Comparison of Imbalanced Learning Methods in
the Domain of Sentiment Classification

We will begin the discussion of the results by selecting the best pair of a component
classifier algorithm and an imbalance ensembling method for the sentiment classification
task, i.e., such that obtains the highest results on F-score and G-mean measure. In this
experiment, we measure the classification performance for both feature representation,
i.e., treating datasets with different features as separate datasets. The five top-performing
pairs and their ranks are presented in Table 6.2.

For F-score, the best performing method was the combination of SOUP-Bagging with
multinomial logistic regression, followed by MLR with OVO ROS decomposition. For G-
mean measure, the two best-performing methods were OVO RUS and SOUP-Bagging also
coupled with MLR. In general, MLR used as a base classifier seems to be most suitable for
sentiment classification data as ensembles with this algorithm fill almost all top positions in
the ranking. Looking at lower positions in the ranking, Naive Bayes is generally obtaining
the lowest results. The ensemble methods paired with Decision Tree and kNN fill the
position in between NB and MLR.

1http://www.cs.put.poznan.pl/mlango/publications/imbalanced-sentiment.html
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Table 6.2: The best combinations of classifiers and ensemble methods for the datasets under study.

F-score G-mean
no. classifier ensemble method rank classifier ensemble method Rank
1 MLR SOUP-Bagging 3.21 MLR OVO RUS 2.83
2 MLR OVO ROS 3.5 MLR SOUP-Bagging 3.38
3 DT SOUP-Bagging 5.88 MLR OVO ROS 4.33
4 MLR OVO RUS 6.08 MLR oMRBB 5.58
5 MLR Single classifier 7.58 MLR uMRBB 5.79

Table 6.3: Average ranks of ensemble methods for the datasets under study, always selecting the base
classifier with the highest result. SOUP-B is an abbreviation from SOUP-Bagging.

data rep. measure SOUP-B uMRBB OVO RUS OVO ROS oMRBB baseline

low-dim G-mean 1.67 2.25 3 3.92 4.17 6
F-score 1.83 2.33 4.83 4.25 2.58 5.17

high-dim G-mean 2.33 2 2.5 4.08 4.08 6
F-score 2.42 2.33 5.17 3.67 2.75 4.67

Table 6.3 contains more detailed average ranks for each ensembling technique and
data representation. The ranks are averaged over datasets where always the best result,
i.e., the best base classifier for each ensembling method, was selected. Interestingly, for
the continuous bag of word representation the lowest (best) rank for F-score and for G-
mean was obtained by our undersampling Multi-class Roughly Balanced Bagging. For
low dimensional representation, the best result for both F-score and G-mean obtained
SOUP-Bagging, followed by uMRBB. The oversampling version of MRBBag always ob-
tained higher average ranks than uMRBBag, confirming our earlier observation about the
superiority of uMRBBag. Lack of any imbalanced learning ensembling technique (i.e. sin-
gle classifier) was the worst-performing method on all datasets for G-mean measure. Its
rank was also the lowest for F-score, however, for few datasets it offered higher results
than some imbalanced learning techniques. For each presented ranking, we performed
Friedman rank tests that indicated statistically significant differences (all with p < 0.001).

6.4 Discussion
The experiments presented in this chapter demonstrated that using imbalance learning
methods can improve recognition in the sentiment classification task. The best-performing
methods were those proposed in this thesis, confirming their usefulness in one important
area of application.

More concretely, SOUP-Bagging with the multinomial logistic regression obtained the
best results in terms of F-score across datasets. However, looking for the best method
for a particular data representation, uMRBBag provided better performance for high-
dimensional representation. Similarly, SOUP-Bagging was obtaining the best perfor-
mance on G-mean for low-dimensional representation whereas it was outperformed for
high-dimensional data by uMRBBag (although the difference in average ranks is mini-
mal). This can suggest that SOUP-Bagging, which uses standard L2-distance to compute
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neighborhoods, can not be suitable to work with very high-dimensional data, suffering
from the so-called curse of dimensionality.

The obtained results can be further improved in many ways. First, one can think
of constructing even better feature representations, such as including negation n-grams
or character grams. Such ideas are further explored in our recent work [83]. Another
direction for constructing better representations is the utilization of deeper distributional
semantics models, trained on even larger corpora, like BERT [33] and its extensions.

Secondly, the best-performing methods in our study are bagging-based methods which
for multidimensional data can be extended with random subspace mechanism [90]. Ex-
tending bagging with this mechanism for binary imbalanced data was already proposed by
us in work [88]. In the experiments presented there, we have shown significant performance
improvement for multidimensional imbalanced data coming from this mechanism.

Next, one can consider using more advanced learning algorithms like neural networks
or support vector machines with string kernels. For instance, in our solution for sentiment
classification in very short text utterances, the gradient boosted trees proved to be very
competitive with other state-of-the-art approaches [85].

Finally, some of the datasets used in this study come from social networks such as
Twitter which, aside from text, also contain a certain time aspect. This opens a new line
of research that can analyze this problem in the context of imbalanced data streams. Re-
cently, a more general preliminary study [18] that included sentiment classification datasets
from Twitter demonstrated the superior performance of incremental imbalanced bagging
approaches. Moreover, a particular safe level analysis performed over time revealed inter-
esting fluctuations of data difficulty factors.



Chapter 7

Conclusions and Future Work

The main goal of this thesis was to verify if new classification methods for multi-class
imbalanced data can be proposed, particularly by taking inspiration from the analysis
of local and global data difficulty factors. This involved analyzing the difficulty sources
in multi-class imbalanced datasets and proposing a method for their detection in real
datasets. Furthermore, new classification methods utilizing these detected difficulty factors
have been proposed. Its effectiveness has been verified both on datasets from UCI and
KEEL repositories, typically used in the related works, as well as on the datasets from a
selected application area (sentiment classification). Therefore, in our opinion, the main
goal of this dissertation has been accomplished. To support this claim, we summarize the
main contributions of this thesis.

• A novel experimental analysis of sources of difficulties in multi-class imbalanced data
has been presented. To this end, we have proposed and implemented an artificial
data generator that allowed for investigating the impact of various data difficulty
factors on standard classifiers as well as comparing it to a theoretically optimal
solution. The performed analysis pointed out the considerable impact of class dis-
tribution overlapping, e.g., that increasing it has a more significant impact on clas-
sification performance than increasing the imbalance ratio. It was also showed that
multi-minority data is more difficult than multi-majority and that overlap between
minority and majority classes is more harmful than between minority classes. The
experiments also highlighted the special role of intermediate classes, particularly the
varying impact of its overlapping on the classification performance that depends on
which class they overlap.

• We presented a method for detecting data difficulty factors through the analysis of
examples’ save levels in real datasets. The proposed definition of the save level incor-
porates the class similarity degrees that can model class interrelations. In particular,
they can capture the varying role of intermediate classes. We have shown that the
method, despite its simplicity, is helpful in assessing the difficulty of multi-class
imbalanced datasets.

• A resampling method, called Similarity Oversampling and Undersampling Prepro-
cessing (SOUP), that exploits the conclusions from our experimental analysis of
difficulty factors has been presented. The method relies on the safe levels with sim-
ilarity degrees to direct sampling towards the most difficult parts of the datasets,
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constructing not only a balanced dataset but also a dataset from which it is easier
to learn. The performed experimental evaluation on 15 real and 4 artificial datasets
demonstrated that SOUP obtains statistically significantly better results than other
resampling methods like Global-CS or Static-SMOTE. Moreover, a single classifier
constructed on a dataset preprocessed with SOUP outperforms specialized decompo-
sition ensembles such as one-vs-one with resampling methods for binary imbalanced
data.

• We proposed two new ensemble algorithms that extend the bagging framework for
multi-class imbalanced datasets. The first algorithm, Multi-class Roughly Balanced
Bagging (MRBBag), comes from extending Roughly Balanced Bagging for binary im-
balanced problems that proved to obtain outstanding results on complex imbalanced
problems, despite the lack of direct handling of data difficulty factors. The second
algorithm integrates SOUP resampling into a bagging framework that uses the pro-
posed method to better handle data difficulty factors. The experiments performed
on a variety of datasets demonstrated that both methods offer better classification
performance in terms of G-mean than the decomposition methods classically used
for multi-class imbalanced problems. Furthermore, even a single classifier trained on
a dataset preprocessed with SOUP outperformed the MRBBag ensemble.

• Finally, we have shown the usefulness of the proposed methods in one selected
challenging area of application, namely sentiment analysis. SOUP-Bagging offered
the best results among the studied methods on a low-dimensional representation
of hand-crafted features specialized for sentiment classification, whereas MRBBag
gave slightly better results on the high-dimensional representation of automatically
learned features.

• It is worth mentioning that also some efforts to popularize the proposed methods
have been undertaken. One result of these efforts is an open-source python library,
compatible with the most popular sklearn machine learning library for that lan-
guage1 [47].

Naturally, the presented research can be extended in several ways. First, the difficul-
ties related to the minority class decomposition into several subconcepts have not been
investigated. Note that class decomposition into several subconcepts is not only charac-
terized by the number of subconcepts, but also involves various possible configurations
of theirs overlapping with different classes, the intensity of these overlappings, different
configurations of subconcepts cardinalities, etc.

Nevertheless, we already undertook some efforts to construct methods that simultane-
ously detect class decomposition and other data difficulty factors in the binary imbalanced
data setting through a specialized supervised clustering algorithm [84]. The result of such
clustering was further used to propose a preprocessing method that during training con-
siders particularly computed example’s weights, which results in better classification per-
formance [86]. We believe that such works can also be extended to multi-class imbalanced
data and offer improvements by handling this additional difficulty factor.

Furthermore, the proposed SOUP preprocessing selects examples to resample in a non-

1http://www.cs.put.poznan.pl/mlango/publications/multiimbalance/index.html

http://www.cs.put.poznan.pl/mlango/publications/multiimbalance/index.html
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trivial way through safe level calculations but oversamples them just by duplication. Many
well-performing methods for binary imbalanced data take inspirations from SMOTE [24]
and, instead of duplicating existing minority examples, constructs new ones, for instance,
by taking a linear interpolation of two selected examples. Therefore, it seems viable to
further improve SOUP results by using a more sophisticated method for oversampling
examples. In particular, such a method could take into account the detected safe levels
and construct new instances in a way depending on the detected difficulties in order to
handle them better.

Finally, there are some related problems for which the analysis of data difficulty factors
could be beneficial. For instance, in the computer vision community, there is recently a
growing interest in solving the so-called problem of long-tailed class distribution [108].
It occurs when learning a classifier from a dataset that contains several classes with an
abundance of examples and many classes with only a handful of examples. This problem
differs from the multi-class imbalanced learning since usually there is no particular focus
on minority classes recognition (e.g. the practitioners are not willing to sacrifice the recog-
nition of majority classes to get much better recognition of minority) and the number of
classes is usually much higher than in the typically considered datasets in the imbalanced
data research. This problem is sometimes mitigated by transferring knowledge from large
classes to small classes, e.g. though feature representation [104]. One can hypothesize that
taking into account data difficulty factors while constructing feature representations could
lead to some improvements, e.g., by generating easier-to-learn representations of minority
classes.

To sum up, we hope that our experimental analysis and proposed methods can con-
tribute to better understanding of the difficulties in multi-class imbalanced data and to
inspire the further development of new learning algorithms dedicated for the multi-class
imbalanced problems.





Appendix A

List of publications

• Pluciński K., Lango M., Stefanowski J., Prototypical Convolutional Neural Network
for a phrase-based explanation of sentiment classification, ECML PKDD Interna-
tional Workshop and Tutorial on eXplainable Knowledge Discovery in Data Mining
(XKDD), 2021

• Janiszewski P., Lango M., Stefanowski J., Time aspect in making an actionable
prediction of a conversation breakdown, European Conference on Machine Learning
(ECML-PKDD), 2021 (140 points)

• Marynowicz J., Lango M., Horna D., Kikut K., Andrzejewski M., Predicting ratings
of perceived exertion in youth soccer using decision tree models, Biology of Sport,
2021 (70 points)

• Marynowicz J., Kikut K., Lango M., Horna D., Andrzejewski M., Relationship be-
tween the Session-RPE and external measures of training load in youth soccer train-
ing, Journal of Strength and Conditioning Research, 2020 (100 points)

• Grycza J., Horna D., Klimczak H., Lango M., Pluciński K, Stefanowski J., multi-
imbalance: open source Python toolbox for multi-class imbalanced classification,
European Conference on Machine Learning (ECML-PKDD), Ghent, Belgium, 2020
(140 points)

• Marynowicz J., Kikut K., Lango M., Horna D., Andrzejewski M., Relationship be-
tween the Session-RPE and external measures of training load in youth soccer train-
ing, European College of Sport Science (ECSS) congress, Sevilla, Spain, 2020

• Pluciński K., Lango M., Zimniewicz M., A Closer Look on Unsupervised Cross-
lingual Word Embeddings Mapping, Proceedings of the 12th International Confer-
ence on Language Resources and Evaluation, Marseille, France, 2020 (20 points)

• Lango M., Žabokrtský Z., Ševčíková M. Semi-Automatic Construction of Word-
Formation Networks, Language Resources and Evaluation, 2020 (70 points)

• Lango M., Stefanowski J., SOUP-Bagging: a new approach for multi-class imbal-
anced data classification, PP-RAI ’19: Polskie Porozumienie na Rzecz Sztucznej
Inteligencji, 2019

• Janicka M., Lango M., Stefanowski J., Using information on class interrelations to
improve classification of multi-class imbalanced data: a new re-sampling algorithm,



78 A List of publications

International Journal of Applied Mathematics and Computer Science, 2019 (100
points)

• Lango M., Tackling the Problem of Class Imbalance in Multi-class Sentiment Classi-
fication: An Experimental Study, Foundations of Computing and Decision Sciences,
2019 (70 points)

• Lango M., Brzeziński D., Stefanowski J., ImWeights: Classifying Imbalanced Data
Using Local and Neighborhood Information, JMLR Proceedings of the 2nd Interna-
tional Workshop on Learning with Imbalanced Domains co-located with ECML/P-
KDD, Dublin, Ireland, 2018

• Lango M., Ševčíková M., Žabokrtský Z., Semi-Automatic Construction of Word-
Formation Networks (for Polish and Spanish), Proceedings of the 11th International
Conference on Language Resources and Evaluation, Miyazaki, Japan, 2018

• Lango M., Brzeziński D., Firlik S., Stefanowski J., Discovering Minority Sub-clusters
and Local Difficulty Factors from Imbalanced Data, Proceedings of the 20th Inter-
national Conference on Discovery Science, Kyoto, Japan, 2017 (15 old1 points)

• Lango M., Napierala K., Stefanowski J., Evaluating difficulty of multi-class imbal-
anced data, Foundations of Intelligent Systems, Lecture Notes in Artificial Intelli-
gence, Springer, 2017 (15 old points)

• Lango M., Stefanowski J., Multi-class and Feature Selection Extensions of Roughly
Balanced Bagging for Imbalanced Data, Journal of Intelligent Information Systems,
2017 (20 old points)

• Lango M., Brzeziński D., Stefanowski J., PUT at SemEval-2016 Task 4: The ABC
of Twitter Sentiment Analysis, Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval 2016), San Diego, US , 2016

• Błaszczyński J., Lango M., Diversity Analysis on Imbalanced Data Using Neigh-
bourhood and Roughly Balanced Bagging Ensembles, Artificial Intelligence and Soft
Computing, Lecture Notes in Artificial Intelligence, Springer , 2016 (15 old points)

• Lango M., Stefanowski J., The Usefulness of Roughly Balanced Bagging for Com-
plex and High-dimensional Imbalanced Data, In New Frontiers in Mining Complex
Patterns, Lecture Notes in Computer Science, Springer , 2016 (15 old points)

• Lango M., Stefanowski J., Applicability of Roughly Balanced Bagging for Complex
Imbalanced Data, Proceedings of the 4th Workshop on New Frontiers in Mining
Complex Patterns join together with the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases, 2015

In total: 710 ministerial points and 80 old ministerial points.

1Ministerial points before higher education reform in 2018.



Appendix B

Streszczenie

Uczenie klasyfikatorów jest podstawowym obszarem badawczym w nadzorowanym uczeniu
maszynowym zajmującym się automatyczną konstrukcją systemów zdolnych do przypisy-
wania instancji testowych do predefiniowanych klas na podstawie zbioru danych. Tak
ogólnie postawiony problem doprowadził do opracowania licznych algorytmów, które są
szeroko wykorzystywane w wielu obszarach, takich jak rekomendacja produktów, identy-
fikacja autorstwa czy filtrowanie wiadomości. Pomimo znaczących sukcesów w licznych
zastosowaniach, pewne problemy wciąż pozostają otwarte i utrudniają powszechne wyko-
rzystanie metod uczenia maszynowego w specyficznych, a zarazem ważnych dziedzinach
zastosowań. Jednym z takich problemów jest problem uczenia z danych niezbalansowa-
nych.

Zbiór danych nazywamy niezbalansowanym jeśli zawiera on klasy o różnych liczno-
ściach, a co najmniej jedna z klas nie jest dostatecznie dobrze reprezentowana. Te niedo-
reprezentowane klasy nazywamy klasami mniejszościowymi, a ich skuteczne rozpoznawa-
nie jest kluczowe w wielu praktycznych problemach takich jak analiza wydźwięku tekstu,
automatyczna konstrukcja grafów czy analiza danych medycznych. Przeciwnie do oczeki-
wań praktyków preferujących wysoką trafność rozpoznawania klas mniejszościowych, kla-
syczne metody uczenia maszynowego konstruują klasyfikatory dobrze rozpoznające przede
wszystkim klasy większościowe. W ekstremalnych przypadkach skonstruowany klasyfika-
tor całkowicie ignoruje klasy mniejszościowe, nie będąc w stanie zaklasyfikować do nich
żadnego przykładu testowego.

Początkowo sądzono, że to niepożądane zachowanie systemów uczących się wynika je-
dynie z poziomu niezbalansowania (ang. imbalance ratio), czyli ze znacznej rozbieżności
pomiędzy wielkościami klas w zbiorze treningowym. Jednakże późniejsze analizy ekspery-
mentalne wykazały, że dla niektórych prostych problemów klasyfikacyjnych poziom niezba-
lansowania klas nie ma prawie żadnego wpływu na ostatecznie skonstruowany klasyfikator.
Zaobserwowano, że poziom niezbalansowania wpływa na konstrukcję klasyfikatorów i zna-
cząco pogarsza rozpoznawanie klas mniejszościowych jedynie wtedy, gdy występuje razem
z innymi czynnikami trudności danych (ang. data difficulty factors). Czynniki trudności
danych można podzielić na czynniki globalne, które wpływają na wszystkie przykłady w
zbiorze danych oraz czynniki lokalne, które dotyczą tylko pewnego podzbioru instancji.
Przykładem globalnego czynnika trudności danych jest omawiany poziom niezbalansowa-
nia klas, natomiast nakładanie się klas, dekompozycja klasy na podkoncepty czy znaczna
liczba obserwacji odstających to typowe przykłady czynników lokalnych.
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Ze względu na duże znaczenie praktyczne uczenia z danych niezbalansowanych, do jego
rozwiązania zaproponowano wiele specjalistycznych metod, które można podzielić na me-
tody algorytmiczne, metody modyfikujące rozkład danych oraz metody kosztowe. Metody
algorytmiczne próbują rozwiązać trudności związane z konstrukcją klasyfikatorów z da-
nych niezbalansowanych poprzez dostosowanie do nich istniejących systemów uczących
się. W przeciwieństwie do tych metod, które skupiają się na modyfikacji konkretnych al-
gorytmów, metody modyfikujące rozkład danych są uniwersalne i niezależne od wybranego
algorytmu uczącego. Metody te modyfikują niezbalansowany zbiór danych w taki sposób,
aby uruchomiony na nim algorytm uczący osiągał lepsze wyniki na klasie mniejszościowej.
Ostatnia grupa metod wykorzystuje algorytmy uczenia się z kosztami (ang. cost-sensitive
learning) koncentrując konstrukcję systemu klasyfikacyjnego na klasach mniejszościowych
poprzez przypisanie ich przykładom wyższych kosztów błędnej klasyfikacji.

Prawie wszystkie metody wchodzące w skład wyżej wymienionych kategorii zostały
zaprojektowane jedynie dla niezbalansowanych problemów klasyfikacji binarnej. Niemniej
jednak zjawisko niezbalansowania klas występuje również w wieloklasowych zbiorach da-
nych. Na przykład w zastosowaniach medycznych możemy tworzyć klasyfikator, który au-
tomatycznie wyróżnia nagłe przypadki wśród pacjentów zgłaszających się do Szpitalnego
Oddziału Ratunkowego. Jednakże szpital może być zainteresowany nie tylko identyfikacją
pilnych przypadków, ale także wykrywaniem przypadków które powinny być leczone przez
lekarzy pierwszego kontaktu lub pacjentów których leczenie powinno być prowadzone w in-
nych szpitalach (np. z powodu braku wyspecjalizowanego oddziału). Taki problem byłby
niezbalansowany, ponieważ, jak pokazują badania przeprowadzone w USA, pacjenci któ-
rzy powinni być leczeni przez lekarzy pierwszego kontaktu stanowią ponad 80% wszystkich
przypadków na tego typu oddziałach. Przedstawiony problem klasyfikacji ma dwie klasy
mniejszościowe, ale w praktyce występują również problemy z kilkoma klasami większo-
ściowymi lub zarówno z wieloma klasami większościowymi jak i mniejszościowymi.

Nieliczne zaproponowane metody dla problemów wieloklasowych ograniczają się do de-
kompozycji problemów na problemy binarne oraz inne wyspecjalizowane metody, w zde-
cydowanej większości adaptacje binarnych metod przetwarzania wstępnego. Te proste
modyfikacje metod binarnych nie uwzględniają jednak bardziej złożonych relacji, jakie po-
jawiają się między klasami w wieloklasowych problemach niezrównoważonych i nie radzą
sobie z dodatkowymi źródłami trudności zidentyfikowanymi przez praktyków. Co więcej,
dotychczasowo przeprowadzone teoretyczne i eksperymentalne analizy czynników trud-
ności uczenia z danych niezrównoważonych, z nielicznymi wyjątkami, również dotyczą
problemów binarnych, a ich wyników nie można bezpośrednio odnieść do danych wielo-
klasowych.

Na podstawie powyższych przesłanek sformułowano następującą hipotezę niniejszej
rozprawy:

Można zaproponować nowe metody konstrukcji klasyfikatorów dla wieloklasowych
danych niezbalansowanych, które będą uwzględniać informacje o źródłach trudno-
ści związanych z rozkładem danych zarówno na poziomie lokalnym jak i bardziej
globalnym.

Powyższą hipotezę zweryfikowano poprzez przeprowadzenie eksperymentalnej analizy źró-
deł trudności w wieloklasowych niezbalansowanych zbiorach danych oraz zaproponowaniu
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metody ich identyfikacji w rzeczywistych zbiorach danych. Ponadto, zaproponowano nowe
metody klasyfikacji wykorzystujące wykryte czynniki trudności, których skuteczność zo-
stała zbadana zarówno na typowo wykorzystywanych w pracach badawczych zbiorach
danych z repozytoriów UCI i KEEL, jak i na zbiorach danych z wybranego obszaru zasto-
sowań (klasyfikacja wydźwięku). W szczególności zrealizowano następujące zadania:

• W celu wykonania eksperymentalnej analizy źródeł trudności w wieloklasowych da-
nych niezbalansowanych, zaproponowano i zaimplementowano generator sztucznych
danych, który pozwolił na zbadanie wpływu różnych czynników trudności na jakość
predykcji standardowych algorytmów uczących oraz porównanie ich z wynikiem kla-
syfikatora optymalnego (tzw. klasyfikator Bayesa).
Przeprowadzona analiza wskazała na znaczący wpływ nakładania się klas, a w szcze-
gólności, że zwiększanie nakładania się klas ma bardziej znaczący wpływ na jakość
klasyfikacji niż zwiększanie poziomu niezbalansowania. Wykazano również, że dane
z wieloma klasami mniejszościowymi są trudniejsze niż z wieloma większościowymi
oraz że nakładanie się klas mniejszościowych i większościowych bardziej obniża jakość
predykcji niż nakładanie się klas mniejszościowych. Eksperymenty uwypukliły rów-
nież szczególną rolę klas pośrednich, dotychczas rzadko omawianych w literaturze,
m.in. pokazano zróżnicowany wpływ nakładania się klasy pośredniej na wydajność
klasyfikacji, który zależy od tego, na jakiego typu klasę się nakłada.

• Zaprezentowano metodę wykrywania czynników trudności danych poprzez analizę
poziomów bezpieczeństwa przykładów w rzeczywistych zbiorach danych. Propono-
wana definicja poziomu bezpieczeństwa zawiera współczynniki podobieństwa klas,
które mogą modelować wzajemne relacje między klasami. W szczególności mogą
one uchwycić zmienną rolę klas pośrednich. Pokazano również, że metoda ta jest
pomocna w ocenie trudności rzeczywistych, wieloklasowych zbiorów niezbalansowa-
nych.

• Zaprojektowano metodę wstępnego przetwarzania danych, Similarity Oversampling
and Undersampling Preprocessing (SOUP), która wykorzystuje wnioski z przeprowa-
dzonej wcześniej eksperymentalnej analizy czynników trudności. Metoda ta na pod-
stawie obliczonych wcześniej stopni bezpieczeństwa przykładów, ukierunkowuje swoje
działanie na konkretne części zbioru danych. SOUP poprzez nadlosowanie bez-
piecznych przykładów mniejszościowych i odlosowanie przykładów większościowych
ze strefy nakładania się klas, konstruuje nie tylko zbalansowany zbiór danych, ale rów-
nież zbiór, z którego łatwiej można nauczyć klasyfikatory o wysokiej jakości rozpo-
znawania klas mniejszościowych.
Przeprowadzona ocena eksperymentalna na 15 rzeczywistych i 4 sztucznych zbiorach
danych wykazała, że SOUP uzyskuje na metryce G-mean lepsze wyniki niż inne me-
tody wstępnego przetwarzania, takie jak Global-CS czy Static-SMOTE. Uzyskane
różnice były statystycznie istotnie wg. sparowanych testów rangowych Wilcoxona
ze standardowym progiem istotności tj. α = 0.05. Co więcej, pojedynczy klasyfi-
kator skonstruowany na przetworzonym przez SOUP zbiorze danych uzyskał niższą
(tj. lepszą) średnią rangę w teście Friedmana niż popularne, wyspecjalizowane ze-
społy klasyfikatorów, które dekomponują problem wieloklasowy do serii problemów
binarnych i stosują w ramach nich binarne techniki nad- i od-losowania.
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• Zaproponowano dwa nowe algorytmy konstrukcji zespołów klasyfikatorów, które roz-
szerzają algorytm bagging dla wieloklasowych niezbalansowanych zbiorów danych.
Pierwszy algorytm, Multi-class Roughly Balanced Bagging (MRBBag), jest rozsze-
rzeniem algorytmu Roughly Balanced Bagging dla binarnych danych niezbalanso-
wanych, który okazał się uzyskiwać bardzo dobre wyniki na złożonych binarnych
problemach niezbalansowanych, pomimo braku bezpośredniego brania pod uwagę
czynników trudności danych. Drugi zaproponowany algorytm wykorzystuje z kolei
metodę obliczania poziomów bezpieczeństwa do identyfikacji czynników trudności
danych, stosując technikę SOUP i integrując ją z zespołem typu bagging (SOUP-
Bagging).
Eksperymenty przeprowadzone na kilkunastu zbiorach danych wykazały, że obie
metody oferują lepszą jakość klasyfikacji pod względem miary G-mean niż metody
dekompozycji, klasycznie stosowane dla wieloklasowych problemów niezbalansowa-
nych. Jednakże metoda wykorzystująca informacje o czynnikach trudności tj. SOUP-
Bagging uzyskała lepsze wyniki niż MRBBag. Co więcej, nawet pojedynczy klasy-
fikator wytrenowany na zbiorze danych wstępnie przetworzonym za pomocą SOUP
również przewyższył zespół MRBBag w sensie średniej rangi w teście Friedmana.

• Wreszcie, pokazano przydatność proponowanych metod w jednym z wymagających
obszarów zastosowań, jakim jest analiza wydźwięku. Przeprowadzono eksperymenty
na 12 zróżnicowanych zbiorach tekstów, wśród których były zarówno krótkie opinie
z sieci społecznościowych jak i profesjonalne recenzje, oraz na dwóch typach repre-
zentacji tekstu. Na niskowymiarowej reprezentacji ręcznie stworzonych wyspecjali-
zowanych cech, SOUP-Bagging uzyskał najlepsze wyniki spośród badanych metod.
Z kolei MRBBag uzyskał nieco lepsze wyniki na wielowymiarowej reprezentacji au-
tomatycznie uczonych cech metodami semantyki dystrybucyjnej.

• Warto nadmienić, że podjęto również pewne wysiłki mające na celu popularyzację
zaproponowanych metod. Jednym z rezultatów tych starań jest biblioteka openso-
urce dla języka Python, kompatybilna z biblioteką sklearn.
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