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Abstract 
The scientific aim of this Ph.D. dissertation is the analysis and development of 

automated mechanism for highly efficient night-vision pedestrian detection on thermal 
images. The research presented in this dissertation is focused to two main issues: region 
of interest (ROI) generation based on thresholding and procedure of tuning object 
classification stage. The author's motivation was to achieve the state-of-the-art accuracy 
and real-time performance of pedestrian detection process in order to apply it in 
vehicles (e.g. those equipped with driver assistance systems or in autonomous vehicles) 
without using special hardware i.e., general-purpose computing on graphics processing 
units. 

The scientific thesis was formulated as follows: The developed approach of night-
vision pedestrian detection based on proposed ROI generation by thresholding of 
thermal images and by properly tuned object classification procedure improves 
detection accuracy and significantly increases computational efficiency of the 
pedestrian detection process. 

The structure of this dissertation is as follows: after the introduction, in Chapter 2, 
the extended analysis of the research area (initially described in Chapter 1.1) is 
presented along with a summary and detailed explanation of the motivation to undertake 
this work.  

Section 2.2 presents all the public recording datasets and benchmarks used in the 
experiments. Subsequently, the proposed improvements to the pedestrian detection 
process are presented in separated chapters. 

The proposed ROI generation algorithm is described and tested in Chapter 3. In the 
next Chapter 4, the problem of inaccurate matching of the edges of ROI to the outer 
edges of the pedestrians is analysed with the proposed additional ROI area enlarging 
technique. Chapter 5 describes the proposed procedure of tuning object classification 
stage with universal performance index. 

Chapter 6 presents the experiments on the proposed pedestrian detection algorithm 
performed to compare the presented solution with the standard approaches based on the 
sliding window segmentation technique and other solutions in the literature. Chapters 3 
and 5 also include separated experiments and tests performed to verify the effectiveness 
of the proposed modifications. 

In the Chapter 7, the author also presents research on the possibility of using so-
called multi-spectral vision for scene analysis by monitoring operators. Performed 
experiments show that this option shortens reactions and supports faster identification of 
objects (e.g., pedestrians) at night.  

The last chapter presents the conclusions, which indicate that the scientific goal of this 
dissertation has been achieved and the scientific thesis has been proven. 
approach to night-vision pedestrian detection achieved very high computational 
efficiency, with up to 130 frames per second using the CPU only. Moreover, it was 
possible to obtain the state-of-the-art detection accuracy for tested detectors, namely the 
aggregated channel feature (ACF) and deep convolutional neural network (CNN).  
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Streszczenie 
Celem naukowym prezentowanej rozprawy doktorskiej jest analiza i opracowanie 

automatycznego mechanizmu detekcji pieszych na obrazach termowizyjnych 
rejestrowanych w nocy
na d ekstrakcji obszaru zainteresowania w oparciu o 
progowanie obrazu termowizyjnego oraz odpowiednim dopasowaniu procedury 

wysokiej 
detekcji pieszych przy jednoczesnym zachowaniu wysokiej 
zastosowaniem systemu jest detekcja w pojazdach (w systemach czasu rzeczywistego) 
bez  dedykowanego procesory graficzne. 

eza naukowa pracy: O
detekcji pieszych w nocy w oparciu o zaproponowany proces ekstrakcji obszaru 
zainteresowania poprzez progowanie 

 
Struktura pracy  w Rozdziale 2. przedstawiona jest 

.) wraz z 
 

Sekcja 2.2. przedstawia wszystkie wykorzystane w eksperymentach publiczne zbiory 
danych
procesu detekcji pieszych. 

Proponowany algorytm ekstrakcji obszaru zainteresowania 
przetestowany w R

. W rozdziale 5 
dostrajania etapu klasyfikacji 

m indeksem  
W rozdziale 6. przedstawiono eksperymenty z proponowanym algorytmem detekcji 

a ze standardowym algorytmem detekcji opartymi na technice  
przesuwnego okna prezentowanymi 

perymenty i testy przeprowadzone w celu 
 modyfikacji. 

eksperymenty 
 

W ostatnim cel naukowy 
ne 

.  
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1. Introduction 

1.1. Research area 
The dynamic growth of motorization and the increased traffic volume, although 

together help to develop our civilization, also increase the risk of accidents. According 
to [1], 38% of fatal accidents in the European Union occur in darkness, despite the fact 
that the traffic during nights is several times smaller than on days. About 20% of the 
victims are pedestrians, while more than half of pedestrian deaths (51%) take place at 
night [2]. Pedestrian fatalities that occur at night result from such factors as poor 
visibility, drivers fatigue, driving speed, and alcohol [3]. 

In view of the above problems, many organizations set up preventive measures. With 
the efforts undertaken by the European Union (e.g., 
[4]), the total number of fatalities in car accidents is falling rapidly. It changed 
from 54,000 in 2001 to 31,000 in 2010 [4]. The number of pedestrian-related 
accidents was 9,100 in 2001 and 5,500 in 2010. This represents a global 
downward trend in the average pedestrian mortality across the European Union, 
but some exceptions are also noted [2]. In some countries, especially those of 
rapid economic growth, e.g., in Poland and Romania, this trend is somehow 
weaker, i.e., in Poland there were 1,866 pedestrian fatalities in 2001 vs. 1,236 in 
2010 [2]. 

Thanks to new achievements in the technological sciences, it is now possible to offer 
tools that can aid transportation safety. In the automotive-related areas, it could be 
found such mechanisms as road planning, road security, assisting of drivers and their 
capabilities, protection of drivers and passengers, protection of pedestrians, and many 
others. Automotive companies offer advanced driver assistance systems (ADAS) 
solutions that increase the safety of night traffic. Among the most popular are: adaptive 
(intelligent) front lights, detection of weariness or intoxication of a driver, warning of 
lane departure, recognition of traffic signs, information of a vehicle blind spot, 
automatic braking (the last one typically works under the limited speed and is dedicated 
to the city limits and traffic jams).  

The car manufacturers also offer ADAS for night-vision. Such systems can improve 
driver perception by offering more time to react. By this, they protect against accidents 
with pedestrians, who are, in fact, defenceless in contact with vehicles. The first night-
vision system has been introduced to the market by General Motors in the year 2000 
and applied in the Cadillac DeVille. The development of this project took 15 years of 70 
person team and cost approximately $100 million [5]. In 2003, Toyota has introduced 
the first commercial active night-vision system for Toyota Landcruiser and Lexus 
LX470 and reached the range of 100 m. In 2004 Honda has introduced it in the Legend 
model as an optional system named "Intelligent Night-vision" with the first option of 
pedestrian detection. The system gained a range between 30 and 80 m [6]. Nowadays, 
such systems are offered by most car manufacturers on the market, but they are still 
dedicated to the premium level cars. 
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The night-vision systems can be classified twofold: as passive or active systems, 
taking image acquisition methods into account. The passive systems capture far-
infrared, thermal radiation (thermo-vision) naturally emitted by any object with a 
temperature above absolute zero. In contrast, the active systems are equipped with near-
infrared illuminators and capture the light reflected from the objects.  

In passive systems, each object with a temperature greater than 0 K emits radiation, 
but in practice, only the objects other than the surroundings become distinctive. Good 
contrast for living beings is one of the significant advantages of the passive systems. A 
range of detection is much more extensive than in active systems. For high-quality 
cameras, it can reach 300 m. Thermal imaging cameras are also not blinded by the lights 
of other vehicles. This feature is significant because it does not cause the distraction of a 
driver. 

With night-vision, it is possible to set up pedestrians detection feature for night-time 
driving. This feature is essential in autonomous vehicles that are starting to appear on 
roads worldwide. However, the detection of pedestrians is a challenging task. In 
general, there are many approaches to solve this goal. A natural choice is a vision 
because it is based on how people perceive humans. The solutions can be divided into 
classic monocular vision systems [7], stereo vision systems [8], and infrared vision 
systems [8 10]. Moreover, the vision systems are relatively inexpensive and easy to 
interact with humans (drivers).  

More advanced arrangements use ultrasonic sensors [12], conventional radar [13], or 
LIDAR (Light Detection and Ranging) to retrieve a 3D map of the terrain and detect 
pedestrians [14]. Nowadays, these sensors are often used simultaneously with vision 
sensors (in a sensor fusion manner) in autonomous vehicles to increase the accuracy of 
detection of objects, pedestrians, and threats on the road [15], [16]. 

The vision-based pedestrian detection systems usually perform in four main stages 
(see Figure 1): first, the image acquisition, second, preparation of the so-called region of 
interest (ROI), which separates objects of interest from the background for further 
processing, third, the object classification, which distinguishes pedestrians from other 
objects.  
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In the case of pedestrian detection with moving camera, i.e., in cars or autonomous 
vehicles, the detection process should be both accurate and computationally efficient to 
enable detection of pedestrians in a real-time manner.  

For this reason, the pedestrian detection process should be well optimized at the ROI 
generation and object classification stages. In the case of ROI generation, the choice of 
segmentation technique significantly impacts accuracy and computational efficiency. 

Currently, in the case of pedestrian detection on thermal images in night conditions, 
similar image segmentation techniques are used as for color day-time imaging cameras, 
i.e., sliding window-based techniques [11], [17], or region proposal neural networks 
[18] [20]. These techniques do not directly use information about thermal contrast 
(pedestrians are usually brighter than their surroundings at night). Moreover, most of 
these solutions require highly efficient hardware, i.e., GPGPU for real-time operation, 
making it difficult to use in vehicles. 

It is potentially possible to perform segmentation by thresholding. This approach 
allows for a significant acceleration of the entire pedestrian detection process by 
reducing the ROIs area in the image. It uses properties of the thermal images (the 
pedestrians are usually warmer, therefore brighter than the surroundings). So far, 
several techniques for the segmentation of thermal images based on thresholding have 
been proposed [7], [21], [22]. However, these techniques are currently not widely used 
due to lack of the state-of-the-art accuracy of pedestrian segmentation and operational 
stability. 

 

 

The simple assumption that pedestrians are warmer than the surrounding at night is 
not always valid. Many problems arise during segmentation, i.e., the uneven level of the 
observed temperature of one pedestrian (see Figure 2) and the temporary loss of thermal 
contrast between the pedestrian and the surroundings. All the above-mentioned 
problems should be compensated to avoid the situation that a pedestrian is not being 
detected at the segmentation stage. This raises the question of whether accurate and 
stable pedestrian segmentation of thermal images through thresholding is possible. 

In the case of the object classification stage (see Figure 1), the selection and tuning 
of the appropriate technique also have a significant impact on overall detection 
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efficiency. Pedestrian detectors often use ready-made solutions as the so-called black 
boxes by scaling the resolution of the recorded image to the resolution of the used 
object detector [11], [23]. This is especially often practiced with deep convolutional 
neural networks [24], [25]. Therefore, the computational performance of these detectors 
is often very low and requires powerful hardware for real-time operation. For this 
reason, it is essential to properly fit the algorithm to the image source properties  i.e., 
to the sensor type, camera perspective, and resolution of the image in order to increase 
the computational efficiency of the pedestrian detector without affecting the accuracy. 
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1.2. Aim of work and scientific thesis 
The initially described problems in previous Subsection 1.1 concern the process of 

pedestrian detection: the possibility of using thresholding for accurate and efficient ROI 
generation of thermal images at night and the necessity of proper tuning of the object 
detection stage. These are important scientific problems, thus they require further 
analysis and research.  

The scientific aim of this Ph.D. dissertation is the analysis and development of 
automated mechanism for highly efficient night-vision pedestrian detection on thermal 
images. The research presented in this dissertation is focused to two main issues: ROI 
generation based on thresholding and procedure of tuning object classification stage. 
The author's motivation was to achieve the state-of-the-art accuracy and real-time 
performance of pedestrian detection process in order to apply it in vehicles (such as 
ADAS equipped cars or autonomous vehicles) without using special hardware i.e., 
general-purpose computing on graphics processing units (GPGPU). 

The scientific thesis can be formulated as follows: The developed approach of night-
vision pedestrian detection based on proposed ROI generation by thresholding of 
thermal images and by properly tuned object classification procedure improves 
detection accuracy and significantly increases computational efficiency of the 
pedestrian detection process. 
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1.3. Main scientific achievements 
The main scientific achievements presented in this dissertation are innovative 

modifications of the night-vision pedestrian detection process. They can be divided into 
three main groups: 

generation approach for the thermal images based on image 
thresholding, 

a technique of additional ROI adjustment (slightly enlarging the ROI area of the 
image) before the object classification stage, 

a proposition of procedure for tuning of object classification process with the 
universal performance index. 

The complete structure of the proposed pedestrian detection algorithm with the 
introduced improvements is presented in the diagram in Figure 3 (cf. Figure 1 for the 

. 

 

 

At the ROI generation stage, the author proposed the image segmentation technique 
of thermal images by multiple thresholding with two or three global thresholds. Then, to 
compensate the imperfections of the thresholding process and to increase the accuracy, 
the techniques of regions enlargement and dividing wide ROIs were proposed. 
Moreover, in order to effectively accelerate the proposed ROI generation procedure, a 
set of candidate selection techniques was proposed.  

The technique of additional ROI area adjustment was proposed to increase the 
accuracy of the object classification stage. It consists of analysing proportionally larger 
areas from the image than those detected after the ROI generation stage. This technique 
allows for increasing the accuracy of the entire pedestrian detection algorithm with a 
negligible impact on processing time. 

The specialized procedure of tuning the object classification stage also was proposed 
to adjust the detector parameters. This procedure is based on a novel and universal 
performance index. Using this procedure, the author demonstrates that properly tuning 
of the object detection stage to the analysed image source properties - e.g., to the sensor 
type, camera perspective and resolution of the image is important and significantly 
affects the computational performance. The author proved that it is possible to 
significantly reduce the processing time without affecting the accuracy. Moreover, the 
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presented approach is quite general, i.e., it may be applied not only to the considered 
problem but it can be adapted to detection of any type of object with any classifier. 

Finally, the proposed improvements made it possible to propose an efficient 
pedestrian detection algorithm for thermal images in night conditions. The very high 
computational efficiency of detection process was obtained, with up to 130 frames per 
second using the CPU only. Moreover, it was possible to obtain the state-of-the-art 
detection accuracy for tested detectors, namely the aggregated channel feature (ACF) 
and deep convolutional neural network (CNN). This was confirmed by the sets of 
experiments performed on two public benchmarks, i.e., CVC-14 [23] and KAIST [26].  

The structure of this dissertation is as follows: after the introduction, in Chapter 2, 
the extended analysis of the research area (initially described in Chapter 1.1) is 
presented along with a summary and detailed explanation of the motivation to undertake 
this work.  

Section 2.2 presents description of all the public datasets of night-vision recordings 
used in the experiments. Subsequently, the proposed improvements to the pedestrian 
detection process are presented in separated chapters. 

The proposed ROI generation approach is described and tested in Chapter 3. In the 
next Chapter 4, the problem of inaccurate matching of the edges of ROI to the outer 
edges of the pedestrians in the image was analysed with the proposed additional ROI 
area adjustment technique. Chapter 5 presents and describes the proposed procedure of 
tuning the object classification stage with universal performance index. 

Chapter 6 presents the experiments on the proposed pedestrian detection algorithm 
performed to compare the presented solution with the standard approaches based on the 
sliding window segmentation technique and other solutions in the literature. This 
chapter also presents software with multi-threaded architecture. Chapters 3 and 5 also 
include separate experiments and tests performed to verify the effectiveness of the 
proposed modifications. 

In the last Chapter 7, the author also presents additional research on the possibility of 
using so-called multi-spectral vision for scene analysis by monitoring operators. It 
concerns thermo-vision merged with a standard camera as an option for CCTV 
monitoring. Performed experiments show that this option shortens reactions and 
supports faster identification of objects (e.g., pedestrians) at night. The dissertation is 
closed with the conclusions. 
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2. State of the art 
This chapter contains an extended analysis of the research area of night-vision 

pedestrian detection. Firstly, the two basic night-vision image acquisition techniques are 
discussed: near-infrared vision and far-infrared vision (thermal imaging) with their 
advantages and disadvantages. Secondly, the analysis of existing approaches to ROI 
generation is presented. Thirdly, the methods of object classification for final ROI 
verification are discussed. In the last subsection, the necessity of introducing more 
efficient and more adapted to image source methods is indicated.  

2.1. Night-vision approaches 
The night-vision systems can be classified twofold: as passive or active systems, 

taking image acquisition methods into account. In both approaches, the infrared band of 
an electromagnetic radiation is used. 

There are several conventional divisions of the infrared band into sections depending 
on the application and sensors sensitivity range [27] [31]. One of the detailed infrared 
division is presented in [29]: 

 Near-Infrared (NIR) with wavelength from 0,7  to 1,4  
 Short-Wave Infrared with wavelength from 1,4 to 3  
 Mid-Wave Infrared with wavelength from 3  to 8  
 Long-Wave-Infrared (LWIR) with wavelength from 8  to 14  
 Very Long-Wave-Infrared with wavelength from 14 to 25  
 Far-Wave-Infrared with wavelength from 25  to 1000 . 

In the field of Intelligent Transportation Systems (ITS) and automotive night-vision, 
the term Far Infrared (FIR) is used concerning the LWIR band and thermal imaging 
[11], [23], [27], [30] [32]. Therefore, in this work, the term FIR is also used to define 
the LWIR infrared band and refer to the range of sensitivity of thermal imaging 
cameras.  

In general, the passive systems capture FIR, thermal radiation (thermo-vision) 
naturally emitted by objects, while the active systems are equipped with NIR 
illuminators and capture the invisible to the human eye NIR light reflected from the 
objects (see Figure 4).  

In the case of active NIR systems, very often the typical silicon-based digital sensors 
are used. They are sensitive not only to the visible-light spectrum in the range of 400-
700 nm but also to the NIR range [28], [31], [33]. These cameras are typically used with 
a permanent IR cut-off filter in good lighting conditions. However, the CCTV day and 
night (visible/NIR) cameras use a mechanical IR filter that switches depending on the 
time of day. Since NIR imaging does not require significant investments (only 
additional NIR illuminators), it is commonly used in stationary CCTV systems for 
night-vision, e.g., in security applications.  
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-  

In passive systems, the thermal imaging camera captures FIR radiation emitted by 
objects. In the FIR range, the radiation power of objects in the environment depends on 
their temperature. Each object with a temperature greater than absolute zero emits 
radiation, but in practice, only the objects with temperatures other than the surroundings 
become distinctive [31]. As a result, the internally heated objects such as pedestrians, 
cars in motion (with engines, radiators, heated reflectors) are clearly visible (see Figure 
5). 

In general, two types of thermal detectors are used in thermal cameras: photon 
detectors and thermal detectors [27], [31]. Photon detectors are based on photoeffect. 
The absorption of photons in the material causes the emission of electrons that change 
the current flowing through the detector. In the case of thermal detectors, the absorption 
of FIR radiation changes the temperature of the detector, which causes a change in 
electrical properties: electrical resistance in the case of microbolometers or electric 
polarization in the case of ferroelectric detectors. 

Nowadays, microbolometer detectors have been increasingly used. These detectors 
do not require refrigeration, which makes them more compact and reduce the price. The 
microbolometers cameras that are used for people detection typically use a range of 7 - 
14 m [27], [29], [31]. 

The precise remote temperature measurement is very difficult to achieve. The 
accuracy could be influenced by many factors, including the emissivity of the material 
from which the object is made, the surrounding atmospheric conditions, i.e., fog or rain, 
the distance from the camera, the transmission of radiation through the atmosphere [34]. 
Therefore, to precisely determine the temperature value on a given surface, it is 
necessary to know many environment variables. This is well illustrated by the formula 
for the total radiation power received by the detector [35], [36]: 

 , (1) 

where:  is the emissivity of the object,  is the transmission through the atmosphere, 
 is the reflectance of the object,  is the emissivity of the atmosphere, 

 is radiation power of the observed object with a temperature ,  is 
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radiation power reflected from the object and generated by ambient sources with 
temperature ,  is radiation power from the atmosphere with temperature . 

In thermal imaging for the application of pedestrian detection, the thermal contrast 
between objects and the environment is the most important feature since the detector 
uses shapes in the image to classify the objects. Additionally, the difference between the 
emissivity of the materials may result in additional, artificial edges in the image. 
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2.1.1. Comparison of NIR and FIR systems 

The high contrast between living beings and their surroundings is one of the major 
advantages of passive systems. A range of detection is much more extensive than in 
active systems and for high-quality cameras, it can even reach 300 m at night for a 
standard camera. Another important factor is that thermal imaging cameras are not 
blinded by the lights of oncoming vehicles [30], [31]. 

The main disadvantage of the passive thermo-vision comes from the physical basis 
of this type of imaging: the measured emission of an object strongly depends on the 
source material and the covering of the object. It makes the calibration of the system 
difficult and strongly context-dependent. Fortunately, the absolute calibration of the 
camera in automotive night-vision applications is not as important as, e.g., for the 
typical thermal imaging in the construction industry. 

Among other disadvantages of thermal cameras are lower resolution and higher costs 
than for the cameras used in the active systems. Because of a specific way of image 
capture, they are characterized by a weak representation of the textures and low signal 
dynamics (as presented in Figure 6) [30], [31]. Additionally, the FIR spectrum is more 
difficult to interpret for a driver: e.g., tires are white (hot), and the rest of the car is 
black. Other, typically high-contrast objects like horizontal lane markings or headlamps 
(LED or rear lights) are not visible in the image. Another significant disadvantage is the 
sensitivity to changes of thermal contrast: with the season, weather, humidity.  

The main advantage of the active systems is high resolution. The image is easy to 
interpret for the driver because of the proximity of NIR to the visible light (see Figure 
6). It is possible to, e.g., see the lanes and the headlights of oncoming vehicles. The 
relatively low cost of NIR cameras and their small size makes them attractive and 
widely available. The cameras of this type can also be used in other systems and 
successfully work in day light (e.g., CCTV cameras are often equipped with the 
mechanically switched IR filter used as a day/night switch).  

The active systems have a shorter detection range than their passive counterparts and 
reach about 150 m. This distance strongly depends on the power of illuminators. 
However, typically this disadvantage is compensated by a higher resolution of image 
sensors. The NIR detectors can also be dazzled by the headlights (or illuminators) of 
oncoming vehicles and operate significantly worse than the FIR cameras in fog. The 
advantages and disadvantages for both systems are summarized in Table 1 (where 

FIR systems). 
Finally, both active and passive systems are used in various applications. Active 

systems are cheaper and have better resolution than passive ones, but pedestrian 
detection needs more complicated algorithms.  

The videos obtained by these two types of systems differ a lot, and thus the video 
processing algorithms should be optimized separately for each of these two types. 
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Table 1. Summarized advantages and disadvantages of NIR and FIR night-vision systems 

FIR Feature NIR 

 
Image quality 

(resolution, textures) ++ 

+ 
View range 

(range, angle) 
 

++ 
Thermal contrast of living beings 

(contrast to the background) 
 

++ 
Dazzling effect 

(temporary blinding by oncoming vehicle) 
 

+ 
Ability to operate in difficult conditions 

(fog, rain) 
 

 
Assembly and maintenance 

(system integration, calibration) + 

 
System price 

(camera, components) + 

2.2. Night-vision datasets  
This section describes all the night-vision datasets that were used in the experiments 

presented in this dissertation. These datasets are known in the analysed area of research 
and were commonly used for benchmark tests in many papers, e.g., [26], [32], [38], 
[39]. They are: CVC-09 (Computer Vision Center, FIR Sequence Pedestrian Dataset) 
[40], CVC-14 (Computer Vision Center, Visible/FIR Day/Night Sequence Pedestrian 
Dataset) [23], NTPD (Night-time Pedestrian Dataset) [41], LSI FIR (Laboratorio de 
Sistemas Inteligentes, Intelligent System Lab Far Infrared Pedestrian Dataset) [27], 
OSU (Ohio State University, Thermal Pedestrian Dataset) [42], KAIST (Korea 
Advanced Institute of Science and Technology, Multispectral Pedestrian Detection 
Benchmark) [26].  

Table 2. Number of training and testing samples in night-vision datasets used for experiments 
with object classification stage (in Chapter 5) 

 No. of training samples No. of testing samples 

dataset positive samples negative samples positive samples negative samples 

CVC-09 FIR 
Day-time 

11,839 25,410 6711 75,398 

CVC-09 FIR 
Night-time 

6998 30,030 7862 72,985 

Extended NTPD 1998 8730 2370 12,600 (*) 

LSI FIR 10,208 43,390 5944 22,050 

OSU 1004 1932 964 1932 

Tested datasets differ in resolutions, quality, and acquisition techniques. The CVC-
14 and KAIST datasets were used in the experiments with the proposed ROI generation 
approach (in Chapter 3) and the final experiments with the proposed pedestrian 
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detection procedure (Chapter 6) because they had images of the FIR spectrum and it 
was possible to compare the achieved results with the literature. The other datasets 
(OSU, NTPD, LSIFIR, and CVC-09) were used with the object classification stage (in 
Chapter 5). For all of them, ROI samples were extracted for both training and testing 
(Table 2). 
 

2.2.1.  CVC-09 Thermal Pedestrian Dataset 
The CVC-09 (Computer Vision Center, FIR Sequence Pedestrian Dataset) consists 

of two subsets of pedestrian thermal images: 5990 images recorded during the day and 
5081 recorded at night. Their resolution is relatively high as for the FIR recordings and 
equals 640
FIR thermal imaging technology. However, they do not specify the camera type and the 
temperature scale [40]. The images have some unknown static temperature scale, and 
there is no contrast enhancement applied. 

This dataset is very demanding as pedestrians occur with various sizes. Images 
recorded on days have low contrast between pedestrians and the background. This 
differs from other typical FIR recordings. 

The dataset with positive samples was prepared by clipping pedestrians out of the 
original images (see Figure 7). The resulting dataset was annotated automatically. 
Therefore, there are some inaccuracies, e.g., not all pedestrians were correctly marked 
(cf., Figure 7b - a figure in the third column contains parts of two pedestrians). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
- - -

- -  
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-  

Due to the variety of distances between the camera and pedestrians, the obtained 
positive samples have different resolutions (from 3 6 up to 190
distribution of these samples is shown in Figure 8. Because all samples have to be 
scaled to a given classifier resolution, they sometimes must be significantly enlarged 
(up-scaled), and then they can be quite strongly blurred (cf., Figure 7a, 7b). 

The dataset with negative samples was prepared by cutting out chosen areas with no 
pedestrians. They were extracted with a window size equal to the largest used classifier 

ifier training, the negative samples 
were then scaled down again to the required resolution. The prepared dataset is large 
enough for statistical analysis.  

2.2.2.  CVC-14 Visible/FIR Day/Night Sequence Pedestrian Dataset 
The CVC-14 dataset contains of multimodal (FIR plus visible) video sequences [23]. 

This dataset is divided into two subsets: recordings captured by the FIR camera in a day 
and at night. However, only night FIR recordings were used (see Figure 9). The CVC-
14 dataset is very demanding for testing of automatic image processing procedures: 
pedestrians have various sizes, images are of low contrast between pedestrians and the 
background. This is mainly due to the time and place of recordings  hot summer in 
Spain. As a result, there are many hot regions, which had been heated up during the day. 
Despite the drawbacks, the dataset was selected because it presents pedestrians in 
different scales and enables extracting pedestrians straight from the images using 
enough accurate ground truth. 

For the training of classifiers, positive datasets of samples were prepared (images) by 
cutting out pedestrians from the original frames (Figure 10). The negative samples were 
prepared by cutting out areas, which do not contain pedestrians. They were extracted by 

a window of size of the largest used classifier (i.e., 64 128 pixels). 
The details about the training and testing sets of samples are presented in Table 3. 
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Table 3. Training and testing subsets extracted from night-time CVC-14 FIR pedestrian dataset 

CVC-14 night-time  
FIR dataset 

No. of samples 

Training subset 
Pedestrian samples 2222 

Negative samples 10,242 

Testing subset Positive frames 703 

  

  

-  

 

- - -
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2.2.3. Night-time Pedestrian Dataset 
The NTPD (Night-time Pedestrian Dataset) [41] is divided into two sub-sets: training 

and testing (details are presented in Table 2). It consists of images of pedestrians stored 
 Figure 11). In this dataset, 

to make the classification process realistic, the number of the negative samples was 
extended similarly to those occurring in real situations of the automotive applications as 
an asymmetric distribution (much more negative samples than the positive ones) is quite 
typical. These negative samples were extracted from images, which contain no 
pedestrians.  

 

 

2.2.4.  LSI FIR Pedestrian Dataset 
In the LSI FIR (Laboratorio de Sistemas Inteligentes/Intelligent System Lab Far 

Infrared Pedestrian Dataset) [27], the FIR images were acquired in outdoor urban 
scenarios. The images are divided into two subsets: the classification dataset and the 
detection dataset. The first one is divided in a train and a test sets. The train set contains 
10208 positives and 43390 negatives, while the test set contains 5944 positives and 
22050 negatives (as presented in Table 2). The images are scaled to 32 64 pixels and 
include positive and randomly sampled negative images. The detection dataset includes 
annotated original positive and negative images of 164 129 pixels resolution. In the 
experiments, only the first subset was used. 

2.2.5. OSU Thermal Pedestrian Dataset 
The OSU (Ohio State University) Thermal Pedestrian Dataset consists of 10 daytime 

video sequences captured on a university campus under various weather conditions (cf., 
Figure 12). These sequences were recorded using a passive thermal sensor Raytheon 
300D [42]. Thus, the images have a resolution of 320 240 pixels. 

Based on this dataset, several authors created their own, not standardized training 
and test subsets [32], but with a small number of samples. Since pedestrians in the 
original dataset have low resolution, it was decided to extract samples with a resolution 

were selected who, together 
with their mirror images (used to increase the number of samples), formed positive 
training samples. From the second half of the images, in the same way, the training 
samples were created. To obtain negative samples (those without pedestrians), frames 

a spacing 
of 8 pixels. 

Additionally, their number was increased by rotation and mirroring vertically and 
horizontally. Finally, 3864 negative samples were obtained. Half of them were used for 
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training and the other half for testing. The extended version of this dataset is also 
available on [42]. 

 

 

2.2.6. KAIST Multispectral Pedestrian Detection Benchmark 
The color-thermal KAIST dataset contains 95,328 aligned color-thermal image pairs, 

with 103,128 dense annotations on 1,182 unique pedestrians. This dataset was recorded 

with the PointGrey Flea3 color camera with a resolution of 640  pixels and a 103.6  
vertical field of view, and the FLIR-A35 thermal camera with a resolution of 320

pixels and a 39  vertical field of view (see Figure 13). The thermal image was aligned 
with the color image by cropping an area of the color image. This dataset provides 20 
frames per second. Details of the selected sequences are presented in Table 4. 

The dataset consists of 12 (6 train and 6 test) image sequences recorded day and 
night and in different areas (campus, road, and downtown, as presented in Table 4). In 
the experiments, only thermal images captured at night were used. 

This dataset is provided with the manually annotated, detailed ground truth for each 
image frame. Annotations contain information about the pedestrian's position in the 
image, the distance from the camera (or the size in the image), and scale: near, medium, 
or far. Pedestrians are also marked with one of three occlusion tags: no occlusion 
(78.6%), partial occlusion (12.6%), and heavy occlusion (8.8%). 

Table 4. Details of the selected sequences from KAIST dataset (only night-time recordings 
were used in experiments) 

Sequence Area Frames Pedestrians 

Set 03 (train) campus 6 668 7 418 

Set 04 (train) road 7 200 17 579 

Set 05 (train) downtown 2 920 4 655 

Set 09 (test) campus 3 500 3 577 

Set 10 (test) road 8 902 4 987 

Set 11 (test) downtown 3 560 6 655 
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2.3. General procedure for pedestrian detection 
 

The typical scheme of the procedure for pedestrian detection is presented in Figure 1 
(the most general scheme), in Figure 3. The pedestrian detection scheme with proposed 
improvements (cf. with Figure 1), and in Figure 14 (a more detailed scheme with the 
indication of the most important approaches). Its first stage is the IR image acquisition 
and then image preprocessing. For image preprocessing standard techniques are used in 
order to reduce noise and enhance image contrast. 

In the second stage, the ROIs are generated, covering all areas with pedestrian 
candidates for further processing. The first step in ROI generation is image 
segmentation performed to separate pedestrians from the background (or more 
precisely, the desired areas of the IR image that potentially contain pedestrians called 
pedestrian candidates or ROIs). Correctly segmented ROIs contain all objects to be 
detected (pedestrians), but together have as few other objects (none pedestrians) as 
possible. By such means, the amount of data that is transferred to the next stages is 
reduced. There are plenty of solutions for proposing the pedestrian candidates, starting 
from the sliding window approach in a multi-scale manner [11], [23] up to faster and 
intelligent solutions [10], [43], [44], e.g., the specialized region proposal networks [45], 
[46]. 

 

 

After the ROI generation, the next is the pedestrian classification stage. This is a 
crucial stage as it strongly affects the final quality of pedestrian recognition. The object 
classification stage consists of two steps: feature extraction and final validation with the 
selected classifier. The feature extraction step brings the most valuable features and 
reduces the amount of data that describes the object. In a validation step, the classifier 
finally decides which objects are pedestrians and which are not. 
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2.4. Region of interest generation  
Image segmentation, which is also referred to as foreground segmentation or 

candidate generation, extracts the so-called regions of interest from the image avoiding 
as many background regions as possible. The segmentation is of remarkable importance 
not only to reduce the number of candidates but also to avoid scanning outer regions 
like the sky. This stage cannot miss pedestrians, otherwise, the consecutive modules, 
e.g., the classifier will not be able to correct the failure.  

The image segmentation used for pedestrian detection very often includes a selection 
of candidates by pedestrian size constraints. These constraints refer to the aspect ratio, 
size, and the position that candidate ROI must fulfill to be considered as a pedestrian 
[7], [32]. 

This section provides an analysis of possible approaches to ROI generation. Then, 
two basic thresholding techniques are presented: the global Otsu threshold and the 
locally adaptive dual-threshold procedure. These algorithms are also discussed in the 
next chapter, therefore a more detailed description is included in the following section. 

2.4.1. Analysis of image segmentation approaches  

Sliding window 
A sliding window technique, as exhaustive scanning approach [11], [23] belongs to 

the simplest segmentation procedures. The sliding window selects all possible 
candidates in the image according to the pedestrian size constraints without explicit 
segmentation. To find pedestrians at different sizes, the scanning window must be 
scaled down (or up) after each scan.  

The sliding window procedure has two drawbacks: it is very time-consuming and 
produces a large number of candidates, which increases the potential number of false-
positive decisions.  

An interesting solution to these problems is presented in [47]. The method uses a key 
point-centric sliding window with a classifier. In [17], the sliding window operates on 
the preprocessed image with luminance saliency, sharpening the edges. It also uses 
energy symmetry to speed up calculations.  

Another acceleration method [48] uses Markov Chain Monte Carlo sampling to 
estimate the probabilistic density distribution of the classifier responses. Then the 
search strategy can be adjusted according to the distribution. In [49], the step of the 
sliding window is filtered on the optical flow images. 

Stereovision 
A stereovision was also proposed for IR pedestrian detection, e.g. in [8], [9], [11], 

[50]. Stereo systems offer robust detection with such techniques as disparity map or 
histogram and can be used to effectively find ROI [11]. However, at least two thermal 
imaging cameras are not a viable option for many automotive designers as costs, power 
consumption, and physical space are significant factors. 

In the Protector system [51] the returned map is multiplexed into different discrete 
depth ranges, which are then scanned with the window according to the pedestrian size 
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constraints, taking into account the location of the ground plane. If the depth features in 
one of the windows exceed a given ratio, the window is passed. Otherwise, it is 
canceled. Some authors [9], [50] use the v-disparity representation [52] to identify the 
ground and vertical objects. Like consumer monocular FIR cameras, other papers 
combine a visual sensor and FIR, but in a stereovision manner. This approach, which 
corresponds to sensor fusion, is worth mentioning because of its potential to widen the 
range of working conditions, i.e., both in the daytime and night-time.  

In [8], single thresholding by entropy maximization is performed, but the next step is 
a disparity map calculation (from stereovision), which finally improves the results. 

Motion detection 
A motion feature in video processing contains practical and discriminative 

information. Inter-frame motion and optical flow may be used for foreground 
segmentation, primarily in the general context of moving obstacles detection [53]. 

In [54], the histograms of oriented gradients (HOG) feature on the optical flow 
images was computed to get the Histogram of Oriented Flow feature. In [55], the 
pedestrian motion information was utilized within an generalized expectation-
maximization framework to generate the candidate pedestrians.  

However, the motion-based segmentation requires a fixed position of the camera, 
limited background motion, and does not detect standing pedestrians.  

Region proposal networks 
Another group of image segmentation techniques is the region proposal networks 

(RPN) [56], which are based on CNN. The vast majority of these currently developed 
techniques are dedicated to color images [20], [45], [46], [57]. However, there are also 
some implementations for FIR [18], [19] and multi-spectral imaging [56]. 

R-CNNs were initially developed in [57]. The high-capacity convolutional neural 
networks were applied to bottom-up region proposals in order to localize and segment 
objects. The Fast R-CNN proposed in [20] improves training and testing time with a 
single-stage training and accelerated fully connected layers. The Faster R-CNN [45] 
improves detection time even more by sharing full-image convolutional features with 
the detection network to improve the time efficiency of pedestrian detection. Another 
solution, YOLOv3 (You only look once) [46] apply a single neural network to the full 
image. This network divides the image into regions and predicts bounding boxes and 
probabilities for each region. 

The authors of [19] proposed to augment thermal images with their saliency maps 
and applied them to Faster R-CNN. In [18], a pre-trained YOLOv3 pedestrian detector 
is adapted to detection in the thermal-only domain generative with a data augmentation 
strategy. 

In general, RPN are very accurate but they are also computationally demanding and 
need powerful hardware, e.g., graphic processing units (GPUs) or tensor processing 
units (TPUs). 
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Thresholding techniques 
The last group of ROI generation techniques are techniques based on image 

thresholding. They are designed mainly for FIR images, because pedestrians at night 
conditions are usually warmer and hence appear brighter than the background in FIR 
images. The simple thresholding of the image is a common starting point for extracting 
pedestrian candidates. A brightness threshold is selected that separates the foreground 
from the background. Then, each pixel is classified according to the selected threshold 
value. 

The global threshold (calculated once and used for all pixels) can be calculated as an 
average value of the difference between the maximum and the minimum image 
intensities. The method presented in [21] defines a bright pixel threshold as the 
difference between the maximum image intensity and a given constant. A threshold 
value is defined from the mean and the maximum image intensity values [22]. In [58], a 
threshold value is chosen as the last local minimum of the image histogram before the 
saturation point. 

In [59], a static threshold is derived with the Bayes classifier performing on a set of 
templates known to contain pedestrians.  

A well-known adaptive method, called   [60], 
belongs to the clustering-based image global threshold methods. It assumes a bi-modal 
histogram (see Figure 15) with foreground pixels and background pixels and finds the 
optimum threshold separating these two classes.  

More advanced threshold methods are based on two thresholds. A region-growing 
style threshold using two static thresholds is implemented in [61]. The lower threshold 
is restricted to areas spatially connected to seed regions resulting from the higher 
threshold. An algorithm in [62] also uses two different thresholds. Initially, a high 
threshold is applied on the pixel values in order to get rid of cold or barely warm areas, 
selecting only pixels corresponding to very warm objects. Then, pixels featuring a grey 
level higher than the lower threshold are selected if they are contiguous to other already 
selected pixels in a region-growing fashion.  

Other types of thresholding solutions are based on locally adjustable thresholds. One 
of them is the adaptive dual-threshold (ADT) [7] with a local adaptation facility. This 
algorithm works adaptively under various lighting conditions and contrast levels. A 
decision threshold is calculated for individual pixels with the knowledge of their 
neighborhood.  

In the FIR systems, the intensity of the pedestrian additionally depends on the 
clothes, their thickness, and their texture. Thus the objects typically are not 
homogeneous. To make the pedestrian body as uniform as possible, morphological 
operations should be used with thresholding for distortion compensation. The 
dimensions of the structuring elements of morphological operation must be adapted to 
image resolution.  
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Other image segmentation methods 
In [63], grey-level symmetry, edge symmetry, and edge density are used and 

analyzed to improve the segmentation process. A candidate generation method driven 
by the search of the pedestrian head is considered in [64]. Detected ROIs are then 
resized based on the distance to the camera and then filtered by its vertical edges 
symmetry. In [65], the ROI is extracted based on discrete key points computed from the 
phase coherence image using the maximum and minimum moment of covariance.  

In [66], the statistical approach for ROI generation is presented. In this solution, a 
statistical pixel classifier for head detection is used.  

The adaptive fuzzy C-means algorithm is employed in the segmentation step in [43]. 
The method adaptively estimates the required number of clusters and fuses multiple 
clusters to retrieve the ROI candidates. The second central moment's ellipse is used to 
prune the set of candidates utilizing the human posture characteristics. 

2.4.2. Otsu method 
The Otsu (called Otsu ) [60], [67] is a threshold selection 

method from a gray-level histogram. The algorithm returns a single intensity threshold 
that separates pixels into two classes (see Figure 15) or even more. 

Let an image be divided into a two classes  (background) and  (foreground). The 
optimal threshold  is obtained by maximizing inter-class variance: 

  (2) 

where  is the number of gray levels in the image and  represents inter-class 
variance that is defined as follows: 

 
 (3) 

where  represents the mean level of the image,  represents the mean level of class 
,  represents the mean level of class ,  and  denote the cumulative 

probabilities: 

 
 (4) 

 
 

(5) 

and 

 
 (6) 
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(7) 

Finally, the  threshold could be used to perform binarization of the image. The 
Otsu technique belongs to the global thresholding techniques. Therefore the same 
threshold value is used for each pixel. 

 

 

2.4.3. Locally adaptive dual-threshold 

The locally adaptive dual-threshold technique (ADT) initially presented in [7] 
(modified version presented in [68]) is a variant of locally adaptive thresholding with 
two thresholds:   lower threshold,   upper threshold: 

 
 (8) 

  (9) 

where  is horizontal scanning width (as presented in Figure 16),  is a gray-level 
input image,  is a standard deviation of the neighboring pixels, and  is the weight.  

In order to produce uniform areas with clear edges, the thresholding algorithm passes 
through neighboring pixels with values close to the threshold. A value of the upper 
threshold  is defined as a sum of the lower threshold and the standard deviation  
of the surrounding pixels: 
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 (10) 

where:  is a scanning width and  is the mean value of the horizontal neighborhood. 

To control the impact of the standard deviation on the upper threshold the weight  is 
added. 

 

 

Finally, the segmentation process is defined as follows: 

 
 (11) 

where  is the segmented binary image after thresholding. For the pixel values 
greater than  or less than  (arguments  and  were omitted for simplicity) values 1 
and 0 are assigned, respectively. If the pixel value is in the range ( , ) the output 
value depends on the previous sample in line . 

The algorithm translates the input gray scale image to the binary image, while white 
objects are the potential candidates to be detected as pedestrians and the background is 
black. 

Examples of thresholding with the ADT method are presented in Figure 17 and 
Figure 18. Figure 17 shows the image before and after thresholding using the ADT 
procedure. The red plot with diamond-shaped markers in Figure 18 indicates the value 
of the intensity (image brightness, temperature of real objects) of one line in the 
analyzed frame. The blue and green plots show the lower and higher thresholds, 
respectively. It can be seen that both thresholds adjust to the intensity value but with a 
much lower frequency (similar to low-pass filtering). 

The ADT procedure with horizontal scan lines and its local adaptation separates 
objects in the horizontal direction (as shown in Figure 17). 
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2.5. Feature extraction 
The object classification stage consists of two steps (see Figure 14): feature 

extraction and final validation with the selected classifier. The feature extraction step 
brings the most valuable features and reduces the amount of data that describes the 
object. In a validation step, the classifier finally decides which objects are pedestrians 
and which are not.  

There are many efficient feature extractors used for detection of pedestrians, starting 
with the basic handcrafted features like histograms of oriented gradients [69], local 
binary patterns [70], shape context [71], 1D/2D Haar descriptors [72], to plenty of their 
modifications [44], [71], [73], [74].  

Recently, several efficient variants of the HOG were proposed: integral channel 
features (ICF), for which the HOG descriptors are used together with luminance and 
UV chrominance components (LUV) [75], the ACF [76] combining HOG channel 
feature with the normalized gradient magnitude and LUV color channels, and the 
Checkerboards [77], which are modifications of the ICF. They perform filtering of the 
HOG+LUV feature channels. The listed above feature extractors have become the state-
of-the-art approaches for night-vision pedestrian detection [32]. 

Contrary to the mentioned handcrafted features, CNNs are now very strongly 
developed and widely used. The most important CNN models are: AlexNet/CaffeNet 
[78], [79], VGG [80], ResNet [81]. They allow for self-learning of features and perform 
significantly better than other approaches. On the other hand, due to their complex 
structure, they need powerful hardware like e.g. GPUs for real-time computations 
otherwise operate much slower.  

2.5.1. Histogram of oriented gradients 
The HOG feature extraction technique [69] was an important step in the development 

of handcrafted features. Nowadays, it is often used as a part of more advanced solutions, 
e.g., in the ACF or in the Checkerboards [76], [77]. This method calculates gradients 
and forms histograms of the gradients orientation. To improve the reliability of the 
HOG, a local normalization is performed. Finally, the ROI is represented by a locally 
normalized feature vector constructed from the histograms of orientation.  

The first step of this algorithm consists of the calculation of gradients  and  in 

the horizontal and vertical axes, respectively, with  and  treated for a moment as 
continuous variables  

 

 (12) 

where 

 
 (13) 
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 (14) 

  (15) 

The above formula is equivalent with a convolution operation on the image with 

filter kernels  and  (but the factor  can be omitted). After the 

gradients are computed, the magnitude and orientation of gradients can be obtained 
respectively as 

 
 (16) 

 
 (17) 

The next step groups the pixels into cells (Figure 19, left-hand, green lattice), which 
usually have a square shape. For such cells, the orientation histogram (Figure 19, right-
hand side) is created using orientation and magnitude. The histogram is divided into 
nine bins ranging from 0 to 360 degrees or 0 to 180 degrees (the authors claim that for 
nine bins, the algorithm works the best). Thus, for each pixel in the cell, based on its 
gradient orientation , the magnitude  is proportionally divided between two 
adjacent bins of the histogram.  

After the histograms are calculated, the four adjacent cells are grouped and create a 
block (Figure 19, left-hand, red rectangle). In this block, a non-normalized vector  is 
created, which contains all histograms in a given block (here in four cells).  

 

 

Therefore, the vector  is locally normalized in blocks to get with a formula  

  (18) 
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where e is a small constant. Finally, after the normalization, all vectors are combined 
into a single feature vector : 

 

 

(19) 

where  are numbers of blocks on the image in the vertical and horizontal orientation 
respectively. 

2.6. Validation 
As it was mentioned in the introduction, a typical approach to the validation process 

is the use of a single classifier with fixed window size. As a result, all pedestrian 
candidates must be resized to the classifier resolution before the validation process can 
start [7], [25], [43], [82]. 

The most popular classifiers are SVM, AdaBoost (used in the ACF detector), neural 
networks (including matrices of neurons, self-organizing maps [83], deep CNNs), and 
various combinations of them. In paper [84], the AdaBoost classifier is used for initial 
selection while the SVM classifier for the final verification. In [85], the combination of 
the AdaBoost with the random vector functional link neural network was proposed. In 
another work [86] a parallel connection of various classifiers was proposed, trained in a 
complementary manner to each other. The result was high accuracy but low speed. 

Three-branch structured SVM classifier based on HIK (histogram intersection 
kernel) was proposed in [7]. As a result, they achieved increased performance of 
detection for various heights of pedestrians. The author of this dissertation deeply 
investigated this technique [7] and expanded it to a form of multi-branch classifiers 
[87]. Different approach is presented in [88], where a combined classifier was trained 
for various pedestrian poses composed of four independent AdaBoost classifiers. 

The classification part in the CNN models can be realized with fully-connected 
layers. However, others solutions are also used. In paper [39], CNN together with the 
AdaBoost classifier is used. The method presented in [13] utilized the deep neural 
network for classification purposes using multispectral information. 
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2.7. Summary 
In general, most modern approaches to night-vision FIR pedestrian detection are 

designed similarly to those used for the standard color images. Therefore these 
techniques achieve similar computational efficiency. However, in the case of pedestrian 
detection with moving camera, i.e., autonomous vehicles, it is much better to achieve 
real-time performance without the need of using costly and highly energy-consuming 
equipment, like e.g., GPGPU. 

At night conditions, it is potentially possible to use segmentation by thresholding. 
This approach allows for a significant acceleration of the entire pedestrian detection 
process by reducing the ROI area in the image. It uses properties of the FIR spectrum, 
mainly in the night-time the pedestrians are warmer, therefore brighter than the 
surroundings. Several techniques for the segmentation of thermal images based on 
thresholding have been proposed [7], [21], [22], but these techniques do not offer the 
state-of-the-art accuracy. 

The simple assumption that pedestrians are warmer than the surrounding at night is 
not always valid. Many problems arise with thermal images during segmentation, i.e., 
the uneven level of the observed temperature of one pedestrian, as well as the temporary 
loss of thermal contrast between the pedestrian and the surroundings. All the above-
mentioned problems should be compensated to avoid the situation that a pedestrian is 
missed in ROI and, in consequence, not being detected at the segmentation stage. 
Therefore, there is a need to develop a highly efficient FIR image segmentation 
algorithm that can offer high accuracy and can compensate common problems that are 
associated with the thresholding of thermal images. 

Regardless of the ROI generation technique used, the quality of the prepared ROIs is 
very important and significantly affects the effectiveness of the object classification 
stage. All the advanced segmentation techniques, besides the simplest one, i.e., the 
sliding window technique, match the ROIs to the outer pedestrian edges in the image. 
Inaccurate matching the edges of ROI to the outer edges of the pedestrian may lead to 
ROI covering less than a whole pedestrian. Such too small ROIs may be rejected by the 
classifier. This will finally increase the number of falsely negative results.  

As mentioned in the Introduction, the selection and tuning of the object classification 
technique also have a significant impact on overall pedestrian detection efficiency. For 
classification purposes (not only in the context of pedestrian detection), the baseline 
approach is the use of a single classifier with a fixed input resolution [11], [25], [43]. In 
the simplest case, to detect pedestrians of various sizes with a single, fixed-size 
classifier, the scanning window is scaled and shifted through an image. As a result, all 
pedestrian candidates must be resized (upscaled or downscaled) to the classifier 
resolution.  

The classifiers are often used without an adaptation of the input resolution to the 
resolution of the specific dataset or camera, which unfortunately is a common practice, 
especially in the solutions with a complicated structure of the classifier. An example of 
a very complicated structure of the pedestrian detector is a deep convolutional neural 
network (CNN) [24], [25], [39], [43], [89]. In the case of CNN, any change in the 
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resolution of the CNN input layer causes the necessity of adaptation in the other layers. 
It is quite complicated, and therefore designers try to omit it. For example, in the 
proposed deep CNN by Kim et al. [24], various grayscale pedestrian images were 
resized (mainly upscaled, as the smallest pedestrians had 50 pixels in height only) and 
artificially colorized (!) to fit the input size of the typical, pre-trained model of the CNN 
detector, which required 224 224 pixels and the color RGB input image format. Such 
solutions, although simple in implementation, are greatly ineffective. 

In this context, it should be emphasized that the high-resolution classifiers often, but 
not always, offer slightly higher detection performance but always impose additional 
computational overhead. Forma
not increase the information content and may have a negative effect during the classifier 
training. As a result, this can reduce efficiency, especially when there are largely 
disproportionate pedestrian samples in the training set. Finally, in order to achieve more 
efficient and faster solutions, there is a need to design an appropriate procedure for 
tuning of the object classification stage parameters such as input resolution of the 
classifier.  
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3. ROI generation procedure for night-vision FIR images 
This chapter presents a technique of ROI generation for night-vision FIR images. 

The first section of this chapter presents the architecture of the proposed solution. The 
following sections present: the technique of double and triple thresholding, the 
technique of regions enlargement, which significantly increases the accuracy of the 
segmentation process, and a set of proposed techniques for filtering ROI candidates for 
their quick initial selection. Then, the calibration process of the proposed ROI 
generation procedure is presented with experiments conducted on CVC-14 and KAIST 
datasets: the selection of values of thresholds and the selection of parameters of the 
candidate selection process. The summary is presented in the last section of this chapter. 
 

3.1. Algorithm architecture 
The algorithm of ROI generation, which is proposed by the author of this dissertation 

is dedicated to infrared images at night and is based on the assumption that pedestrians 
are usually brighter than their surroundings. The double and triple thresholding 
techniques are used for image segmentation to ensure local adaptation in the image. 
Thanks to the technique of regions enlargement and dividing wide objects, it is possible 
to significantly increase pedestrian detection accuracy. In order to speed up the ROI 
generation process and the entire pedestrian detection process (by reducing the number 
of ROIs per image frame), a set of candidates selection techniques has been proposed. A 
detailed diagram of the presented approach is shown in Figure 20. 
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In the procedure, the thresholding process is performed two or three times 
(depending on the selected version) with various threshold values (see Section 3.2). 
This process should first be done with a lower threshold and then with a higher one. 
After each thresholding, an opening operation is performed to remove the smallest 
objects. Then, objects that constitute inseparable areas in the image are detected. 
Objects are then pre-selected to speed up the algorithm (described in Section 3.5). 

After image segmentation, all ROIs are then summed up, and then duplicates are 
removed from the set, which could be created by multiple thresholding of the same 
image (see Section 3.4). Then the set of ROIs is extended with the new additional areas 
obtained by the regions enlargement technique. It creates additional ROIs by joining all 
pairs of regions with the same horizontal coordinates (this technique is described in 
detail in Section 3.3). As a result, the set of ROIs is significantly expanded. 

The resulting set of ROIs for a given image is filtered at the candidates selection step 
using several techniques and parameters (described in Section 3.5). In order to improve 
accuracy and detect groups of pedestrians, the wide regions (with a low height-to-width 
ratio) are divided into smaller ROIs (as presented in Section 3.6). 

3.2. Double and triple thresholding procedure  
As mentioned in the introduction, the thresholding techniques can be divided into the 

global techniques with one fixed threshold or locally adaptive techniques, where the 
threshold is calculated separately for each pixel independently. 

Several important problems are related to the thresholding process (some of them can 
be seen in Figure 21). The most important are: 

 
 

 
-  

 

-  
One fixed, global threshold, in most of the cases cases, is not enough to reach the 

assumed pedestrian detection accuracy. It is because for a different part of the image, 
also different thresholds should be used. The Otsu technique [60], which gives some 
global adaptability, still does not offer local adaptation. To overcome this problem, a 
local adapting threshold technique was proposed in [7]. However, the threshold is 
calculated for each pixel, and in consequence, the algorithm performs slowly. 

To achieve both: high accuracy and high computational efficiency of the image 
segmentation, the author proposes a technique of multiple (double or triple) image 
thresholding with Otsu-based global thresholds.  

It is proposed to process the image twice (or three times with additional  
threshold): once with  global threshold and then with the  global threshold (as 
presented in Figure 20). The thresholds should be calculated in the following manner: 
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 , (20) 

 , (21) 

 , (22) 

where:  is Otsu threshold,   is a constant adjusting factor,   is a difference 
factor.  

The Otsu technique is used to find a baseline threshold to adapt to changes in image 
dynamics. Based on this threshold value, the thresholds  and  are then calculated 
with two additional factors  (their values are adjusted to the camera type 
individually, as presented in section 3.8). 

As a result, the proposed technique is a hybrid thresholding technique. Image 
binarization is performed using one global threshold for all pixels, but it is performed 
multiple times with different threshold values.  

With this technique, thermal contrast is preserved in different parts of the image (see 
Figure 21), allowing for more accurate pedestrian detection while maintaining high 
computational efficiency.  

 

 

 

-  
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3.3. Regions enlargement 
A new regions enlargement technique is proposed to compensate problem with the 

splitting of objects into many smaller objects, mainly due to uneven infrared radiation 
of clothed humans (as can be seen in Figure 21). Background objects, such as buildings, 
cars, animals, and lights, can be close to the temperature of pedestrians. The desirable 
difference in magnitude of thermal energy between pedestrians and background objects 
is also affected by the weather. In low ambient temperature, pedestrians typically wear 
warmer clothes. This leads to lowering the measured thermal energy by the camera.  

Additionally, it increases the variance of the thermal magnitude of a single 
pedestrian. Parts of the bodies of pedestrians (Figure 22 and Figure 23a, especially 
heads, arms, and legs) can have much higher intensities (due to relatively high body 
temperature) than the rest of the bodies covered by cloths with a relatively cold surface. 
Using typical segmentation methods may result in splitting the pedestrian bodies into 
parts, putting them to separate samples (see Figure 23b and red rectangles in Figure 23c 
and Figure 23d).  

Taking into account that the pedestrians to be detected typically have vertical 
postures (although exceptionally in abnormal situations, they may also have horizontal 
postures), it is proposed to enlarge the number of the analyzed samples by additional 
samples composed of all possible pairs of original samples aligned vertically. By this 
means, for all pairs of samples, e.g., a pair  and , 
which have a common part in the horizontal coordinate axis a new merged sample 

 is created, which covers the area of both samples and the area 
between them (where  are image coordinates taken from the upper-left corner). 
Assuming that  are the smallest coordinate values and  are the width and 
height, respectively of the sample , , for e.g. , 

, and . An example of vertical alignment is shown in Figure 
22. Notice that yellow and green rectangles assign original samples, while the red 
rectangles correspond to the new merged samples. 
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a)  b)  

c)  d)  

-

 

 

3.4. Duplicate detection 
After image segmentation with different thresholds, all detected ROIs are then 

summed. Therefore, duplicate objects may appear in the ROI set. 
To remove duplicates from the summed set of ROIs, all ROIs extracted after the 

second and third thresholding are compared to the ROIs obtained after the first 
thresholding (with the lowest threshold). For an object (obj1) to be considered as a 
duplicate of another object (obj2), the following conditions must be met: 

  (23) 

and 

  (24) 

where  and  are the areas of the compared objects (in pixels),  is the 

area of the intersection of these objects, a  is the similarity coefficient. 
This technique is used before the regions enlargement but is also considered as a 

candidates selection technique because it reduces the number of ROIs. 
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3.5. Candidates selection 
To speed up the pedestrian detection process, a selection of the obtained ROIs is 

performed. The use of proposed techniques of coarse selection of pedestrian candidates 
can significantly reduce their number, having a minor impact on the pedestrian 
detection accuracy of the segmentation process. At the same time, it is possible to 
increase the precision of the object classification step by the fact that with a smaller set 
of ROIs, the classifier will less frequently make erroneous, false-positive detection. 

A set of techniques is proposed that is adapted to infrared images. The candidate 
selection process is divided into two steps. Pre-selection of candidates is carried out 
immediately after an image segmentation to eliminate a large number of the smallest 
and flattest objects. This includes three filtering techniques: selection by a minimum 
area of the object, minimum height-to-width ratio filtering, skew objects filtering. 

The main candidates selection step is performed after the regions enlargement and 
includes the following techniques: minimum and maximum height-to-width ratio, 
selection by minimum height in relation to the object's position in the image 
(perspective filtering), selection by minimum object area, and homogeneous areas 
filtering. 

The simplest selection techniques are performed first and the more computationally 
expensive last to optimize the effectiveness of the candidate selection process. To 
properly adjust these selection techniques, it is necessary to perform the calibration 
process. 

3.5.1. Height-to-width ratio filtering 
Standing or walking pedestrians appear mostly as vertical regions in the image. 

According to this, it is not necessary to accept ROIs, which are not vertical. In this case, 
the candidates are filtered by the object aspect ratio  (height to width ratio). For 
pedestrians, this ratio is in the range of 1:1.3 to 1:4 according to their actual distribution 
in a given dataset.  

Despite the presented constant distribution, there is a need to calibrate parameters: 
minimum  and maximum height-to-width ratio  for each 

segmentation technique. The detected bounding box of ROIs does not always accurately 
reflect the pedestrian area in the image. In addition, detection of groups of pedestrians is 
also performed in the proposed ROI generation technique. Therefore, lower values of 
the height-to-width ratio are also accepted (see an explanation in Section 3.6). 

3.5.2. Perspective filtering 
In the discussed applications, the camera is mounted in the front of the vehicle. Thus 

constraints relating to this perspective can be added. 
There is no need to analyze very small objects near the camera. Pedestrians far away 

from the camera appear smaller in the image. However, their vertical position in the 
image depends on the distance from the camera, their height, focal length, and the angle 
at which the camera is set. To avoid a need to set all these parameters, it is proposed to 
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roughly limit the minimum possible height in relation to the object's position in the 
image with the formula: 

  (25) 

where: are coordinates of the upper left corner of a candidate in the image,   is 
the height of the object (in pixels),  - is the height coefficient. 

As a result, the value of  should be selected at the calibration stage of the proposed 
ROI generation algorithm. 

3.5.3. Homogeneous regions filtering 
Some of the ROIs can be easily removed due to their homogeneous appearance in the 

image. Such regions often exist as a part of wide objects, not related to pedestrians. 
Moreover, the thermal contrast between pedestrians and surroundings is usually high at 
night. Thus, it is proposed to calculate a standard deviation of ROI (in the gray-scale, 
taken from the original image) and remove some of them with the intensity below the 
threshold: 

 (26) 

The decision is taken using the formula: 

 
 

(27) 

where:  is the total number of pixels in the region,  are width and height of the 
ROI,  is the pixel's intensity in a gray-scale image, and  is the mean value of 
ROI. The homogenous coefficient needs to be selected at the calibration stage. 

3.5.4. Skew objects filtering 
In some cases, after the segmentation process, there are objects whose shape 

significantly differs from the shape of a pedestrian. An example is the curbs in Figure 
21. Their temperature is higher than the ambient temperature, and after the 
segmentation process (even with a higher threshold), the areas of these objects remained 
in the binary image. In the case of very flat objects, they could be rejected using a 
height-to-width ratio. However, objects with a skew shape are not removed with this 
parameter (due to a similar aspect ratio to the pedestrians). 

Therefore, to detect skew objects, it is proposed to use scale and translation invariant 
second-order normalized central moments ,  [90], [91], which are obtained 
according to the following formula: 

  (28) 
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where  is a central moment calculated with the formula: 

  (29) 

where  and  are components of the object centroid ,  is the intensity of 
the binary image pixel with coordinates . 

The final decision is taken using: 

  (30) 

and 

  (31) 

 
where  is the skew threshold for normalized central moments,  is the threshold for 

fill factor, w and h is the width and height of the object. 
An additional condition related to the fill factor allows only thin objects to be 

rejected. Its value was assumed to be . If the above conditions are met, the 

object is removed from the set of ROIs. 

3.6. Division of wide regions  
Segmented groups of pedestrians sometimes form a single region in the binary 

image. This can be seen in Figure 21 (last row), where three pedestrians, after image 
thresholding with a lower threshold form one object, and after an image thresholding 
with a higher threshold, two of them still form a single object. 

In some cases, the pedestrians are detected and included in the set of ROIs, but they 
are incorrectly represented as one pedestrian candidate. Such ROI is wider than this 
with a single pedestrian and therefore tends to have a much lower height-to-width ratio 
and can be rejected with  parameter. In addition, the classifier is usually trained 

to classify single pedestrians, so classifying an object with several pedestrians may 
return a negative result. Additionally, the scaling of the wide ROI to the classifier 
resolution may result in a significant change of the aspect ratio of ROI (e.g., a change 
from 0.7 to 2) and then in an incorrect classifier decision. 

To solve this problem, it is proposed to divide the wide ROIs into smaller regions. 
The division is made vertically according to the following rules: 

  
  

The boundary values (1.2 and 1.8) were selected experimentally on the basis of the 
distribution of ROIs which included two or three pedestrians. 

For ROI with a resolution of 90 100 (width height), 3 additional ROIs with 
resolutions of 30 100 each are created. In addition, the large ROI is not rejected and 
remains in the set of ROIs. As a result, the value of the parameter  should be 

smaller than it results from the distribution of the height-to-width ratio of pedestrians. 
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3.7. The adaptive limiting of the number of ROIs 
The number of ROIs for the proposed ROI generation method may increase 

significantly when a lot of warm objects appear in the infrared image. In this case, the 
number of ROIs will be quite large, and with the regions enlargement technique applied, 
it can even increase significantly. As a result, the pedestrian detection process may 
temporarily slow down because the classifier (at object classification stage) has many 
more ROIs to process. 

To ensure better stability of the pedestrian detection algorithm, it is proposed to 
optionally limit the maximum number of ROIs per one image frame along with the 

 parameter. With this parameter, it is possible to stabilize the computational 

efficiency of the entire pedestrian detection process, if required. This minimize a 
variation of the processing time per frame, what is especially important in the real-time 
solutions. 

After the ROI generation procedure, it is checked if the number of detected ROIs is 
greater than . If so, the candidates selection process is performed again. 

However, this time with a changed, more restrictive values of parameters (smaller or 
larger, depending on type) of candidates selection process by 10% (the full set of 
changed parameters is presented in Table 6Table 5). As a result, more ROIs are rejected 
with each step. The procedure is repeated until the required limit of ROIs is reached. 

This procedure may reduce the pedestrian detection accuracy, so it should be used 
carefully with a quite high value of the parameter  (the impact of this technique 

on the accuracy of the segmentation process is tested in Section 3.8). 

3.8. Algorithm calibration 
This section presents the calibration process of the proposed ROI generation 

procedure for thermal images along with experiments for two datasets: CVC-14 and 
KAIST (the datasets are described in detail in Section 2.2). These datasets were selected 
because they offer thermal imaging sequences (with annotated pedestrians) recorded in 
night conditions from the vehicle. 

In the beginning of the experiments, thresholds were selected for each dataset 
individually. In both cases, the proposed segmentation procedure with double and triple 
thresholding was compared. Segmentation with one threshold was also added to the 
comparison. Moreover, to measure the effectiveness of the regions enlargement 
technique, each time the proposed ROI generation process was performed with and 
without this technique. 

In addition, thresholds calculated based on the Otsu method (as presented in Section 
3.2) were also compared to the thresholds with fixed values.  

Then, in the next step, the values of the parameters of the candidate selection process 
were selected for each dataset. All parameters values of the proposed ROI generation 
process are presented in Table 5. 
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Table 5. Set of parameters of the proposed ROI generation technique 

Type Name of the parameter Symbol 

-  
constant adjusting factor  

  

 
 

  

  

 

  

- -   

- -   

  

  

  

  

3.8.1. Methodology for evaluating the results 
To present the results of experiments, a standard Caltech methodology for pedestrian 

detection was adopted from [92]. To measure the accuracy of detecting pedestrians, the 
miss rate (MR) is used together with false-positives per image (FPPI), the number of 
selected ROIs per frame (PR), mean calculation time (MCT), and frames per second 
(FPS) metrics, which are calculated with the following manner: 

 
 (32) 

 
 (33) 

 
 (34) 

 
 (35) 

 
 (36) 

where positive samples are those related to pedestrians.  
The miss rate efficiency of the tested ROI generation procedure was verified as 

follows: a single pedestrian must be selected as one window, and the ROI bounding 
rectangle must cover at least 40% of the pedestrian area (based on dataset annotations). 
Additionally, it must not be stitched with other objects like other pedestrians, cars, trees, 
houses, etc. Such low threshold value (40%) is acceptable, because the area of 
pedestrians annotations (provided by the authors of dataset) is often significantly larger 
than the real pedestrian area in the image. Moreover, pedestrians sometimes does not fit 
perfectly into the ROI in total, and ROI could be a bit smaller than the pedestrian area 
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(but it is still possible to correctly classify such ROI), this problem is discussed with 
proposed solution in Chapter 4. 

3.8.2. Calibration on CVC-14 dataset 
The initial values of parameters of candidates selection were selected experimentally, 

and their values are presented in Table 6. The performed tests required candidates 
selection techniques from the very beginning because without these techniques, the 
number of generated ROIs would be very large.  

Table 6. Pre-selected parameters values for the CVC-14 dataset 

Type Name of the parameter Symbol Initial values 

 
 

   

   

 

   

- -    

- -    

   

   

   

   

Selection of thresholds 
The experiments with the selection of thresholds were performed for the proposed 

ROI generation procedure.  
The results of the single thresholding are shown in Figure 24 and Figure 25, and the 

results for the double and triple thresholding are presented in Tables 7-14. The summary 
of the best results for double and triple thresholding is presented in Table 15. 
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-
-

 

 

- -
-
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Table 7. Miss rate [%] for various thresholds for the CVC-14 dataset with double fixed 
thresholds and with regions enlargement 

 
 190 195 200 205 210 215 220 225 230 235 240 245 250 Scale 

120 19.4 20.7 21.8 24.0 28.8 33.1 40.7 48.2 56.0 66.8 79.5 89.0 89.0 mm 0.0 

125 18.0 18.9 19.8 21.2 25.3 29.7 35.8 42.6 50.3 62.5 73.5 82.2 82.2 10.0 

130 16.6 16.8 17.0 18.5 22.9 26.2 31.8 38.2 45.9 58.0 69.1 76.0 76.0 20.0 

135 15.3 14.8 15.4 16.1 20.3 23.7 29.0 34.7 41.6 52.6 63.2 69.4 69.4 30.0 

140 15.1 14.2 14.3 15.2 18.7 21.8 26.6 31.7 38.6 47.4 54.9 60.2 60.2 40.0 

145 14.6 13.7 13.1 13.8 16.6 18.8 23.0 27.8 33.9 39.7 45.9 50.1 50.1 50.0 

150 14.6 13.8 12.9 13.1 15.3 17.0 20.5 24.7 30.0 35.9 41.0 45.0 45.0 60.0 

155 14.5 13.2 12.1 11.9 12.9 13.8 16.3 19.6 24.1 28.3 32.8 35.8 35.8 70.0 

160 16.1 14.6 13.8 13.2 13.2 13.7 16.3 18.9 22.4 25.9 29.3 31.5 31.5 80.0 

165 17.6 16.3 15.4 14.7 14.5 15.1 17.3 19.4 22.1 24.8 28.1 29.4 29.4 90.0 

170 18.9 17.5 16.4 15.3 15.6 15.5 17.0 18.9 21.3 24.5 26.9 27.7 27.7 100.0 

175 21.1 19.5 18.6 17.3 17.5 17.7 19.2 20.6 22.6 25.6 27.3 28.3 28.3 

180 23.0 21.2 20.2 19.2 19.4 19.7 20.4 21.7 23.7 25.2 26.8 27.5 27.5 

Table 8. Miss rate [%] for various thresholds for the CVC-14 dataset with double fixed 
thresholds and without regions enlargement 

 
 190 195 200 205 210 215 220 225 230 235 240 245 250 Scale 

120 65.3 68.0 70.9 73.1 76.9 80.2 82.7 85.1 88.1 91.9 92.3 92.3 92.3 mm 0.0 

125 62.2 64.6 67.1 69.2 72.9 76.2 78.7 80.9 83.5 86.9 87.3 87.3 87.3 10.0 

130 59.6 61.8 64.1 65.9 69.6 72.9 75.4 77.2 79.5 82.4 82.8 82.8 82.8 20.0 

135 55.8 58.0 59.7 61.1 64.7 68.0 70.4 72.3 74.1 76.0 76.3 76.3 76.3 30.0 

140 51.1 53.0 54.5 55.7 59.3 62.4 64.7 66.2 67.5 68.6 68.7 68.7 68.7 40.0 

145 46.6 48.2 49.5 50.6 53.8 56.9 58.5 59.7 60.4 60.8 60.8 60.8 60.8 50.0 

150 45.4 46.7 47.8 48.9 51.8 54.6 55.7 56.6 57.2 57.3 57.3 57.3 57.3 60.0 

155 44.3 45.0 45.9 46.4 48.8 51.1 52.2 52.8 53.4 53.4 53.4 53.4 53.4 70.0 

160 45.5 46.1 46.6 47.1 48.9 50.2 51.3 51.7 52.1 52.2 52.2 52.2 52.2 80.0 

165 48.2 48.5 48.9 49.2 50.1 51.5 52.1 52.5 52.8 52.9 52.9 52.9 52.9 90.0 

170 52.9 52.9 53.1 53.0 53.8 54.8 55.4 55.8 56.1 56.2 56.2 56.2 56.2 100.0 

175 58.9 58.8 58.8 58.8 59.5 60.3 60.9 61.2 61.5 61.5 61.5 61.5 61.5 

180 63.1 62.7 62.7 62.7 63.4 64.2 64.6 64.7 65.0 65.1 65.1 65.1 65.1 
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Table 9. Miss rate [%] for various thresholds for the CVC-14 dataset with double Otsu-based 
thresholds and with regions enlargement 

 
 8 10 12 14 16 18 20 22 24 26 28 30 32 Scale 

30 29.0 26.9 24.0 21.4 20.6 18.9 18.7 18.5 18.8 19.1 19.3 19.6 20.2 mm 0.0 

35 24.7 22.8 21.3 19.9 19.6 18.7 18.9 18.6 19.0 18.7 18.4 19.3 19.9 10.0 

40 22.3 21.2 20.2 20.2 19.0 19.1 18.8 18.0 18.3 18.1 18.6 18.8 18.0 20.0 

45 20.5 20.3 20.1 19.7 18.6 17.7 18.0 18.4 16.9 16.9 16.6 17.0 17.6 30.0 

50 20.5 19.6 18.9 18.6 18.7 18.3 17.0 16.0 15.9 15.5 16.2 16.1 16.8 40.0 

55 20.7 20.5 19.3 17.7 16.9 15.5 15.1 15.5 15.6 15.1 15.6 16.3 17.7 50.0 

60 21.6 20.6 18.8 18.3 16.8 16.3 15.0 14.7 14.6 15.4 16.4 17.6 19.1 60.0 

65 22.3 21.3 20.2 19.3 17.9 16.5 15.8 15.1 14.9 16.0 16.5 18.1 20.7 70.0 

70 24.1 22.3 20.6 19.7 18.5 17.4 17.0 16.5 17.0 16.5 17.4 18.4 20.5 80.0 

75 24.5 23.0 21.7 21.1 19.9 20.1 19.4 18.3 18.2 18.4 18.5 19.6 20.5 90.0 

80 26.0 24.4 23.9 23.9 23.0 22.0 21.5 21.5 20.9 20.7 20.9 20.8 20.7 100.0 

85 29.1 28.3 26.8 25.9 25.2 25.3 24.6 23.7 23.7 23.4 23.3 23.6 23.0 

90 33.5 32.0 31.0 29.6 28.0 27.3 26.6 26.3 26.5 26.6 26.0 26.2 26.1 

95 39.7 37.5 35.7 33.6 32.9 30.4 29.9 28.9 28.8 28.5 28.8 28.7 28.0 

Table 10. Miss rate [%] for various thresholds for the CVC-14 dataset with double Otsu-based 
thresholds and without regions enlargement 

 
 8 10 12 14 16 18 20 22 24 26 28 30 32 Scale 

30 46.2 44.1 44.0 43.1 43.9 45.3 47.8 49.9 52.6 56.0 57.3 60.2 63.9 mm 0.0 

35 44.1 43.0 42.4 43.4 44.3 46.5 49.4 51.7 54.5 57.6 60.7 62.8 63.6 10.0 

40 44.4 43.2 42.9 44.5 46.0 48.0 50.3 53.4 56.2 57.3 59.2 60.8 62.0 20.0 

45 45.7 45.4 45.9 45.8 46.7 49.0 50.1 51.7 53.5 54.7 56.1 57.3 59.0 30.0 

50 48.9 48.0 47.4 47.3 48.1 48.5 47.2 47.8 49.5 50.2 52.9 55.1 56.7 40.0 

55 53.0 51.5 49.6 48.2 47.4 47.2 46.6 47.1 47.1 47.9 50.1 51.6 55.3 50.0 

60 57.9 55.1 52.7 51.0 49.2 48.2 47.9 47.0 47.3 48.6 50.2 51.6 53.1 60.0 

65 63.0 61.0 58.4 55.7 54.0 51.6 50.6 49.8 49.9 50.4 50.8 51.4 52.8 70.0 

70 68.6 66.1 63.4 62.4 59.6 57.4 55.8 53.8 52.8 52.0 51.7 51.8 51.9 80.0 

75 71.4 70.6 69.9 67.6 65.2 63.5 61.8 59.6 57.2 56.0 54.4 54.2 53.5 90.0 

80 73.7 73.0 72.5 71.7 71.1 69.8 67.3 65.0 64.3 61.5 59.3 57.8 55.9 100.0 

85 74.7 74.5 74.0 73.9 73.5 73.0 72.7 71.8 69.4 67.0 65.4 63.6 61.1 

90 77.5 76.7 75.5 75.0 74.9 74.4 74.0 73.9 73.2 72.8 71.1 68.5 66.0 

95 81.5 79.4 78.2 77.2 76.4 75.4 75.0 74.6 74.5 74.2 73.8 73.3 72.2 
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Table 11. Miss rate [%] for various thresholds for the CVC-14 dataset with triple fixed 
thresholds and with regions enlargement 

 
 190 195 200 205 210 215 220 225 230 235 240 245 250 Scale 

120 10.6 9.8 9.2 8.4 8.8 9.0 10.6 12.3 15.2 18.0 18.8 19.7 19.5 mm 0.0 

125 11.0 10.3 9.2 8.9 8.4 9.1 10.2 11.8 14.0 16.2 17.8 18.3 17.7 10.0 

130 11.2 9.9 9.1 8.0 8.7 8.7 10.1 11.3 13.1 14.8 16.4 17.1 16.6 20.0 

135 10.9 9.8 9.2 8.3 8.4 9.0 9.8 10.9 12.7 14.8 15.4 15.3 15.5 30.0 

140 12.1 10.8 10.3 9.1 9.8 9.9 10.6 11.7 13.4 14.1 14.5 15.4 14.2 40.0 

145 12.6 11.1 10.1 9.0 9.3 9.7 10.5 11.2 12.4 13.0 14.3 13.7 13.3 50.0 

150 13.5 12.4 11.2 9.8 10.3 10.6 11.0 11.0 12.2 13.5 13.5 13.0 12.9 60.0 

155 13.8 12.6 10.8 10.1 10.2 10.5 10.3 10.4 11.7 11.9 12.2 12.1 12.1 70.0 

160 15.4 13.5 12.7 11.7 11.6 11.9 12.0 12.2 12.7 13.0 13.4 13.5 13.2 80.0 

165 16.9 15.4 14.4 13.6 13.4 13.4 13.6 13.3 14.1 14.3 14.7 14.7 14.7 90.0 

170 18.4 16.4 15.4 14.5 14.4 14.7 14.5 14.5 15.0 15.4 15.1 15.4 15.6 100.0 

175 20.3 19.2 17.4 16.5 16.3 16.5 16.5 16.7 17.2 16.8 17.3 17.5 17.3 

180 22.8 20.6 19.2 18.5 18.5 18.6 18.4 18.9 18.7 18.7 19.3 19.1 19.7 

Table 12. Miss rate [%] for various thresholds for the CVC-14 dataset with triple fixed 
thresholds and without regions enlargement 

 
 190 195 200 205 210 215 220 225 230 235 240 245 250 Scale 

120 40.8 40.9 42.8 43.0 46.3 48.3 51.2 54.6 56.8 57.7 59.9 61.1 62.3 mm 0.0 

125 38.9 40.9 41.2 43.5 45.3 48.6 52.3 54.2 55.3 57.6 58.7 59.7 61.3 10.0 

130 39.4 39.5 41.9 42.8 45.8 49.6 51.7 52.6 55.0 56.1 57.1 58.7 59.6 20.0 

135 37.1 39.4 40.3 42.3 45.6 48.1 49.4 51.3 52.6 53.5 55.0 55.8 56.5 30.0 

140 37.8 38.3 40.1 41.8 44.3 45.7 47.5 48.5 49.4 50.9 51.1 51.8 53.0 40.0 

145 37.2 38.0 39.2 39.9 41.4 43.7 44.4 45.0 46.5 46.6 47.1 48.2 48.5 50.0 

150 38.8 39.7 40.2 40.3 42.5 44.0 44.1 45.3 45.4 45.8 46.7 47.0 47.8 60.0 

155 40.9 40.5 40.4 41.1 42.2 43.2 44.0 44.2 44.5 45.0 45.2 45.9 46.0 70.0 

160 43.0 42.6 42.9 43.4 44.1 45.1 45.2 45.3 46.1 46.1 46.6 46.7 47.1 80.0 

165 45.9 46.1 46.3 46.4 47.3 47.8 47.9 48.3 48.4 48.9 49.0 49.2 49.8 90.0 

170 51.7 51.3 51.5 51.6 51.9 52.6 52.6 52.7 53.1 53.1 53.0 53.5 53.8 100.0 

175 58.5 58.2 58.0 57.5 57.9 58.4 58.3 58.8 58.9 58.8 59.3 59.5 59.9 

180 63.0 62.4 61.9 61.7 62.0 62.3 62.7 62.7 62.7 63.2 63.4 63.7 64.2 
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Table 13. Miss rate [%] for various thresholds for the CVC-14 dataset with triple Otsu-based 
thresholds and with regions enlargement 

 
 8 10 12 14 16 18 20 22 24 26 28 30 32 Scale 

30 17.5 17.5 17.1 17.0 16.1 15.5 15.6 14.8 14.2 13.2 12.3 11.7 11.6 mm 0.0 

35 16.7 16.1 15.7 15.0 14.6 14.6 13.7 13.6 12.3 11.6 11.6 11.4 11.4 10.0 

40 15.0 14.4 13.9 13.0 12.5 11.5 10.7 10.3 10.5 9.9 9.6 10.0 10.4 20.0 

45 15.2 13.9 13.2 12.2 12.2 11.7 11.6 10.9 9.8 9.4 10.0 9.6 10.8 30.0 

50 14.0 13.1 13.0 12.7 11.6 10.6 10.6 10.3 10.1 9.7 9.8 10.2 10.8 40.0 

55 14.4 13.9 12.6 11.7 11.1 10.9 10.5 10.4 10.6 11.0 10.8 11.3 11.3 50.0 

60 12.9 12.6 12.0 11.7 11.3 11.3 11.3 11.0 11.7 12.0 11.7 12.1 12.5 60.0 

65 13.7 12.9 12.6 11.8 12.0 12.0 12.5 12.2 12.3 12.8 13.4 13.1 13.7 70.0 

70 14.8 14.4 13.5 13.0 12.3 12.3 12.1 12.7 13.0 12.8 13.1 14.1 14.2 80.0 

75 16.5 15.9 15.5 14.8 14.4 13.8 13.2 12.8 12.3 13.2 13.3 13.7 14.0 90.0 

80 19.1 18.3 17.3 16.7 16.4 15.6 15.5 14.5 14.2 13.7 14.1 14.1 14.2 100.0 

85 20.8 20.3 19.1 18.9 18.0 16.9 16.5 16.1 15.8 15.6 14.8 14.4 14.8 

90 23.7 23.0 22.1 21.1 20.5 19.6 19.0 18.0 17.2 16.8 16.2 16.0 15.1 

95 26.7 25.5 24.5 24.2 23.3 22.1 21.4 20.4 20.3 19.4 18.3 17.7 17.2 

Table 14. Miss rate [%] for various thresholds for the CVC-14 dataset with triple Otsu-based 
thresholds and without regions enlargement 

 
 8 10 12 14 16 18 20 22 24 26 28 30 32 Scale 

30 38.8 39.5 40.9 40.8 41.8 43.6 45.1 45.2 45.2 44.3 44.6 44.9 44.8 mm 0.0 

35 39.5 39.9 40.9 41.6 42.4 42.1 41.8 42.2 42.7 43.2 43.4 43.6 44.4 10.0 

40 38.8 39.3 39.4 40.1 39.9 40.7 40.8 41.3 41.3 42.4 43.0 44.1 45.1 20.0 

45 38.8 38.7 38.6 39.0 39.4 39.9 41.2 42.0 42.5 43.4 44.2 44.9 46.0 30.0 

50 39.2 39.9 39.2 39.9 40.6 41.0 42.0 42.8 43.9 45.5 46.6 47.2 48.2 40.0 

55 42.2 41.7 41.3 42.1 42.0 43.4 44.6 45.6 46.3 47.5 48.6 50.2 51.4 50.0 

60 44.2 43.7 44.0 44.3 43.9 44.2 45.8 45.9 47.8 49.0 50.1 51.8 52.7 60.0 

65 47.7 46.5 46.6 46.0 45.8 46.8 46.8 47.2 48.5 49.4 51.2 53.0 54.2 70.0 

70 51.3 49.8 48.4 47.7 46.9 46.0 46.2 47.1 47.3 46.9 47.4 49.1 50.1 80.0 

75 58.1 55.3 53.5 51.3 50.2 48.5 47.5 47.2 46.9 46.5 47.0 46.6 47.2 90.0 

80 63.2 62.3 59.3 56.9 55.0 52.5 50.9 49.5 48.5 47.8 47.0 47.0 47.5 100.0 

85 69.4 67.1 64.5 62.8 61.0 58.5 55.7 53.8 51.6 50.6 49.2 48.4 48.3 

90 72.4 71.6 71.0 69.3 66.5 64.0 62.9 59.9 57.7 55.8 53.5 52.2 51.0 

95 73.8 73.6 73.0 72.1 71.5 70.4 68.1 65.4 63.7 61.8 59.4 56.7 55.3 
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Table 15. Best experimental results (based on lowest MR value) obtained for the CVC-14 
dataset with the proposed ROI generation with double and triple thresholding and with region 
enlargement  

  Double thresholding Triple thresholding 

F 
I 
X 
E 
D 

 155 155 150 155 130 135 135 120 

 205 200 200 210 205 205 210 205 

 [%] 11.9 12.1 12.9 12.9 8.0 8.3 8.4 8.4 

 19.2 19.1 19.8 18.6 27.1 26.7 29.9 27.7 

(*) [ms] 7 7 7 7 16 15 14 17 

O 
T 
S 
U 

 60 60 60 65 45 40 45 50 

 24 20 24 22 40 42 44 40 

 [%] 14.6 14.7 15 15.1 9.4 9.6 9.6 9.7 

 18.1 17.8 17.4 16.8 26.9 28.1 27.5 25.1 

(*) [ms] 7 7 6 6 18 21 18 17 

(*) The mean calculation time  was calculated for single-core of Intel Core i7-870 CPU 

Presented results of the selection of thresholds (Figure 24 and Figure 25 and Tables 
7-14) show that the accuracy of the proposed ROI generation procedure with double and 
triple thresholding is much higher than with the single thresholding. The difference in 
the achieved  values equals to 18.7% (between lowest  values for single and 
triple thresholding). Therefore, no further analysis for this dataset will be performed for 
single thresholding. 

The regions enlargement technique has also a significant impact on the  
coefficient. Thanks to this technique, it was possible to lower significantly the  
parameter, e.g. with double thresholding and fixed thresholds, the  value decreased 
from 46.4% to 11.9% for thresholds values  = 155 and  = 205 (see Table 7 and 
Table 8), with triple thresholding and fixed thresholds, the  value decreased from 
42.8% to 8.0% for thresholds values  = 130 and  = 205 (see Table 11 and Table 
12). A similar tendency can be observed in the case of Otsu-based thresholds. 

The use of the triple thresholding also reduces  compared to double thresholding. 
The difference is approximately 3-5%, e.g., for the triple thresholding with fixed 
thresholds, the MR decreased from 11.9% to 8.0% compared to the double thresholding, 
and for the triple thresholding with Otsu-based thresholds, the  decreased from 
14.6% to 9.4% compared to the double thresholding (see Table 15). Moreover, it is also 
important that the MR value is more stable, less dependent on the threshold values for 
triple thresholding (see Tables 7-14). On the other hand, the mean processing time MCT 
for the triple thresholding increases significantly compared to the double thresholding, 
from approximately 7 ms to 17 ms, and the number of selected ROIs per frame 
increases from approximately 18 to 27. 
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The experiments also show that using the Otsu-based thresholds approach is slightly 
less advantageous than the fixed-based thresholds approach, e.g., the  value for 
Otsu-based thresholds is higher for triple thresholds and equals to 9.4% compared to 
8.0% for fixed-based thresholds (see Table 15). However, the use of Otsu-based 
thresholds is a more reliable solution due to the possibility of adapting to changes in 
image dynamics. 

Candidates selection 
In the next step, a plenty of experiments were conducted to verify the impact of 

changes in the values of candidates selection parameters on the values of  and  
metrics and to select sets of optimal parameters values for the double and triple 
thresholding. 

The initial values of tested parameters were selected experimentally and their values 
are presented in Table 16Table 6. The results of the experiments are presented in the 
graphs in Figure 26 and Figure 27.  

 

-  
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Table 16. Selected parameters values for the CVC-14 dataset 

Name of the parameter Symbol Initial values balanced best accuracy 

     

     

     

- -      

- -      

     

     

     

     

 
 
 
  



52 
 

Table 17. Best results obtained for CVC-14 dataset with proposed ROI generation with 
adjusted values of candidates selection parameters and with various maximum number of ROIs 
per one image 

    

  
Double  

thresholding 
Triple  

thresholding 
Double  

thresholding 
Triple 

thresholding 

  balanced 
best  

accuracy 
balanced 

best  
accuracy 

balanced 
best  

accuracy 
balanced 

best  
accuracy 

F 
I 
X 
E 
D 

 155 155 130 130 155 155 130 130 

 205 205 205 205 205 205 205 205 

 [%] 6.7 6.2 5.6 8.7 5.7 3.2 2.2 1.2 

 27.9 38.1 34.9 41.2 30.6 57.5 48.5 85.1 

 [ms] 11 34 30 111 11 22 24 82 

O 
T 
S 
U 

 60 60 45 45 60 60 45 45 

 24 24 40 40 24 24 40 40 

 [%] 7.3 6.6 6.7 9.9 6.8 4.1 2.9 1.4 

 26.9 38.2 35 40.1 28.5 53.4 49.4 85.8 

 [ms] 11 27 32 104 10 18 24 73 

(*) The mean calculation time  was calculated for single-core of Intel Core i7-870 CPU 

Results presented in Figure 26 and Figure 27 show to what extent the values 
parameters of candidates selection affect the  and  coefficients. Typically, 
lowering the  value by changing one of the parameters of candidates selection 
increases the values of  and  parameters. However, only for the  

parameter, reducing the maximum possible number of ROIs increases both the  and 
the . 

In many cases, the proposed parameter values were not perfectly matched, and the 
 value can be reduced. Therefore, two sets of parameters were proposed and 

presented in Table 16 (based on the results presented in Figure 26 and Figure 27). The 
first set of selected values (balanced) was selected to ensure both: high accuracy of 
pedestrian detection (low  parameter value) and high computational efficiency (low 

 parameter value). The second set of parameters (best accuracy) was selected to 
achieve the lowest possible . 

After selecting new sets of values of parameters for the candidate selection, 
experiments were repeated with the double and triple thresholding for the best threshold 
values only and are presented in Table 17. 

As a result, the value of the  decreases significantly even to 5.6% (for the triple 
thresholding with fixed threshold and balanced settings). On the other hand, the values 
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of  increased significantly compared to the initial settings of the candidates 
selection (from 16 ms to 30 ms).  

The results are not better only with the triple thresholding with the best accuracy 
settings. After performing additional tests with a higher value of  equal to 150, 

the  decreased also for the best accuracy settings reaching even a very low  value 
of 1.2% (for fixed triple thresholding with best accuracy settings). Moreover  value 
decreased significantly for all configurations.  

It can also be seen that in all performed experiments conducted for CVC-14 dataset, 
the segmentation with fixed thresholds still achieves lower MR values than the Otsu-
based thresholds, but the difference decreased to about 1%. 

When evaluating the final results (for  = 150, presented in Table 17), the 

reasonable values of ,  and  are obtained using the triple thresholding 
technique with balanced settings. The algorithm for these settings is several times faster 
than for the best accuracy settings, MCT decreases from 82 ms to 24 ms, PR decreases 
from 85.1 to 48.5, and the achieved  value is equal to 2.2% and it is only 1% above 
the lowest-achieved result (compared to the triple thresholding technique with the best 
accuracy). Few illustrative images with marked ROIs obtained with the proposed ROI 
generation approach are shown in Figure 28. 
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3.8.3. Calibration on KAIST dataset 
Similar, as for the CVC-14 dataset, experiments were performed for the KAIST 

dataset. Set 09 (campus) was selected as the most representative for the initial 
experiments (from 3 available night-time test sets, as presented in Section 2.2.6) with 
the selection of thresholds and parameters values for candidates selection. The results 
for the remaining KAIST test sequences are also presented (with the finally selected 
thresholds and sets of parameters of candidates selection process) at the end of the 
section.  

The initial values of candidates selection parameters for experiments were selected 
experimentally and their values are presented in Table 18. 

Table 18. Pre-selected parameters values for the KAIST dataset 

Type Name of the parameter Symbol Initial values 

 
 

   

   

 

   

- -    

- -    

   

   

   

   

 

Selection of thresholds 
A selection of thresholds was performed for the proposed ROI generation technique. 

The results of the single thresholding experiments are shown in Figure 29 and Figure 
30, and the results for the double and triple thresholding are collected in Tables 19-26. 
The summary of the best results for the double and triple thresholding is presented in 
Table 27. 
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Table 19. Miss rate [%] for various thresholds for the KAIST dataset with double fixed 
thresholds and with regions enlargement 

 
 42 44 46 48 50 52 54 56 58 60 62 64 66 Scale 

16 43.4 43.6 48.3 56.2 62.2 66.7 70.8 76.1 83.0 88.7 92.1 95.5 97.4 mm 0.0 

18 43.4 43.6 48.3 56.2 62.3 66.6 70.7 76.0 83.0 88.7 92.1 95.5 97.4 10.0 

20 43.1 43.2 47.8 55.7 61.8 66.2 70.3 75.7 82.7 88.4 91.8 95.3 97.2 20.0 

22 41.4 40.8 45.4 53.7 59.9 64.5 68.7 74.0 81.2 86.8 90.2 93.6 95.5 30.0 

24 40.1 39.6 44.4 52.4 58.7 63.1 67.3 72.7 79.8 85.5 88.9 92.3 94.2 40.0 

26 38.2 36.8 41.0 48.5 54.3 59.2 63.4 69.0 76.2 82.1 85.6 89.1 90.9 50.0 

28 35.4 34.3 36.8 42.7 48.3 53.9 58.9 64.9 72.2 78.3 81.8 85.2 87.0 60.0 

30 33.1 31.3 32.5 38.0 43.4 49.1 54.1 60.0 67.9 73.6 77.3 81.2 83.6 70.0 

32 28.6 26.5 28.0 33.1 37.9 42.4 46.6 51.7 58.8 65.1 69.1 73.1 75.2 80.0 

34 30.5 27.5 27.9 30.7 34.0 37.2 41.7 47.3 54.5 59.8 63.7 67.4 69.3 90.0 

36 33.5 29.2 28.0 28.5 31.1 34.8 38.5 43.0 49.4 54.4 57.5 60.5 62.8 100.0 

38 35.9 30.5 28.8 28.2 30.6 33.4 36.0 39.4 45.0 49.5 52.4 55.2 57.1 

40 39.7 32.8 30.1 27.2 27.8 29.2 30.5 32.7 36.8 40.3 42.7 44.7 46.5 

Table 20. Miss rate [%] for various thresholds for the KAIST dataset with double fixed 
thresholds  and without regions enlargement 

 
 42 44 46 48 50 52 54 56 58 60 62 64 66 Scale 

16 56.8 56.0 60.7 68.3 76.8 84.5 91.0 96.1 99.4 99.9 99.9 99.9 99.9 mm 0.0 

18 56.8 55.9 60.6 68.2 76.7 84.4 90.9 96.0 99.3 99.9 99.9 99.9 99.9 10.0 

20 56.6 55.7 60.5 68.1 76.5 84.3 90.8 95.8 99.1 99.8 99.8 99.8 99.8 20.0 

22 55.2 54.3 59.1 66.7 75.2 82.9 89.4 94.4 97.8 98.4 98.4 98.4 98.4 30.0 

24 53.9 53.0 57.8 65.4 73.9 81.6 88.1 93.2 96.5 97.1 97.1 97.1 97.1 40.0 

26 51.1 50.2 54.9 62.6 71.0 78.8 85.3 90.3 93.6 94.2 94.2 94.2 94.2 50.0 

28 48.8 47.9 52.6 60.3 68.7 76.5 82.9 88.0 91.3 91.9 91.9 91.9 91.9 60.0 

30 48.5 47.6 52.2 59.5 67.8 75.6 82.1 87.1 90.4 91.0 91.0 91.0 91.0 70.0 

32 47.4 46.2 50.2 57.3 65.6 73.3 79.8 84.8 88.2 88.8 88.8 88.8 88.8 80.0 

34 48.2 46.2 48.9 53.8 61.2 68.8 75.2 80.3 83.6 84.2 84.2 84.2 84.2 90.0 

36 48.5 44.9 45.8 48.7 55.5 62.4 68.4 73.5 76.8 77.4 77.4 77.4 77.4 100.0 

38 49.5 44.8 44.2 46.3 52.0 57.7 63.1 67.5 70.7 71.2 71.2 71.2 71.2 

40 52.1 45.2 42.7 42.3 45.7 50.1 54.5 58.1 60.7 61.1 61.1 61.1 61.1 
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Table 21. Miss rate [%] for various thresholds for the KAIST dataset with double Otsu-based 
thresholds and with regions enlargement 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 Scale 

10 91.1 88.6 86.2 83.2 77.5 71.5 65.9 60.3 54.9 46.0 40.4 34.9 29.8 mm 0.0 

12 85.9 82.1 76.6 70.8 65.6 59.6 54.2 45.2 39.7 35.2 29.5 28.6 31.2 10.0 

14 76.5 70.3 64.7 58.3 52.1 43.9 38.7 33.4 28.7 27.8 30.7 34.6 39.5 20.0 

16 64.5 57.5 52.9 45.3 37.1 30.3 24.7 24.1 27.6 32.1 38.0 43.8 49.3 30.0 

18 51.7 41.3 35.7 29.0 23.5 21.9 23.9 26.5 32.8 39.0 45.5 53.7 61.3 40.0 

20 37.4 28.4 19.0 16.6 19.2 23.6 28.0 33.3 39.7 47.4 55.1 60.7 66.9 50.0 

22 27.3 20.3 17.8 16.7 18.0 23.9 30.9 39.5 44.2 49.8 58.4 64.4 69.0 60.0 

24 24.4 20.7 19.8 20.7 23.1 27.9 32.5 39.2 45.9 53.5 58.1 63.9 70.6 70.0 

26 30.1 25.7 22.8 22.2 23.7 27.1 31.8 36.8 41.1 48.2 55.9 63.7 69.9 80.0 

28 39.7 34.3 29.7 26.0 24.4 25.1 26.9 31.3 38.6 44.0 50.8 57.3 65.4 90.0 

30 49.7 44.2 39.3 34.0 29.4 25.4 24.7 28.1 32.3 37.5 46.6 52.5 59.0 100.0 

32 62.6 56.0 48.8 43.2 38.5 33.5 29.6 26.8 27.2 31.8 37.2 42.9 52.2 

34 69.4 65.2 61.5 55.9 49.4 44.2 39.5 34.4 30.6 28.6 29.3 34.4 40.0 

36 75.0 72.4 69.6 66.2 62.6 56.6 50.2 44.8 40.1 35.1 31.4 28.9 29.8 

Table 22. Miss rate [%] for various thresholds for the KAIST dataset with double Otsu-based 
thresholds and without regions enlargement 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 Scale 

10 93.3 90.6 88.6 86.5 84.1 80.2 76.6 72.2 68.3 60.5 55.2 51.0 47.2 mm 0.0 

12 88.2 85.4 82.1 78.0 74.8 70.5 67.5 60.2 55.0 51.0 47.2 47.6 51.8 10.0 

14 82.3 76.5 72.3 68.6 65.1 57.6 52.8 49.0 46.5 47.4 51.7 55.7 58.9 20.0 

16 74.2 67.3 62.0 53.9 49.3 46.3 43.3 44.2 49.4 53.7 58.2 63.4 69.0 30.0 

18 63.5 52.5 46.6 42.2 38.9 39.7 45.5 50.8 54.9 60.3 66.7 73.3 79.2 40.0 

20 50.6 41.9 34.8 34.8 39.9 45.5 49.5 55.5 62.8 70.4 75.9 80.2 85.9 50.0 

22 42.5 36.3 37.6 39.0 41.9 47.4 54.9 63.6 69.7 74.9 82.0 86.5 89.5 60.0 

24 42.1 38.4 37.5 39.8 46.5 51.9 58.1 64.7 73.2 79.4 83.4 86.5 89.9 70.0 

26 50.5 44.4 41.1 41.6 44.1 48.8 58.0 63.9 70.3 75.7 81.1 85.5 88.1 80.0 

28 58.7 55.0 50.3 45.5 44.0 46.3 50.5 56.4 64.6 69.8 75.1 79.8 84.4 90.0 

30 68.9 63.4 58.7 55.2 50.9 46.9 46.2 49.3 53.7 59.8 67.9 72.0 76.6 100.0 

32 79.8 75.2 69.0 63.6 58.9 55.5 51.7 47.6 47.1 50.8 55.0 60.5 68.3 

34 87.9 83.5 79.8 75.3 69.2 63.7 58.9 55.6 51.7 47.6 47.2 51.0 55.2 

36 93.4 91.2 88.3 83.6 79.9 75.3 69.2 63.7 58.9 55.7 51.8 47.6 47.2 
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Table 23. Miss rate [%] for various thresholds for the KAIST dataset with triple fixed 
thresholds and with regions enlargement 

 
 42 44 46 48 50 52 54 56 58 60 62 64 66 Scale 

16 33.8 30.9 28.7 33.0 36.2 37.1 39.5 42.6 46.2 49.1 45.6 44.2 43.5 mm 0.0 

18 32.8 27.2 27.7 32.3 33.6 35.5 38.0 40.2 44.6 43.4 42.1 42.5 41.5 10.0 

20 29.4 26.1 28.0 29.8 30.7 33.5 35.7 38.0 38.3 39.0 40.3 40.0 40.8 20.0 

22 28.1 26.7 26.7 27.2 29.5 31.7 33.8 32.4 34.5 36.8 36.5 37.6 39.0 30.0 

24 28.0 25.9 25.7 26.2 28.2 30.5 29.1 29.5 32.3 33.8 34.8 36.7 40.6 40.0 

26 29.8 26.1 26.5 26.0 27.2 27.0 25.9 27.1 29.3 31.4 32.5 36.8 39.4 50.0 

28 29.4 26.0 24.4 23.9 23.2 23.1 23.3 23.5 27.1 28.9 32.1 34.8 40.0 60.0 

30 29.5 24.7 22.6 19.6 19.4 19.4 20.0 22.2 25.6 28.6 30.1 34.7 37.8 70.0 

32 25.8 21.2 18.4 15.9 15.3 15.3 16.8 18.8 22.6 24.5 30.0 32.6 35.9 80.0 

34 29.0 23.9 21.8 18.6 17.5 17.9 19.2 21.1 24.3 27.3 29.6 31.8 34.0 90.0 

36 32.2 27.4 24.5 21.8 20.4 21.1 22.5 23.3 25.7 27.0 29.1 31.1 33.0 100.0 

38 36.0 29.3 26.8 23.8 22.5 23.1 24.2 25.0 26.3 28.4 30.7 32.2 33.5 

40 40.2 33.5 29.4 26.2 25.2 25.7 26.4 25.4 26.1 27.4 28.3 29.4 29.7 

Table 24. Miss rate [%] for various thresholds for the KAIST dataset with triple fixed 
thresholds and without regions enlargement 

 
 42 44 46 48 50 52 54 56 58 60 62 64 66 Scale 

16 49.2 47.6 49.7 57.3 64.1 68.8 70.9 73.5 73.5 71.2 64.6 61.1 57.7 mm 0.0 

18 48.5 45.2 50.1 56.4 61.1 64.5 68.4 70.1 70.6 64.5 61.1 57.6 56.8 10.0 

20 46.2 45.9 50.0 53.5 57.1 62.2 65.0 67.3 63.9 60.9 57.4 56.6 55.7 20.0 

22 45.9 45.2 47.3 48.6 53.9 58.0 61.5 59.7 59.1 56.0 55.2 54.3 54.3 30.0 

24 46.1 43.9 44.1 46.2 50.5 54.8 54.3 55.1 54.5 53.9 53.0 53.0 54.9 40.0 

26 43.7 40.3 41.1 41.9 46.4 46.7 48.8 49.7 50.8 50.2 50.2 52.1 54.9 50.0 

28 41.5 38.2 37.1 38.6 39.9 42.2 44.4 46.8 47.6 47.9 49.8 52.6 57.1 60.0 

30 42.3 37.3 36.6 35.8 37.8 40.3 43.9 46.1 47.5 49.4 52.2 56.4 59.5 70.0 

32 41.4 36.9 34.4 33.6 36.1 39.3 42.7 44.9 47.7 50.2 54.4 57.3 61.4 80.0 

34 44.4 38.3 36.0 35.0 37.4 40.1 43.2 46.4 48.8 51.7 53.8 57.2 61.2 90.0 

36 45.7 39.8 36.5 36.3 37.2 39.3 42.6 45.2 47.2 48.7 51.8 55.5 58.7 100.0 

38 48.8 41.6 38.9 37.2 37.3 39.7 42.3 45.2 46.3 48.8 52.0 54.7 57.7 

40 52.4 45.0 40.7 37.6 37.5 38.8 41.7 42.1 43.6 45.8 47.7 50.1 52.6 
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Table 25. Miss rate [%] for various thresholds for the KAIST dataset with triple Otsu-based 
thresholds and with regions enlargement 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 Scale 

10 90.6 87.9 84.8 81.8 76.1 70.0 64.4 58.2 52.5 44.2 37.6 30.1 23.1 mm 0.0 

12 85.5 80.9 75.6 70.0 65.1 58.5 52.9 44.9 37.5 30.8 24.5 21.4 23.0 10.0 

14 75.4 68.6 62.6 56.2 50.5 42.9 36.3 29.8 22.9 20.2 20.9 23.1 26.8 20.0 

16 63.5 56.6 50.6 41.9 33.3 26.2 19.4 16.5 17.0 18.3 20.6 23.9 27.1 30.0 

18 51.7 41.1 33.5 26.3 20.4 16.6 14.8 14.7 16.9 20.4 23.3 27.3 29.9 40.0 

20 38.3 29.5 20.4 17.3 17.5 18.3 18.7 19.9 19.9 22.0 22.9 25.2 27.1 50.0 

22 28.0 21.8 17.7 15.5 13.7 15.0 17.4 18.8 19.7 20.4 20.6 21.3 21.4 60.0 

24 24.4 20.7 18.6 17.4 15.7 14.5 13.4 14.5 16.5 17.9 17.9 19.2 18.9 70.0 

26 29.9 25.5 21.9 19.7 18.6 18.5 17.1 16.1 14.8 16.7 19.5 22.4 23.3 80.0 

28 39.7 34.2 29.6 25.3 21.9 20.4 19.7 19.7 19.9 20.5 20.4 23.6 26.7 90.0 

30 49.7 44.1 39.1 33.6 28.5 24.1 21.9 21.4 21.7 23.7 26.1 27.8 29.1 100.0 

32 62.5 55.8 48.7 42.8 38.0 32.9 28.7 25.1 23.7 23.8 24.9 27.0 30.1 

34 69.3 65.0 61.3 55.3 48.9 43.6 38.7 33.6 29.4 26.1 24.5 25.1 26.4 

36 74.8 72.0 68.8 65.1 61.3 55.3 48.6 43.2 38.3 33.1 29.0 25.4 24.2 

Table 26. Miss rate [%] for various thresholds for the KAIST dataset with triple Otsu-based 
thresholds and without regions enlargement 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 Scale 

10 93.0 90.1 87.8 85.1 81.4 76.9 73.1 68.6 64.4 56.3 50.6 46.3 42.4 mm 0.0 

12 88.2 85.1 81.0 75.8 71.6 66.6 62.2 53.7 48.0 43.7 39.7 39.7 43.7 10.0 

14 82.2 76.0 70.5 64.7 60.0 51.0 45.3 40.7 37.5 37.7 41.6 45.5 48.4 20.0 

16 74.0 66.4 58.9 48.5 41.9 36.9 32.6 32.3 36.0 39.3 42.9 47.1 51.8 30.0 

18 63.0 51.1 44.0 36.9 30.6 29.2 31.9 35.3 37.8 41.5 45.8 50.1 54.1 40.0 

20 50.4 40.8 31.9 28.5 29.4 29.9 31.0 33.3 36.4 40.6 43.4 45.9 49.2 50.0 

22 42.9 35.0 31.5 29.2 27.5 28.6 30.6 32.9 34.8 36.3 39.2 41.6 43.6 60.0 

24 42.1 37.4 34.2 32.7 32.5 31.8 31.4 32.6 34.5 36.5 37.5 38.9 40.7 70.0 

26 50.5 44.4 39.9 37.5 36.1 36.5 38.7 38.5 39.0 40.7 43.0 45.3 46.4 80.0 

28 58.6 55.0 50.2 44.3 40.4 39.1 38.9 39.8 43.4 44.1 45.3 47.4 49.9 90.0 

30 68.9 63.3 58.5 54.9 50.1 45.0 42.0 41.6 42.5 44.8 50.0 51.9 54.4 100.0 

32 79.8 75.1 68.8 63.4 58.5 55.0 50.3 45.5 43.2 43.6 45.5 48.8 54.6 

34 87.9 83.3 79.7 75.2 69.0 63.6 58.8 55.2 50.7 46.1 44.7 46.3 49.1 

36 93.4 91.2 88.0 83.5 79.8 75.3 69.1 63.6 58.8 55.3 51.2 46.9 45.9 
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Table 27. Best experimental results (based on lowest MR value) obtained for the KAIST 
dataset with the proposed ROI generation with double and triple thresholding and with region 
enlargement  

  Double thresholding Triple thresholding 

F 
I 
X 
E 
D 

 32 40 34 40 32 32 32 32 

 44 48 44 50 50 52 48 54 

 [%] 26.5 27.2 27.5 27.8 15.3 15.3 15.9 16.8 

 14.7 13.3 15.4 12.5 19.1 18.2 19.9 17.6 

 [ms] 2 1 2 1 3 2 3 2 

O 
T 
S 
U 

 20 22 22 22 24 22 24 24 

 4 4 3 5 7 5 6 8 

 [%] 16.6 16.7 17.8 18 13.4 13.7 14.5 14.5 

 17.8 16.5 17.1 15.6 19.9 20.9 19.9 19.8 

 [ms] 3 2 2 2 3 4 3 3 

(*) The mean calculation time  was calculated for single-core of Intel Core i7-870 CPU 

As in the case of the CVC-14 dataset, the presented results of the selection of 
thresholds for the KAIST dataset (Figure 29 and Figure 30, Tables 19-26) show that the 
accuracy of the proposed ROI generation procedure with the double and triple 
thresholding is much higher than with the single thresholding. The difference in the 
achieved  values equals to 16.6% (between lowest achieved  values for single 
and triple thresholding). Therefore, no further analysis for this dataset will be performed 
for the single thresholding. 

It could be noticed also that the regions enlargement technique has the greatest 
impact on the  coefficient (similarly as in the case of CVC-14). With this technique 
it was possible to lower the  parameter, e.g. for double thresholding with fixed 
thresholds, the  value decreased from 46.2% to 26.5% for thresholds values  = 32 
and  = 44 (see Table 19 and Table 20), for triple thresholding with fixed thresholds, 
the  value decreased from 36.1% to 15.3% for thresholds values  = 32 and  = 50 
(see Table 23 and Table 24). A similar tendency can be observed in the case of Otsu-
based thresholds. 

The use of the triple thresholding technique also reduces  to some extent 
compared to the double thresholding. The difference is equal to 11.2% (change from 
26.5% to 15.3%) for fixed thresholds and equal to 3.2% (change from 16.6% to 13.4%) 
for Otsu-based thresholds. In addition, it is also important that the MR value is less 
dependent on the adjustment of the threshold values for the triple thresholding (see 
Tables 19-26). Moreover, the mean processing time MCT for the triple thresholding 
increases compared to the double thresholding, from approximately 2 ms to 4 ms, and 
the number of selected ROIs per frame also increases from approximately 15 to 20. 
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Contrary to the results obtained for the CVC-14 dataset, the experiments conducted 
for KAIST show that the use of Otsu-based thresholds approach is more advantageous 
than the fixed-based thresholds approach, e.g., the  value for Otsu-based thresholds 
is lower for triple thresholds and equals to 13.4% compared to 15.3% for fixed values of 
thresholds (see Table 27). 

Candidates selection 
In the next step, experiments were conducted to verify the impact of changes in the 

values of parameters of candidates selection process on the  and  metrics and to 
select sets of optimal parameters values for double and triple thresholding. 

The initial values of tested parameters were selected experimentally and their values 
are presented in Table 18. Results of the experiments are presented in Figure 31 and 
Figure 32. 
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Table 28. Selected parameters values for the KAIST dataset 

Name of the parameter Symbol Initial values balanced best accuracy 

     

     

     

- -      

- -      
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Table 29. Final experimental results obtained for the KAIST dataset (set 09) with proposed 
ROI generation with adjusted values of candidates selection parameters and with various 
maximum number of ROIs per one image  

  
Double   

thresholding 
Triple   

thresholding 

  balanced 
best 

accuracy 
balanced 

best 
accuracy 

F 
I 
X 
E 
D 

 32 32 32 32 

 44 44 50 50 

MR [%] 26.4 25.5 15.1 11.9 

PR 12.1 15.1 14.7 22.1 

MCT [ms] 2 3 3 4 

O 
T 
S 
U 

 20 20 24 24 

 4 4 7 7 

MR [%] 16.6 13.2 13.1 11.1 

PR 11.9 18.3 14.5 22 

MCT [ms] 2 3 3 3 

(*) The mean calculation time MCT was calculated for single-core of Intel Core i7-870 CPU 

The results presented in Figure 31Figure 32 and Figure 32 show similar trends as in 
the case of the CVC-14 dataset. Typically, lowering the  value by changing one of 
the parameters of candidates selection increases the values of  and PR parameters. 
However, only for the  parameter, reducing the maximum possible number of 

ROIs increases the  value. 
In few cases, the proposed parameter values were not perfectly matched, and the  

value can further be reduced. Therefore, two sets of parameters were proposed (as 
before for the CVC-14 dataset, based on the results presented in Figure 32). The first set 
of selected values (balanced) was selected to ensure both: high accuracy of pedestrian 
detection (low  parameter value) and high computational efficiency (low  
parameter value). The second set of parameters (best accuracy) was selected to achieve 
the lowest possible . 

After selecting new sets of candidate selection parameters (included in Table 28), 
experiments were repeated with the double and triple thresholding for the best threshold 
values only and are presented in Table 29. 

As a result, the value of the  decreases to 11.1% (for the Otsu-based triple 
thresholding with the best accuracy settings). The values of  do not increase for 
double thresholding or even decreased for triple thresholding compared to the results 
obtained for the initial settings of the candidates selection.  

The results does not improve significantly only for the double thresholding with 
fixed thresholds. In addition, triple thresholding generally gives better results than 
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double thresholding, e.g., the  difference is equal to 2.1% for Otsu-based thresholds 
(11.1% for the triple thresholding and 13.2% for the double thresholding) while 
achieving slightly worse , and . 

It can also be seen that in all performed experiments, the segmentation with Otsu-
based thresholds still achieves lower MR values than with the fixed thresholds, but the 
difference decreased to about 1%.  

In the next step, experiments were performed for all KAIST test sets (set 09, set 10, 
and set 11 described in Chapter 3.6). These experiments were conducted for the triple 
thresholding with Otsu-based thresholds. The results are presented in Table 30.  

The obtained results for subset 09 (campus) and subset 10 (roadway) are similar (  
= 11.1% and 11.0% for the best accuracy settings). Higher  values were obtained for 
the city center, where the thermal contrast is lower due to the urban surroundings. 
Therefore, additional tests were performed with a higher parameter value equal 

to 150. As a result,  significantly decreased for set 10 (to 2.8%) and set 11 (from 
31.1% to 12.7%) for the best accuracy settings. 

When evaluating the final results (for  = 150, presented in Table 30), the 

most balanced values of ,  and  are obtained using the triple thresholding 
technique with balanced settings. The algorithm for these settings is almost two times 
faster, MCT decreases from 20 ms to 11 ms (for average results), PR decreases from 
66.1 to 53.5, and the achieved parameter is equal to 10.1%, and is by 1.3% worse 
than the best result (compared to the triple thresholding with the best accuracy settings). 
Few illustrative images with marked ROIs obtained with the proposed ROI generation 
are shown in Figure 33. 

Table 30. Final experimental results obtained for all tests subsets: 9, 10, 11 from KAIST 
dataset with the proposed ROI generation procedure for various maximum number of ROIs per 
one image  

    

Set no. Parameter balanced best accuracy balanced best accuracy  

Set 
09 

(campus) 

MR [%] 13.1 11.1 12.8 11.1 

PR 14.5 22.0 14.7 22.0 

MCT [ms] 2 3 3 4 

Set 
10 

(roadway) 

MR [%] 14.5 11.0 4.1 2.8 

PR 30.0 52.8 46.4 72.4 

MCT [ms] 7 11 7 10 

Set 
11 

(downtown) 

MR [%] 37.1 31.1 13.5 12.7 

PR 32.6 56.2 99.5 103.9 

MCT [ms] 31 45 23 46 

Average 

MR [%] 21.5 17.7 10.1 8.8 

PR 25.7 43.6 53.5 66.1 

MCT [ms] 14 20 11 20 

(*) The mean calculation time MCT was calculated for single-core of Intel Core i7-870 CPU 
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3.9. Summary  
The results obtained for both datasets, namely CVC-14 and KAIST allow to 

conclude that it is possible to accurately and efficiently perform the ROI generation of 
thermal images at night through the thresholding process. The best results for the 
proposed ROI generation technique (based on  value) are presented in Table 31 (for 
KAIST dataset average results are presented, same as in Table 30). Very low MR values 
were achieved: 1.2% for the CVC-14 dataset and 8.8% for the KAIST dataset with high 
computational efficiency (varying from 44 to 347 FPS depending on the settings) 
obtained using only the CPU. 

Table 31. The best-obtained results for CVC-14 and KAIST datasets with the proposed ROI 
generation procedure 

   

Parameter balanced best accuracy balanced best accuracy 

MR [%] 2.2 1.2 10.1 8.8 

PR 48.5 85.1 53.5 66.1 

MCT [ms] 24 82 11 20 

FPS* 42 12 94 50 

FPS** 155 44 347 185 

(*) The  was calculated for single-core of Intel Core i7-870 CPU 
  (**) The  was calculated for four-core of Intel Core i7-870 CPU 

The proposed ROI generation technique produces a very low number of samples per 
frame compared to other techniques such as the sliding window. On the other hand, it is 
possible to further increase the accuracy (decrease the  parameter) of the algorithm, 
limiting the candidates selection even more (see Table 32). However, even more than 
thousands of samples per image are created in this case, which significantly slow down 
the processing of the entire pedestrian detection algorithm. With such a large number of 
samples for classification, the number of false detections increases at the object 
classification stage. As a result, the classification threshold will have to be heightened 
(to obtain a fixed  value), and in consequence, the  value will increase again. 
This issue is also considered in Chapter 6. 

The proposed ROI generation technique is the most accurate in night conditions. 
However, when thermal contrast is lower, the accuracy begins to decline, e.g., for the 
KAIST set 11 (downtown). 

The triple thresholding achieves slightly lower  values than the double 
thresholding at the cost of slightly less efficiency. The proposed sets of candidates 
selection (balanced and best accuracy) also significantly affect the ,  and  
parameters. The most reasonable results are achieved by the triple thresholding with 

 setting, offering a low  value (slightly higher compared to the best 
accuracy setting, Table 31) and very high computational efficiency (up to 347 FPS 
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using only CPU). However, the choice of the final settings depends on the type of 
application. 

Image segmentation with Otsu-based thresholds gives better results than fixed-based 
thresholds for the KAIST dataset but slightly worse for the CVC-14 base. However, the 
use of Otsu-based thresholds is a more reliable solution due to the possibility of 
adapting to changes in image dynamics. 

Table 32. The MR, PR and MCT values obtained with and without candidates selection for 
CVC-14 and KAIST datasets with balanced settings 

     

 
no candidates 

selection 
only initial 
selection 

with 
candidates 
selection 

no candidates 
selection 

only initial 
selection 

with 
candidates 
selection 

MR [%] 0.4 0.7 1.2 6.8 10.1 11,1 

PR 1608.4 668.2 85.1 604.9 359.2 22.0 

MCT [ms] 42 16 82 2 3 4 

(*) The mean calculation time MCT was calculated for single-core of Intel Core i7-870 CPU 

The experiments also show that some of the candidates selection parameters 
(similarity coefficient, skew threshold, minimum and maximum height-to-width ratios) 
are independent from the datasets and camera sensor. Other parameters should be 
calibrated to the vision system used. 

The proposed parameter of a maximum number of ROIs per one image  also 

significantly affects the operation of the proposed ROI generation algorithm. From the 
plots of the value of the parameter  presented in Figure 27 and Figure 32, it 

follow that increasing this parameter above the value of 50 would not result in a 
significant decrease in the  value. However, changes of other parameters values 
(especially for the best accuracy) resulted in a significant increase in the average 
number of samples per image (  value). It resulted in more frequent using of proposed 
additional constraints for individual image frame (as presented in Section 3.7). 

Therefore, the technique of limiting of the number of ROIs per frame (if needed) 
should be used with the high  value to prevent the entire pedestrian detection 

algorithm from slowing down too much (by limiting the  value and consequently the 
classification time).  
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4. Adjustment of segmented ROI in thermal night-vision 
A quality of the prepared ROIs is very important and significantly affects the 

effectiveness of classification. All the advanced segmentation techniques, besides the 
simplest one, i.e., the sliding window technique, match the ROIs to the outer pedestrian 
edges in the image. The image is divided into areas regarding the edges of objects. This 
means that pedestrians are very closely matched to the ROIs. However, many problems 
could arise during segmentation of thermal images, i.e., the uneven level of the 
observed temperature of one pedestrian and the temporary loss of thermal contrast 
between the pedestrian and the surroundings.  

Inaccurate matching the edges of ROI to the outer edges of the pedestrian may lead 
to cases of not a whole pedestrian covered with the ROI. Such too small ROIs may be 
rejected by the classifier. This will finally increase the number of falsely negative 
results.  

 
 

Although the proposed ROI generation method (presented in previous Chapter 3) 
could be very fast, accurate, and producing a low number of false candidates, it was 
noticed that it sometimes produces ROIs that not including the whole pedestrian. 
Examples of such ROIs are presented in Figure 34. In these cases, not all body parts of 
the pedestrians are included in the ROI, whilst primarily the contour edges allow the 
classifier to determine the shape of a pedestrian. This is especially important in thermal 
imaging, where the images have few details, and the textures are very poor.  

To solve this problem, it was proposed to adjust the segmented ROIs with a scale 
factor  before the object classification stage. This is done by taking larger area from 
the image, not just by resizing previously segmented ROI (as presented in Figure 35). 

Assuming an original -th pedestrian candidate obtained with the ROI generation 
process and described by ( ), where  are the coordinates of the top left 
corner of -th ROI and  are its width and height respectively, the new coordinates 
of the rescaled ROI (by  scale factor) are calculated as follows: 

  (37) 

  (38) 

  (39) 

  (40) 
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As a result, instead of the pedestrian candidate with ( ) coordinates, the 
area of pedestrian candidate with the new coordinates ( ) is 

taken from the input image. The proposed idea is depicted in Figure 35.  

 

-
 

It is important to emphasize that the proposed ROI enlargement will not significantly 
affect the computational performance of the detection process because before the object 
classification stage, all ROIs are then resized to the same classifier input resolution. In 
addition, the number of ROIs that will be classified does not change. 

The impact of the proposed method on the performance of the detection process has 
been tested. The proposed method increases the accuracy of the overall pedestrian 
detection procedure with little impact on computational performance. The detailed 
results are presented in Chapter 6, along with the experiments on the proposed 
pedestrian detection procedure. 
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5. Tuning of the object classification process  
This chapter presents an experimental evaluation of object classification algorithms 

and their tuning using the proposed universal performance index.  
As mentioned in Chapter 2.7, the baseline approach to object classification is to use a 

classifier with a fixed input resolution. Such fixed classifiers are often used without an 
adaptation to the resolution of the specific dataset or camera. This is unfortunately a 
common practice especially in cases, where the structure of a classifier is complicated, 
e.g., with a deep convolutional neural network (CNN). 

To obtain the best results at the object classification stage, it is proposed to look for a 
compromise input resolution with a proposed universal performance index. The speed 
of detection and the classification accuracy is taken into account. Using this index, it is 
possible to select the best input resolution for a particular classifier. The various 
classifiers were tested with and the results are presented in this chapter. In the 
experiments, three various baseline detectors were used, namely: histogram of oriented 
gradients (HOG) with the support vector machine (SVM) classifier, the aggregated 
channel feature (ACF) detector, and the deep convolutional neural network (CNN). 

5.1. Performance Index 
The classification stage is one of the crucial parts of the pedestrian detection 

procedure. Especially in real-time applications with embedded systems (e.g., in cars) 
this stage must be fast and accurate.  

In the literature concerning machine learning, it is possible to find many parameters 
describing the classifier effectiveness like sensitivity, miss rate, precision, F1 score, etc. 
[93]. In this case, the weighted arithmetic mean, is the proper approach. Consequently, 
after a series of many experiments, the concept of comparing the results was proposed 
by introducing a novel and universal performance index to search for a compromise 
image resolution between the speed and accuracy: 

 
, (41) 

where  weights the overall accuracy  and  weights the processing 

speed expressed in frames per second (FPS). By this means, it is possible to control the 
importance of accuracy versus FPS when designing the system. Using this performance 
index, it is possible to evaluate classifiers but also to select the best input resolution for 
a particular classifier taking the camera specificity (image resolution, camera type) into 
account. 

Very often, during the design process, it is assumed that the processing speed is 
measured in FPS. It is a very important factor in the real-time processing, especially in 
embedded systems. It characterizes the algorithms used, the computational platform, 
and finally the computation costs. 

However, direct use of the real FPS values makes the performance index related to 
the speed of the used computational platform (both hardware and software-wise). That 
is why, to omit this drawback, it was proposed to use the relative value , 
where  is the calculated value of FPS with a given resolution and  is the 
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maximum value of FPS achieved over all possible resolutions. Therefore, the practical 
version of the proposed normalized performance index formula is as follows: 

 
 (42) 

Thus, both  and  remain in the normalized  range 
Moreover, an additional modified version of the performance index is proposed. It 

will be used to evaluate the object classification stage itself (it is used in the 

experiments performed in this chapter). For this purpose, the relative value  is 
used instead of the real FPS parameter, where  is the mean calculation time of one 
test sample with a given resolution (the time for extraction of the features plus the 
classification time) and  is the minimum calculation time achieved over all possible 
resolutions. Therefore, the third version of the proposed normalized performance index 
dedicated to the assessment stage of the object classification formula is as follows: 

 
 (43) 

Thus, both  and  remain in the normalized  range. 
Figure 36 shows the resulting processing scheme with the proposed procedure of 

tuning the pedestrian classification process using the introduced performance index. 
There are the same processing stages in this scheme as those in Figure 1 and Figure 3, 
i.e., acquisition of the IR image at the input, ROI generation, and pedestrian 
classification. To tune the classifier and perform tests with various image resolutions, 
after generating the ROI, all generated objects are resized (by upscaling or downscaling 
them) to many various resolutions to match with the resolution of the classifier. The 
following resolutions were adapted starting with 64 128 down to 16 32 in 13 steps. 
Then, the classification quality is measured with the proposed performance index. 
Finally, the best resolution of the classifier is selected for the given input data. 
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5.2. Experiments with various input resolutions  
In order to find the best resolution of the classifier applying the proposed 

performance index, many experiments were performed with various scenarios and using 
various night-vision video datasets containing pedestrians. For this purpose, a special 
testbed was built (Figure 37). In the experiments, particularly an impact of the image 
resolution was checked, classifier type, and the resulting number of features on the 
classification accuracy and the computation time, using three detectors, namely: HOG + 
SVM, ACF, and the deep CNN model. 

 
 

5.2.1. Classifier training 
The numbers of training and test samples in the prepared night-vision datasets are 

quite varying, but statistically sufficient to conduct relevant experiments. All the 
prepared datasets are intentionally unbalanced as they have much more negative 
samples than the positive ones. This is because such relation is typical in reality for the 
target application (i.e., detection of pedestrians from a car at night, where images with 
no pedestrians occur much more often than those containing pedestrians). This however 
can lead to problems with the proper training of the classifier. If the classifier is trained 
to achieve the lowest possible learning error, this can lead to some reduction in the 
false-positive rate [94]. This is related to the greater number of negative slack variables 
that affect the objective function. To properly train the classifier with unbalanced data, 
in both data classes the samples should be weighed as follows 

  with , (44) 

where  determines the importance of the misclassification and is the Lagrange 
multiplier upper bound, used as the penalty parameter [94]. 
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5.2.2. Resolution of the classifier 
To perform experiments with different resolutions of the classifier, the initial images 

7 of them are presented in Figure 
38). From all of them, 13 sets of testing images were formed. These sets were prepared 
separately for individual datasets. 

As mentioned in Section 2.2.1, the CVC-09 dataset has the pedestrians captured with 

 pixels. To match these resolutions to the resolution of the classifiers, 
each image was scaled into the closest resolution of someone from the 13 listed above 
resolutions. Due to a relatively large span of the assumed classification resolutions, 
most of the images required slight scaling only. 

On the other hand, in the rest of the used datasets, the initial resolutions were fixed. 
In the NTPD dataset, 

ction 2.2). It was assumed that the images were 
scaled down only (scaling up brings no additional information, but complicates the 
calculation, thus it is unreasonable). Finally, 13 test sets were created from the NTPD 
dataset, while 5 test sets (numbered from 9 to 13) were prepared from each of the LSI 
FIR and OSU datasets. The bilinear interpolation technique was used. 

 

-  
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5.2.3. Configuration of HOG+SVM and ACF detectors 
While the resolution of images in different sets was varying, the rest of the 

parameters for the HOG feature extractor was kept constant. For all test sets the number 
of HOG orientation bins , and the cell size to 

 
The ACF detector was implemented similarly as presented in [32]. In the case of 

night-vision and gray-scale images (both passive and active ones) the ACF was adopted 
to have 8 feature channels: 6 HOG orientation bins, one normalized gradient magnitude, 
and one luminance channel (instead of three LUV color channels used in the source 
solution [ref]). The AdaBoost was used as a classifier in the ACF detector to train and 
combine 2048 depth-two trees. 

For both feature extractors, various resolutions strongly affect the number of 
features, which have to be analysed by the classifier (cf., Table 33). 

5.2.4. Configuration of AlexNet/CaffeNet CNN 
The original AlexNet/CaffeNet CNN architecture [78], [79] was prepared for images 

network is often used for classification purposes [25], [43].  
The CNNs are often used without an adaptation of the network input resolution to the 

resolution of the specific dataset or camera. Unfortunately, it is a common but 
ineffective practice, especially in the networks with a complicated structure. In the case 
of CNN, any change in the resolution of the CNN input layer causes the necessity of 
adaptation in the other layers. In consequence, it is complicated, and therefore designers 
try to omit it. 

In this case, the CNN architecture and input resolution was adapted manually to the 
  by reducing the 

size of the convolutional filters and the size of the maximum pooling. Then, this 
modified structure was used for all tested input resolutions (and only this value was 
changing in the structure of CNN) to ensure a fair comparison between carious 
resolutions. presents the details. 

According to the image resolution, the number of CNN parameters is very high and 
varies from ca. 7 million to more than 38 million (cf., Table 33). 

The datasets training sets for the training of CNNs were divided into two sets: 
training set (70% of images) and validation set (30% of images).  

Each time the network was trained in a maximum of 25 iterations. In addition, the 
network training was stopped if 10 subsequent iterations did not increase validation 
accuracy and in such case, the configuration of the best model was restored. It was the 
so-called early stopping process. 

Before each iteration, the training set was processed by slight random 
transformations to improve the generalization process. Such random transformations are 
often called in-place /on-the-fly data augmentation and are used to avoid network 
overfitting. Following techniques were used: zooming, in the range within which the 
random zooming to the images may be applied (value set to 0.1), and horizontal 
flipping. 
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Table 33. Number of features of HOG and ACF feature extractors, and number of parameters 
in the adapted CNN for various resolutions 

   

Input resolution 
[px]    

64 128 3780 4096 38 686 369 

56 120 3024 3360 32 657 057 

56 112 2808 3136 30 822 049 

56 104 2592 2912 28 987 041 

48 96 1980 2304 24 006 305 

40 88 1440 1760 19 549 857 

40 80 1296 1600 18 239 137 

40 72 1152 1440 16 928 417 

32 64 756 1024 13 520 545 

24 56 432 672 10 636 961 

24 48 360 576 9 850 529 

24 40 288 480 9 064 097 

16 32 108 256 7 229 089 

 

Table 34. Proposed CNN structure 

Layer 
number 

Layer type Elements 
Activation 
function 

Remarks 

1 convolutional 48, 7 7 filters ReLU 
maximum pooling, filter size 

2 2,  
local response normalization 

2 convolutional 
128, 5 5 
filters 

ReLU 
maximum pooling, filter size 

2 2,  
local response normalization 

 convolutional 
192, 3 3 
filters 

ReLU - 

 convolutional 
192, 3 3 
filters 

ReLU - 

 convolutional 
128, 3 3 
filters 

ReLU 
maximum pooling, filter size 

2 2 

6 
fully 

connected 
2048 neurons ReLU dropout ratio of 0.5 

7 
fully 

connected 
2048 neurons ReLU dropout ratio of 0.5 

8 output 1 neuron sigmoid pedestrian detection score 
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5.2.5. Classification accuracy and calculation time 
At the beginning of the tests, the CVC-09 dataset was used, because, it presents a 

very similar material to that occurring in real situations. The images were taken during 
the day and at night. The pedestrian regions have various sizes and therefore the 
analysed ROIs have various resolutions. In the next step, tests were performed with the 
NTPD, LSI FIR, and the OSU datasets. 

The obtained results are described in detail below, listed in Table 35 (which has the 
following columns: dataset, set name, frame size, classification accuracy, and 
calculation time). and are presented as graphs in Figure 39, Figure 40, and Figure 41. 
For each test set, the classification accuracy was calculated and the mean calculation 
time. 

The calculated classification accuracy values constitute points with equal false and 
miss detection probabilities. These points were computed with 180 test samples (90 
positive and 90 negative). 

The determined mean calculation times are composed of two phases: duration of the 
feature extraction process and time needed for the classification of a single test sample. 
The processing was implemented in the C# programming language with EmguCV v. 
2.4.10 environment [95] and LIBSVM [96] as the SVM library. The CNN was 
implemented with Keras and TensorFlow [97] using Python language. The training 
process was performed with the GPGPU support in the Google Colab cloud 
environment. The usage of GPU allows parallelization of processing and therefore 
substantial speed-up of processing, but it strongly depends on many factors like the 
algorithm and data structure, or architecture of the GPU. Therefore, in this dissertation, 
the computations during the classification stage were made with a single CPU core to 
make fair, hardware-independent comparisons between various methods and image 
resolutions. The following hardware was used: CPU Intel Core i7-6950X, 8 GB of 
RAM. 

5.2.6. Discussion of results 
The best classification accuracy was achieved with the CNN approach, but results 

obtained by other classifiers are also fully acceptable (cf., Table 35 and Figure 39, 
Figure 40 and Figure 41). In Table 35 the results of classification accuracy and 
calculation time are highlighted, which are the best in the set of various resolutions of a 
given dataset and those which are close to the maximum values but obtained with lower 
resolutions. It should be noticed, that in almost all cases (especially for the CNN) the 
results are good even for low-resolution input data. 

For example, for the resolution of 24 , the accuracy is almost as high (99.89%) as 
for the highest resolution among all datasets. Furthermore, for the CVC-09 daytime and 
NTPD datasets, the best accuracy is obta 72) than the 
maximum 64 128. The right columns of Figure 39, Figure 40, and Figure 41 show that 
for the CNN detector the graphs of the classification accuracy are almost flat. 
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The resolution of a sample strongly affects the processing time. It is true for all the 
classifiers. The CNN is the slowest solution (more than 20 times slower than the 
HOG+SVM or the ACF detector). For low-  it needs ca. 
5.5 ms and for high- , it needs ca. 25 ms to calculate the 
result. The ACF detector is slightly slower than HOG+SVM, but achieves higher 
accuracy, especially for the CVC-09 and NTPD datasets. For processing low-resolution 

, the HOG+SVM detector needs 0.08 ms only, while ACF needs 
0.21 ms. For high- ), the HOG+SVM needs about 
0.75 ms to calculate the result while the ACF needs 1.15 ms (cf., Table 35). 
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Table 35. Classification accuracy and calculation time for various resolutions and classifiers 

Dataset Set Frame Size 
[px] 

Classification accuracy (*) [%] Calculation time (**) [ms] 
HOG+SVM ACF CNN HOG+SVM ACF CNN 

CVC-09 day-
time subset 

1 64 128 92.9 98.12 99.56 0.74 1.17 24.41 
2 56 120 93.4 97.24 99.20 0.59 0.99 20.79 
3 56 112 93.5 96.83 99.38 0.57 0.93 19.70 
4 56 104 93.7 96.72 99.32 0.52 0.85 18.48 
5 48 96 93.6 96.88 99.12 0.49 0.79 15.53 
6 40 88 94.2 96.55 99.24 0.34 0.59 13.05 
7 40 80 94.0 96.43 99.21 0.30 0.51 12.32 
8 40 72 93.8 96.18 99.34 0.27 0.45 11.35 
9 32 64 93.8 95.83 98.83 0.21 0.40 9.25 
10 24 56 93.1 94.34 98.92 0.15 0.32 7.71 
11 24 48 92.9 94.48 98.75 0.13 0.28 7.39 
12 24 40 92.3 93.89 98.93 0.11 0.26 6.83 
13 16 32 90.7 91.83 98.34 0.08 0.23 5.23 

CVC-09 night-
time subset 

1 64 128 96.6 98.53 98.28 0.73 1.15 24.60 
2 56 120 95.5 97.77 98.71 0.59 0.95 20.62 
3 56 112 95.3 97.75 98.07 0.56 0.93 19.63 
4 56 104 95.5 97.50 98.61 0.55 0.84 18.54 
5 48 96 94.8 97.14 98.43 0.40 0.79 15.54 
6 40 88 94.7 96.67 98.31 0.36 0.59 12.97 
7 40 80 94.4 96.72 98.26 0.29 0.52 12.26 
8 40 72 94.2 96.48 98.59 0.27 0.45 11.25 
9 32 64 93.3 96.34 98.14 0.21 0.39 9.34 
10 24 56 93.2 95.38 98.42 0.14 0.30 7.72 
11 24 48 92.5 94.64 98.15 0.13 0.29 7.42 
12 24 40 92.2 93.82 98.48 0.11 0.25 6.88 
13 16 32 89.4 91.67 97.85 0.08 0.23 5.46 

NTPD 

1 64 128 98.94 98.69 99.23 0.76 1.14 27.37 
2 56 120 98.78 98.70 99.16 0.60 0.98 20.53 
3 56 112 98.61 98.71 99.14 0.55 0.89 19.70 
4 56 104 98.56 98.74 98.98 0.55 0.84 18.46 
5 48 96 98.57 98.85 98.99 0.43 0.79 15.55 
6 40 88 98.74 99.03 98.99 0.34 0.61 12.99 
7 40 80 98.91 99.03 98.96 0.31 0.52 12.29 
8 40 72 98.78 98.98 99.26 0.28 0.44 11.32 
9 32 64 98.34 98.61 98.92 0.22 0.39 9.58 
10 24 56 97.77 98.02 98.61 0.16 0.32 7.70 
11 24 48 97.65 97.43 98.81 0.18 0.29 7.50 
12 24 40 97.25 97.21 98.94 0.14 0.23 6.93 
13 16 32 95.02 94.26 98.48 0.09 0.21 5.50 

LSI FIR 

9 32 64 98.74 99.33 99.47 0.22 0.37 9.50 
10 24 56 99.01 98.96 99.33 0.19 0.35 7.75 
11 24 48 98.72 98.82 99.33 0.17 0.29 7.44 
12 24 40 98.31 98.64 99.45 0.13 0.27 6.87 
13 16 32 96.58 97.04 99.41 0.10 0.23 5.48 

OSU 

9 32 64 99.79 99.87 99.77 0.22 0.40 9.24 
10 24 56 99.58 99.90 99.93 0.19 0.32 7.69 
11 24 48 99.65 99.31 99.96 0.18 0.31 7.45 
12 24 40 99.27 98.83 99.89 0.13 0.25 6.86 
13 16 32 95.03 97.81 98.87 0.09 0.24 5.53 

(*) The classification accuracy is a point on the DET curve with equal false alarm miss 
probabilities. (**) The presented mean calculation time takes a sum of the process of features 
extraction and classification of one test sample mean times into account. 
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(a) (b) 

(c) (d) 

(e) (f) 
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(a) (b) 

(c) (d) 

(e) (f) 

-
- - -  

It could be noticed that in the case of the CVC-09 datasets, the obtained 
classification accuracy values are very good (above 90%) for all tested detectors (cf., 
Table 35, Figure 39, Figure 40 and Figure 41). It can also be seen that in the day-time 
subset of the CVC-09, high effectiveness can be achieved with the HOG+SVM detector 

-time subset of the CVC-09 
dataset, both detectors (i.e., SVM and ACF) achieve mild local maxima of the 

Table 35 and 
Figure 40). In the night-time sets the detectors achieve better results than those for the 
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day-time sets. It is due to the fact, that the thermal contrast at night is higher than on a 
day (cf., Figure 7). During the analysis of other datasets (i.e., NTPD, LS IFIR, and 
OSU) the values of the obtained detection effectiveness are better than those for the 
CVC-09 dataset (all of them are above 95%, in many cases larger than 98%). It is valid 
for all the resolutions (even very low) and all the classifiers. For the LSI FIR and OSU 

to the best ones but with approximately 20% shorter time than this for the initial 
resolution (cf., Figure 39). For the NTPD dataset, the classifier resolution can be 

the classification time is shorter by approximately 60% (cf., Figure 41). 

(a) (b) 

 
(c) 

 

Concluding, the classification effectiveness does not diminish significantly, even if 
the image resolution substantially decreases. The upper limit of the classifier error is 
related to the dimension of the features vector and the number of the training samples 
[94]. This relation is visible in the experiments (cf., Table 35, Figure 39, Figure 40, and 
Figure 41). Thus, it can be stated that, in general, the resolution of the classifier can be 
lower than the original resolution of the analyzed images. However, the best resolution 
should be chosen with the use of the proposed performance index. 
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5.3. Performance index results 
Using the results of experiments (Table 35) and equation (42), the performance 

indices  were calculated for all datasets, resolutions, and tested classifiers. The results 
are presented in Figure 42, where values in the x-axis refer to the testing sets presented 
in Table 35 (a continuous type of chart was used for better readability, despite the 
discontinuous x-axis domain). 

As already mentioned in Section 5.1, the weighted sum of the relative accuracy 
 and the inverse of the relative time  is the proper approach to define the 

appropriate performance index  for experiments with an object classification step. 
It could be noticed from the experiments that accuracy  in formula (20)) is greater 

than 90% for almost all configurations (cf., Table 35), whereas calculation time 

( ) varies in a large extent. Taking into account the type of the considered 
detection system, i.e., the pedestrian detection, thus, the variation of accuracy should 
have a significantly higher influence on the performance index than a variation of the 
mean calculation time. 

Therefore, three values of the weight  were proposed for the performance index, 

depending on the application. These values were selected experimentally and adjusted 
as closely as possible to the three proposed application scenarios. 

In the first scenario, where the processing time is assumed to be very important, e.g., 
in applications with low power processing units like vehicles, the weight should be set 
to ca.  (Figure 42a,b). In result, the performance index is higher for low 

object resolutions. 
In the second scenario, where the accuracy is assumed to be much more important, 

e.g., for offline processing of CCTV recordings or safety and security systems, the 
weight  should be set ca. to  (Figure 42e,f). In result, the performance 

index achieves the highest values for medium and high resolutions of the classifiers. 
In the third scenario, in case of the balanced configuration, still with high accuracy 

importance, and taking changes in the processing time into account, e.g., in automotive 
and real-time security systems, the weight  should be set ca. to  (Figure 

42c,d). 
Most curves in Figure 42 have global and local maxima. They were selected to state 

the best performance resolutions for the tested classifiers. The results are collected in 
Table 36. Besides the best resolution, differences in accuracies and processing times are 
presented (in percent), in relation to the classifier with the highest resolution. The 
difference in accuracy varies from -2.22% to 0.97%, as the reduction of the processing 
time reaches up to 74% (cf., Table 36). 

For some cases (as presented in Table 36), both the time reduction and the increase 
of the classification accuracy could be achieved (by means of the resolution reduction). 
Classifiers, which are tuned for the best performance index can process data up to four 
times faster than non-tuned classifiers with a slight decrease of the accuracy (merely by 
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There is no universal best resolution for all cases, but the best performances are 
Table 35, testing sets 

from No. 7 to 12). 
With the proposed performance index, the best input resolution can be effectively 

selected in a given dataset and classifier. With such newly reduced resolution, which is 
typically much lower than the initial resolution (that of the input images), the processing 
time needed for the classification could decrease by up to 74% (percentage difference 
referred to the classifier with the highest resolution) with insignificant influence on the 
accuracy. 

Moreover, the presented approach is quite general, i.e., it is applicable not only to the 
considered problem but also to the detection of any type of object with any classifier. 

Table 36. Configuration sets, classification accuracy and processing time for testing subsets 

Dataset 
Type of 

classifier 
Best performance 

resolution 
Difference in 

accuracy (*) [%] 

Processing 
time  

reduction (*) 
[%] 

LSIFIR 

SVM 24 56 +0.27  

ACF 24 40   

CNN 16 32   

OSU 

SVM 24 48   

ACF 24 56 +0.03  

CNN 24 40 +0.12  

NTPD 

SVM 40 72   

ACF 40 72 +0.29  

CNN 40 72 +0.03  

CVC-09 Day-
time 

SVM 32 64 +0.97  

ACF 48 96   

CNN 24 40   

CVC-09 
Night-time 

SVM 40 80   

ACF 32 64   

CNN 24 40 +0.21  

(*) Percentage difference referred to the classifier with the highest resolution. 
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6. Experiments with the proposed pedestrian detection procedure 
The general procedure of the proposed detection process with the introduced 

improvements is presented in the diagram in Figure 3. These improvements increase the 
computational efficiency and accuracy of pedestrian detection. More detailed diagrams 
presenting individual stages are presented in the previous chapters: the ROI generation 
procedure is presented in Figure 20 (in Chapter 3), the idea of ROI adjustment is 
presented in Figure 35 (Chapter 4), and the procedure of tuning the pedestrian 
classification with the proposed performance index is presented in Figure 36 (Chapter 
5). 

This chapter presents the experiments performed to evaluate the impact of the 
proposed improvements on the accuracy and computational efficiency of the entire 
pedestrian detection process.  

Two baseline, commonly used detectors were used for this task, namely the ACF 
[76] and CNN / AlexNet [78], [79] (details of settings and implementation are described 
in Sections 5.2.3 and 5.2.4). These detectors are well suited for carrying out a large 
number of experiments and are relatively easy to adapt to different input resolutions. 
The adaptation is much more difficult with complex CNNs, where changing the input 
resolution necessitates adjusting multiple layers of the network. It is difficult to compare 
the results of such differently modified CNNs with each other (for various input 
resolutions). In addition, the ACF and AlexNet detectors are well described in the 
literature, which allows the results to be compared.  

The tests were conducted on two datasets: CVC-14 and KAIST, which contain 
thermal images recorded at night with annotated test sequences that allow to perform 
experiments with pedestrian detection algorithm (both datasets are described in Section 
2.2). 

The first section of this chapter presents the description of the implementation of the 
proposed algorithm created by the author of this dissertation. The following sections 
present the initial experiments for the settings obtained with the proposed ROI 
generation technique, the experiments with selecting the classifier resolution with the 
proposed performance index, and experiments with adjustment of segmented ROIs. 
Then, the obtained results are compared with some other pedestrian detection methods, 
i.e. those based on segmentation with the sliding window and some selected from the 
literature, in which similar detectors were used, i.e., ACF and CNN/AlexNet. 
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6.1. Implementation 
For the experiments, the proposed pedestrian detection algorithm was implemented 

along with the tools that enabled the assessment of the proposed improvements. The 
implementation was made in C# in the Visual Studio environment. The current 
implementation uses the multicore CPU and can run in a multi-threaded architecture (as 
presented in Figure 43). 

The software has an object-oriented, modular architecture that allows for easy 
attaching of new datasets, new ROI generation approaches, feature extractors, and a 
variety of classifiers. The software includes the main proposed pedestrian detection 
algorithm (divided into classes) and a demonstration application named 
ThermalPDdemo (see Figure 44). This application is built as a WindowsForm 
application and enables to: 

  
  
 -  
  
  

The software is based on the few main abstract classes: TDataset, 
TFeatureExtractor, TClassifier, TSegmentator, which constitute an interface for the 
implementation of individual algorithms. In addition, the software has the class 
PedestrianDetectionModule, which is the main module for functions used inside the 
pedestrian detection process. 

The general structure of implemented software (most important classes) is as 
follows: 

  
  
  

o  
o  

  
o -  
o  

  
o  
o  
o  

  
o  
o  
o  
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The software uses several external libraries, including EmguCV (C # version of 
OpenCV library), Keras, and TensorFlow (to support CNNs) [97]. Libraries are 
installed into a project via NuGet packages in Visual Studio (Project -> manage NuGet 
packages) [98]. The list of all NuGet packages used in the project is as follows: 

  
  
  
  
  
  
  

6.2. Experiments 
This section presents the experiments performed to verify the accuracy of the 

proposed pedestrian detection procedure. The following subsections include the initial 
experiments for the settings obtained with the proposed ROI generation technique, 
experiments with selecting the classifier resolution with the proposed performance 
index, and experiments with adjustment of segmented ROIs. 

6.2.1. Methodology 
The main metrics used in this chapter are ,  and , which are described in 

Section 3.8.1.  
The accuracy of the proposed pedestrian detection algorithm is assessed based on the 

relation of  to . These metrics are closely related to each other, as the  value 
decreases, the  value increases and vice versa. On the one hand, it is important that 
the  should be as small as possible to detect pedestrians with a high accuracy. On the 
other hand, it is also important that the  value should also be low to ensure proper 
operation of the system and to avoid frequent false detections. Presented  values in 
the experiments were achieved for the mean  value equal to 1. However, in the 
experiments also detection error trade-off (DET) curves (plots of MR values depending 
on the  values) will be presented. 

During experiments, it was noticed that for both the CVC-14 and the KAIST 
datasets, the pedestrians in the far distance from the camera were not always annotated 
by the authors of the datasets. The pedestrians that are visible from a long distance but 
not annotated become annotated on successive frames of the sequence as they were 
approaching the camera. However, the proposed pedestrian detection algorithm very 
often detected such not annotated pedestrians at long distances. Since pedestrians were 
not annotated, the software comparing results with the ground-truth description, 
classified the detected pedestrians as false-positives (but, in fact the pedestrians were 
detected correctly). As a result, the average number of  was even doubled (verified 
for the CVC-14 dataset and set 09 from the KAIST dataset), and it was necessary to 
increase the classification threshold to reduce the  value (to achieve a value equal 
to 1) at the expense of increasing the  value. 
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Therefore, two more precise objective metrics were proposed:  and  for 
pedestrians at distances up to 150 m and 75 m respectively.  

CVC-14 and KAIST datasets differ in resolution and in the field of view. For both of 
them, minimum pedestrian heights (in pixels in the image) have been estimated. These 
values  correspond to the boundary distances (150 m from the camera for  and 
75 m from the camera for ). The estimated values of minimum pedestrian 
heights are presented in Table 37. 

The  metric is used to limit detection of very distant pedestrians who often are 
not annotated and to avoid incorrectly increasing the  value. Moreover, considering 
that the resolutions offered by the thermal imaging cameras are relatively low (320 256 
for the KAIST dataset and 640 470 for the CVC-14 dataset), it makes no need to detect 
and classify pedestrians at very far distances. The sizes of such pedestrians in the image 
are very low, e.g., even less than 8 16 pixels. For such small resolutions, the correct 
classification is difficult even for a human.  

As a result, the annotated pedestrians outside the  metric range are also not 
included in the analysis. This metric achieves stable results and better reflects the 
overall performance of the tested detector. Therefore, subsequent tests of the pedestrian 
detection procedure with the proposed improvements were conducted in relation to the 

 and  metrics only. 
The  metric determines the accuracy of pedestrian detection close to the 

camera (up to 75 m). For this range, pedestrians may be on a collision course with a 
vehicle. Therefore, it is very important that the value of  should be as low as 
possible. 

Table 37. Minimum pedestrian heights (in pixels) estimated for the proposed metrics for 
KAIST and CVC-14 datasets  

   

Distance 
Minimum  

height 
(pixels) 

Included 
pedestrians  

(*) [%] 

Minimum  
height 

(pixels) 

Included 
pedestrians  

(*) [%] 

Far ( ) 50 80.3 20 76.9 

Near ( ) 100 37.7 40 35.4 

(*) Percentage value of annotated pedestrians included within the metric range 

As shown in Table 37, 80.3% of annotated pedestrians from the whole CVC-14 
dataset and 76.9% from the KAIST dataset are within the metric range of  (up to 
150 m). For the metric (up to 75 m), there are 37.4% of all annotated 
pedestrians included in the CVC-14 dataset and 35.4% in the KAIST dataset. 

6.2.2. Initial tests 
This section presents initial experiments with the proposed pedestrian detection 

procedure that were conducted on the CVC-14 and KAIST datasets. Tests were 
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performed with settings of the ROI generation process proposed in Chapter 3 and using 
two baseline object classifiers ACF and AlexNet / CNN. 

The tests for both detectors were performed for 32 64 input resolution. Initial and 
subsequent experiments for the KAIST dataset were conducted on a representative 09 
subset  (campus). The results are shown in Table 38. 

The lowest  values were achieved with the balanced settings and double 
thresholding for the CVC-14 dataset (  = 24.0%) and with balanced settings and 
triple thresholding for the KAIST dataset (  = 26.2%). 

In the case of the  parameter, the achieved values are even lower than for the 
parameter . It also confirms that the accuracy of pedestrian detection increases as 
the distance to the camera decreases. 

In most cases, the CNN and ACF detectors achieved similar results. The biggest 
difference was for the CVC-14 dataset with double thresholding and balanced settings 
(for ACF, the value of  was equal to 29.1%, for CNN the value of  was 
equal to 24.0%).  

Although the  values of the proposed ROI generation step were very low (see 
Section 3.9), at the object classification stage, the ACF and CNN detectors make 
additional errors. If in a hypothetical situation, a classifier could classify the samples 
without an error, the resulting  values would be very low, equal to those obtained 
after ROI generation stage (as presented in Chapter 3).  

The relationship between  and  parameters is crucial to the operation of the 
pedestrian detection system. The lower the value of the  parameter is required, the 
higher values of the ,  and .parameters, will be achieved. 

Table 38. ,  and  values obtained after the initial pedestrian detection 
experiments with CVC-14 and KAIST datasets 

   Double thresholding   Triple thresholding  

Dataset Parameter 
balanced best accuracy balanced best accuracy 

ACF CNN ACF CNN ACF CNN ACF CNN 

C 
V 
C 
- 
1 
4 

 [%] 29.1 24.0 31.8 31.2 34.2 31.2 32.2 41.5 

 [%] 17.1 17.9 18.1 20.3 23.5 18.9 20.2 30.3 

FPS* 27.0 1.3 17.3 0.8 17.7 0.8 9.4 0.5 

FPS** 91.0 4.5 59.6 2.3 60.4 2.3 32.1 1.5 

K 
A 
I 
S 
T 

 [%] 30.9 28.4 31.1 31.7 27.5 26.2 31.5 31.4 

 [%] 28.1 23.9 23.9 23.6 20.1 18.9 23.1 24.6 

FPS* 37.3 3.5 32.1 2.3 32.1 2.8 29.0 1.8 

FPS** 143.3 11.5 123.3 7.8 118.7 9.5 112.1 5.8 

(*) The  was calculated for a single-core of Intel Core i7-870 CPU  
(**) The  was calculated for a four-core of Intel Core i7-870 CPU 
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In almost all cases, the achieved values are lower for balanced settings than 
for best accuracy settings. This is due fact that a much larger number of ROIs are 
obtained from the ROI generation stage with the best accuracy settings. For these 
settings, the ROI generation process is more accurate (lower  values are achieved, 
for the details see Section 3.9), but due to the larger number of generated ROIs, the 
classifier makes more mistakes (false-positives detections), which increases the  
value. 

6.2.3. Selection of classifier resolution 
In this section, the experiments were carried out with the proposed performance 

index  (according to the formula (42)) in order to select the best input resolutions for 
ACF and CNN detectors for the CVC-14 and KAIST datasets. The experiments were 
performed for various resolutions, and the performance index was calculated taking into 
account the effectiveness of the entire pedestrian detection algorithm (  parameter). 
Complementary research for the object classification stage itself and in a broader 
context (for both, NIR and FIR datasets) was carried out in the previous Chapter 5,. 

To perform experiments with various resolutions of the classifier, the ROIs were 
scaled into 13 

similarly as in Chapter 5).  
In both datasets, the pedestrians were captured with many different sizes. In 

consequence, the initial resolutions of ROIs varied a lot. To match these resolutions to 
the resolution of the classifiers, each ROI was scaled each time into the resolution of the 
tested classifier.  

For all of these 13 resolutions for the CVC-14 dataset, the ACF and CNN detectors 
were trained and full detection tests were performed. In case of the KAIST dataset, the 
detectors were trained only for the 5 lowest resolutions due to the low resolution of the 
dataset (320 256 pixels). Experiments for both datasets were performed with double 
thresholding and balanced settings. 

The results of the experiments for various input resolutions of tested detectors are 
presented in Table 39 and in Figure 45. Moreover, the set of finally selected resolutions 
based on the performance index for both datasets are presented in Table 40. 

In the case of the CVC-14 dataset, the lowest value was achieved for both 
detectors with a resolution of  (29.1% for ACF and 24% for CNN). Furthermore, 
the highest performance index value was also obtained for this resolution (cf. Figure 
45). As a 
efficiency of the pedestrian detection algorithm (the FPS parameter increased by 26.1% 
for the ACF detector and by 333.3% for the CNN) compared to the detector with the 
highest tested resolution. 

For the KAIST dataset, the lowest obtained values of  for the ACF and CNN 
detectors were similar: 29.6% for the ACF detector with a 
28.4% for the CNN detector with a 
the performance index parameter (see Figure 45) were obtained for much lower 
resolutions for  With these 
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resolutions, the effectiveness of the entire pedestrian detection algorithm increased by 
89.3% with the ACF detector and by 85.7% with the CNN detector compared to the 
classifier with the highest input resolution (see Table 40). 

The results show that the detectors achieve good detection accuracy in all cases even 
for relatively low resolutions, for which the computational efficiency is much higher. It 
can be seen that increasing the input resolution of the classifier no longer reduces the 

 (due to the limited resolution of the analyzed image and the pedestrians 
appearing on it), but it will significantly slow down the operation of the detection 
algorithm.  
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Table 39. ,  and  values achieved for various input resolutions with ACF and 
CNN detectors for CVC-14 and KAIST datasets 

   ACF CNN 

Dataset Set Resolution 
  

[%] 
  

[%] 
FPS* 

  
[%] 

  
[%] 

FPS* 

C 
V 
C 
- 
1 
4 

1 64 128 30.4 20.1 21.5 26.5 19.7 0.3 

2 56 120 31.6 20.8 22.4 26.3 19.6 0.5 

3 56 112 31.5 20.4 22.4 24.3 17.1 0.5 

4 56 104 31.0 20.9 23.6 23.7 17.6 0.5 

5 48 96 30.3 20.3 25.0 26.5 19.6 0.5 

6 40 88 31.2 19.9 26.0 26.7 19.1 0.8 

7 40 80 31.3 19.8 26.5 25.5 17.4 0.8 

8 40 72 30.6 18.3 26.5 26.8 19.4 1.0 

9 32 64 29.1 17.1 27.1 24.0 17.9 1.3 

10 24 56 29.7 17.4 28.3 26.3 19.7 1.8 

11 24 48 29.8 17.5 28.3 25.6 18.1 2.3 

12 24 40 30.4 19.9 30.4 26.7 19.7 2.8 

13 16 32 34.1 22.8 31.1 28.6 22.4 4.8 

K 
A 
I 
S 
T 

9 32 64 30.9 28.1 37.3 28.4 23.9 3.5 

10 24 56 29.6 25.9 41.8 30.3 27.7 5.0 

11 24 48 30.1 25.9 56.9 30.9 26.2 5.8 

12 24 40 30.4 25.3 56.9 28.9 23.6 6.5 

13 16 32 30.1 24.3 70.6 33.1 26.3 10.8 

(*) The  was calculated for a single-core of Intel Core i7-870 CPU 

Table 40. Best performance resolutions for ACF and CNN detectors obtained for CVC-14 and 
KAIST datasets 

Dataset 
Type of  

Classifier 
Best Performance  

Resolution 
Difference in  

 (*) [%] 
FPS Acceleration 

 (*) [%] 

CVC-14 
ACF 32 64 1.3 +26.1 

CNN 32 64 2.5 +333.3 

KAIST 
ACF 16 32 -0.8 +89.3 

CNN 24 40 +0.5 +85.7 

(*) Percentage difference referred to the classifier with the highest resolution. 
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6.2.4. Adjustment of ROI area 
In order to verify the impact of the proposed ROI adjustment method (presented in 

detail in Chapter 4) on the pedestrian detection accuracy, the experiments were carried 
out for the scale factor  changing from 1 to 1.4 with the step of 0.05. As a result, 36 
measurements of  were obtained for both datasets: CVC-14 and KAIST, 9 for 
each object classifier, namely ACF and deep CNN. Similar to the previous section, 
experiments for both datasets were performed with double thresholding and with 
balanced settings. 

The results are presented in Table 41 and Table 42. Figure 46 and Figure 47. It is 
noticeable that including the full pedestrian shape in the ROI is important for the object 
classification stage and for the best-chosen scale of ROI enlargement,  may be 
significantly reduced. In all cases (for both tested detectors and datasets), it was possible 
to find the minimum value of  for scale factor k greater than 1 (see Figure 46 and 
Figure 47). However, it was achieved for different values of k. 

. In case of CVC-14 dataset, the usage of scale factor with  = 1.2 decreased  

from 29.1% to 24.8% for the ACF classifier and with scale factor  = 1.3 applied for the 
deep CNN classifier the change of  was smaller, but still noticeable, i.e. from 
24.0% to 22.4%.  

In addition, it can be seen that the CNN-based classifier is less sensitive to the 
quality of the ROI: It offers more accurate results than the ACF classifier with the same 
ROIs. The  improvement with the scale factor applied is smaller for the CNN. For 
the ACF detector, any change in scale factor up to 1.4 results in an improvement in 

. For the CNN-based classifier except the scale factor equal 1.05, all other scales 
improve the detection accuracy. 

In the case of the KAIST dataset, a significant reduction in the value of  was 
obtained for the ACF detector (from 30.1% to 28.1%). However, in the case of the CNN 
detector, only a slight improvement was obtained (from 28.9% to 28.7%) for the scale 
factor value  = 1.05. Moreover, for all scale factor  values greater than 1, the ACF 
detector performed better (achieved lower values of ). In the case of the CNN 
detector, increasing the scale factor above 1.05 worsened the results (see Table 42 and 
Figure 47).  

In Figure 48 and Figure 49, the modified ROIs with various scale factors are 
presented. The pedestrian detection results obtained by the ACF classifier are denoted 
with bounding boxes: red boxes denote no detection, while green boxes denote proper 
detection. It can be noticed that there is no one optimal scale factor. The results strongly 
depend on how much the pedestrians were cropped in the initial ROIs. If the mismatch 
was small, also the small scale factor corrects the erroneous case. If the mismatch was 
high also the scale factor should be high. Additionally, it could be noticed that for a 
proper detection, the pedestrian does not have to fit into the ROI in total. However, if 
the pedestrian in the ROI is too small, it could not be detected (see the case in the third 
row and the last column in Figure 48). 

Additionally, for both classifiers, the impact of the ROI area enlargement on the 
performance of the entire pedestrian detection process was measured. The detection 
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time of pedestrians within one image frame increased on average by 0.5 ms with 
adjustment of segmented ROIs (on a typical PC, using the CPU only). In case of the 
ACF classifier, the detection time increased by approximately 1.4%, and in case of 
CNN classifier, the detection time increased by approximately 0.055%. 

Finally, it was proved that the proposed solution has a negligible impact on the 
efficiency of the detection process. This is mainly due to the fact that only the ROI area 
is increased, not the object classifier input resolution (as presented in Chapter 4, 
eventually for the classification stage each ROI is resized to one resolution).  

Table 41.  and  for various scale factor  with ACF and CNN detectors for CVC-
14 dataset 

 ACF CNN 

Scale  
factor  

  
[%] 

  
[%] 

  
[%] 

  
[%] 

1.4 26.8 19.2 23.2 14.6 

1.35 26.5 19.1 23.0 13.2 

1.3 26.4 18.2 22.4 13.4 

1.25 25.8 17.5 23.0 13.4 

1.2 24.8 15.9 22.9 14.7 

1.15 25.9 15.6 23.5 15.1 

1.1 26.5 15.4 23.5 15.5 

1.05 27.3 16.4 24.4 16.4 

1.0 29.1 17,1 24.0 17.9 

Table 42.  and  for various scale factor  with ACF and CNN detectors for 
KAIST dataset 

 ACF CNN 

Scale  
factor  

  
[%] 

  
[%] 

  
[%] 

  
[%] 

1.4 28.8 24.2 35.2 34.7 

1.35 28.8 24.3 34.9 34.5 

1.3 28.3 23.5 34.4 34.4 

1.25 28.1 23.4 32.8 31.2 

1.2 28.1 23.2 31.7 29.1 

1.15 28.8 23.9 31.1 27.8 

1.1 29.4 23.9 29.6 26.1 

1.05 30.1 24.5 28.7 21.1 

1.0 30.1 24.3 28.9 20.9 
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6.2.5. Final results 
This section presents extended experiments with the proposed pedestrian detection 

procedure that were conducted for finally selected settings: selected resolutions and 
values of scale factor  (obtained in the previous sections), and for all test sequences of 
KAIST dataset. In addition, the results of  and  are presented in relation to 
the FPPI. 

The tests were performed for double and triple thresholding for the balanced settings 
of the ROI generation process due to fact that worse results in average were obtained 
with the best accuracy settings in the initial experiments (presented in Table 38). The 
results of the experiments are presented in Table 43 (for the CVC-14 dataset) and in 
Table 44 (for the KAIST dataset). In addition, Figures 50-53 show graphs presenting the 
achieved  and  values in relation to the  for both datasets, and Figures 
54 and 55 show illustrative examples of detection results obtained with the proposed 
pedestrian detection approach. 

Table 43. Final values of ,  and  obtained for the CVC-14 dataset with ACF 
and CNN detectors 

Dataset Parameter 
Double thresholding Triple thresholding 

ACF CNN ACF CNN 

C 
V 
C 
- 
1 
4 

 [%] 24.8 22.4 28.9 28.2 

 [%] 15.9 13.4 17.3 15.9 

FPS* 27.0 1.3 17.7 0.8 

FPS** 91.0 4.5 60.4 2.3 

(*) The  was calculated for single-core of Intel Core i7-870 CPU 
(*) The  was calculated for four-core of Intel Core i7-870 CPU 

In the case of the CVC-14 dataset, the obtained results of  and  
improved compared to the results presented in Table 38. Detection with the double 
thresholding method still achieves better results than detection with the tripe 
thresholding (e.g., for double thresholding with an ACF detector, the value of = 
24.8%, and for the triple thresholding, the value of  = 28.9%). 

The graphs of the values of  and  in relation to the  presented in 
Figures 50 and 51 show that for lower  values the ACF detector achieves better 
results than the CNN detector (despite worse values achieved for  = 1). Moreover, 
for the ACF detector, both values of  and  decreases evenly with increased 
FPPI value. The situation is different in the case of the CNN detector: for very small 

 values, the  is lower than .  
For the KAIST dataset (set 09 - campus), the final obtained results are much better 

than the initial values (presented in table 38). For all settings, the values of  and 
 decrease (e.g., for double thresholding with ACF detector  decreases from 

30.9% to 28.1%, and for triple thresholding with ACF detector decreases from 
20.1% to 14). 
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The results presented in Table 44 show that for all subsets of the KAIST dataset, the 
detection with the triple thresholding reaches significantly lower values of  than 
for the double thresholding. 

It can also be seen that significantly better  values are achieved for the subset 
09 (campus) and the subset 10 (roadway) than for the subset 11 (downtown). This is 
because the detection for the subset 11 is more difficult due to a greater traffic and a 
lower thermal contrast. The averaged results for the entire KAIST dataset (weighted 
average depending on the number of image frames) are also presented in the bottom of 
Table 44. 

In most cases, the ACF detector achieves better values than the CNN detector. The 
graphs of  and  in relation to the  (presented in Figures 52 and 53) 
have similar waveforms for both detectors. However, for the CNN detector for low 

 values, the value of  is higher than the . 
For both datasets, the obtained values of  for the proposed pedestrian detection 

algorithm are very high using CPU processing only (up to 91 FPS with ACF detector 
for CVC-14 dataset and up to 261.2 FPS for the KAIST dataset). For the CNN detector, 
the obtained  values are much lower than for ACF (due to the complex structure of 
the detector), but still close to the real-time processing. 

Table 44. Final values of ,  and  obtained for the KAIST dataset (all test 
sequences) with ACF and CNN detectors 

Set no. Parameter 
Double thresholding Triple thresholding 

ACF CNN ACF CNN 

Set 
09 

(campus) 
 

 [%] 28.1 28.1 27.2 26.1 

 [%] 21.1 21.1 14.6 16.2 

FPS* 70.6 6.5 59.4 5.2 

FPS** 261.2 17.6 219.8 14.4 

Set 
10 

(roadway) 

 [%] 32.5 33.9 29.2 30.7 

 [%] 18.6 22.0 16.7 20.8 

FPS* 37.0 3.5 32.7 2.5 

FPS** 136.9 9.7 121.2 7.0 

Set 
11 

(downtown) 

 [%] 47.6 49.3 44.3 46.2 

 [%] 37.2 38.6 27.7 32.8 

FPS* 18.1 1.7 16.3 1.3 

FPS** 67.0 4.8 60.3 3.6 

Average 

 [%] 34.9 36.2 32.2 33.1 

 [%] 23.3 25.5 18.7 22.5 

FPS* 40.2 3.8 34.9 2.8 

FPS** 148.6 10.3 129.2 7.9 

(*) The  was calculated for single-core of Intel Core i7-870 CPU 
(*) The  was calculated for four-core of Intel Core i7-870 CPU  
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6.3. Comparison of results 
This section compares the results obtained in the previous section with the other 

techniques found in the literature for the CVC-14 and KAIST datasets. The primary 
objective of the comparison was to verify whether the pedestrian detection algorithm 
with the proposed improvements achieves better results than similar solutions (based on 
the same detectors) but without the introduced improvements. 

In the beginning, comparative tests were carried out on the pedestrian detection 
process with the proposed ROI generation technique and with the sliding window 
technique. The experiments were conducted for the same detectors: ACF and CNN, but 
with different ROI generation techniques. The results of the comparison are presented in 
Table 45. 

Due to the same implementation, parameters values of tested detectors, and the same 
methodology of evaluating the results, it was possible to objectively evaluate the 
accuracy and performance of the detectors with and without the proposed 
improvements. 

The results presented in Table 45 show that for both the CVC-14 dataset and the 
KAIST datasets, the values of the parameters  and  are much lower for 
pedestrian detection based on the proposed ROI generation technique (e.g.  = 
22.4% for the CVC-14 dataset and  = 32.2% for the KAIST dataset) than for the 
sliding window technique (  = 44.7% for the CVC-14 dataset and  = 45.8% 
for the KAIST dataset). 

Although in general, the sliding window technique has low  value at the ROI 
generation stage (close to 0, for the assessment of the ROI generation stage itself, as 
presented in Chapter 3), a very large number of ROIs obtained with this technique (on 
average for one image frame it is 6132 ROIs for the CVC-14 dataset and 6321 for 
KAIST dataset) causes that the classifier makes more false detections (false-positives). 
As a result, in order to obtain the desired  value, the detection threshold must be 
heightened, which causes a significant increase in the values of  and . 

Table 45. Comparison of pedestrian detection results based on the proposed ROI generation 
technique and the sliding window approach for CVC-14 and KAIST datasets 

Dataset ROI generation Detector 
[%] [%]   

 

C 
V 
C 
- 
1 
4 

Sliding window ACF 44.7 38.9 68.9 57.3 2.7 

Proposed ACF 24.8 15.9 49.7 42.2 91.0 

Sliding window CNN 45.1 36.7 73.1 72.8 0.2 

Proposed CNN 22.4 13.4 64.1 64.5 4.5 

K 
A 
I 
S 
T 

Sliding window ACF 45.8 42.4 72.4 66.2 4.1 

Proposed ACF 32.2 18.7 58.7 48.7 129.2 

Sliding window CNN 45.9 44.3 74.2 74.6 0.4 

Proposed CNN 33.1 22.5 61.6 62.2 7.9 
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In addition, the computational efficiency of the pedestrian detection is much higher 

(even faster by 125 FPS) based on the proposed ROI generation technique and reaches a 
value up to 130 FPS. For this reason, it can be concluded that the operation of the 
proposed pedestrian detection algorithm in the real-time is possible even in a vehicle or 
an embedded system, 

In the next step, pedestrian detection results were compared with similar solutions 
presented in the literature. As mentioned earlier, the purpose of the comparison was to 
verify whether the pedestrian detection algorithm with the proposed improvements 
achieves better results than the detection algorithm without the introduced 
improvements. Therefore only similar solutions were considered for the comparison 
(based on the same or similar detectors, i.e., ACF and AlexNet/CNN). 

In order to facilitate the comparison and to separate the parameters  and 
form the value of the  parameter an additional parameter, called log-

average miss rate (LAMR), was used. This parameter is an average of the measured 
miss rate in the range of  to  FPPI and is often used in the literature to compare 
the overall detector performance. Its value was calculated for the proposed algorithm 
and presented in Table 45. Finally, Table 46 and Table 47 present a comparison of 
results based on the  and  parameters for CVC-14 and KAIST datasets.  

For the comparison presented in Table 46 and Table 47, the results of similar 
implementations based on ACF detectors were selected. The comparison of the tested 
CNN / AlexNet detector was not made due to the lack of results for the CNN detectors 
based on this architecture for the KAIST and CVC-14 datasets. For thermal pedestrian 
detection based on CNN in the literature, the results are mainly presented for the 
VGG16 and ResNet-50 models [99], [100]. 

In the case of the KAIST dataset, the results presented in the literature refer to a 
reasonable test set proposed in [26]. For this set only pedestrians with a height greater 
than 55 pixels are taken into account. For this reason, the results from the literature 
(presented in Table 46) should be compared with the values of the parameter  
(for which the analysed pedestrians have height greater than 40 pixels) of proposed 
pedestrian detection procedure than with the value of  (for which the analysed 
pedestrians have height greater than 20 pixels). 

The results presented in the literature for the closest version of the tested ACF 
detector implemented in this study: "ACF + T" [23] are worse (  = 74.5%) than 
those obtained for the pedestrian detector with the proposed improvements ( = 
48.7%). The  value for the "ACF + T" detector is close to the values presented in 
this work for the tested detector based on the sliding window technique (  = 
72.4%, cf. results presented in Table 45). 

The remaining compared implementations achieve lower  values (cf. Table 46) 
but have different improvements in the object classification step. These include 
multispectral pedestrian detection (mainly RGB + thermal), which significantly 
improves the accuracy of pedestrian detection [99], [100]. However, also in this case the 
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achieved  value of ACF detector with proposed ROI generation technique is 
lower or comparable to these multispectral solutions (cf. Table 46). 

Table 46. Comparison of results with similar detectors for KAIST dataset (night-time test set) 

Reference Pedestrian detector 
(  / ) 

 

this work Proposed ROI / ACF (58.7 / 48.7) 129.2 (CPU) 

this work Proposed ROI / CNN (60.6 / 61.2) 7.9 (CPU) 

[26] ACF+T 74.5 N.A. 

[26] ACF+T+TM+TO 64.9 N.A. 

[26] ACF+T+THOG 63.9 N.A. 

[101] ACF-RGBT+THOG 61.5 N.A. 

[102] ACF 56.2 0.4 (CPU) 

[39] Multispectral ACF 48.2 N.A. 

(*) N.A.  not available 

Table 47. Comparison of results with similar detectors for CVC-14 dataset (night-time test set) 

Reference Pedestrian detector 
(  / ) 

 

this work Proposed ROI / ACF (49.7 / 42.2) 91.0 (CPU) 

this work Proposed ROI / CNN (64.1 / 64.5) 4.5 (CPU) 

[39] Multispectral ACF 65.4 N.A. 

[103] 
Multispectral ACF  
(reimplementation) 

48.2 N.A. 

(*) N.A.  not available 

The computational efficiency of the pedestrian detection with the proposed ROI 
generation technique is much higher than presented in [102] for the ACF detector (the 
only cited paper with information about the computational efficiency), which is only 0.4 

. This value is also lower than the tested implementation of the detector based on the 
sliding window technique (4.1 , cf. Table 45), which is probably due to the 
multispectral detection approach and the higher input resolution of the ACF detector. 

In the case of the CVC-14 dataset, the comparison of the achieved  values for 
both detectors was possible only with solutions based on multispectral imaging (RGB + 
thermal). As mentioned before, these solutions achieve lower  values than 
solutions based on a single input source. However, the achieved results for proposed 
detector are better (  = 49.7% for the ACF detector) than for the Multispectral 
ACF [39] (  = 65.4%) or close to results presented in [103] (  = 48.2%). For 
the compared detectors, it was not possible to obtain information about computational 
efficiency from the papers [39], [103]. 
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Concluding, the obtained detection accuracy for the ACF detector is comparable to 
multispectral detectors (see Table 46 and Table 47). Further reduction of the  
value could be possible by improving object detection stage by: additional data 
augmentation, multispectral classification, additional tracking step, using better 
detectors, e.g., Checkerboards [77] or more complex CNN models such as VGG16 or 
ResNet-50 [99], [100]. However, the main aim in this chapter was to verify the 
usefulness of the proposed improvements, and that was possible with the tested ACF 
and AlexNet / CNN detectors (for the reasons described at the beginning of this 
chapter). 
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7. Multi-spectral imaging for CCTV operators 

In this chapter, an additional option of multi-spectral imaging for CCTV operators is 
presented. At the beginning of this chapter, a method of creating multi-spectral images 
is described. Then the experiments with groups of observers are presented, performed to 
test the efficiency of the proposed multi-spectral imaging. 

7.1. Multi-spectral imaging 
According to observations following from Figure 56, to facilitate analysis of CCTV 

images at night by humans (for example, by CCTV operators), it is proposed to use the 
multi-spectral image quality, which is obtained by merging the conventional camera 
image with its thermal camera image counterpart [104]. Both cameras should operate in 
parallel and observe the same scene. A similar idea was already proposed by Flir 
company as the so- -
measurement cameras [105]. 

Due to a low number of other but important details in IR images (Figure 56b), for 
manual scene analysis by e.g. the CCTV operators, more convenient are the multi-
spectral images (Figure 56c), which are obtained by merging conventional images with 
their IR counterparts.  

Indeed such important details, e.g. road lines, posts and signs, lights of upcoming 
cars, etc., are altogether much better visible by humans in Figure 56c than in Figure 56a 
or Figure 56b, separately. 

   

   

a) b) c) 

-  

The proposed multi-spectral option for the CCTV visualization (see Figure 57) is 
realized as follows: first, the thermal image is upsized to the resolution of the 
conventional image (as typically IR cameras offer lower resolutions as the visible light 
cameras), then the conventional image is taken as a background for the final multi-
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spectral image. After that, all high luminance pixels in the thermal image (those 
exceeding a certain threshold) replace the corresponding background pixels, but only if 
their luminances are higher than in the conventional image. 

7.2. Experiments 
To study the effectiveness of the multi-spectral perception by humans, experiments 

with a group of observers were performed. The observers had to count pedestrians in 
images of three types: conventional, thermal, and multi-spectral. Additionally, they 
should estimate the number of pedestrians located on the roadway. The first task was 
proposed to evaluate the precision and speed of pedestrian detection using the analysed 
image types, while the second task aimed to check the ability of correct environmental 
location of the detected pedestrians. 

A testing set consisted of 11 different mon
each scene, images of three types were prepared: conventional, thermal, and multi-
spectral. Images of the first two types were taken directly from the USArmy Tetravision 
dataset [37]. Images of the third type were generated using the approach described 
above. Finally, the testing set was composed of 33 images. 

The experiment participants were divided into two groups. The first group consisted 
of 45 untrained persons (students), and the second group was constituted by 14 trained 
observers (most of them from the academic staff). The experiment was performed with 
specially prepared software and in similar lighting conditions. 

With three scenes (rows in Figure 57), visibility enhancement using the multi-
spectral option is illustrated. The first example shows a single pedestrian at a short 
distance from the camera. The second one presents pedestrians in a far distance (both 
are invisible with the standard camera). The last example depicts two pedestrians in the 
mid-range. Only one of them (the right one) is clearly visible in the standard camera 
image. 

The results of the performed experiments are presented in Table 48. It can be seen 
that for precise counting of pedestrians, thermal images are much better than 
conventional images (an improvement from 55 60% to ca. 98%) and even better than 
multi-spectral images. However, the precise localization of pedestrians (in this case of 
those present in the road) is the best using the proposed multi-spectral image quality (an 
improvement from ca. 53% to ca. 87%). 

The performed experiments with observers (presented in Table 48) show that the 
proposed option of multi-spectral imaging (obtained by merging conventional and 
thermal camera images) effectively improves the manual CCTV scene analysis at night, 
shortens reactions and supports faster identification of objects. 
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Table 48. Influence of type of night-vision imaging on precision and speed of analysis of 
monitoring situations  

Analysis 
Description  
of the result 

Conventional  
images 

Thermal  
images 

Multi-spectral  
images 

1 2 1 2 1 2 

General pedestrian  
counting 

correct answers  55.2% 58.2% 98.1% 98.3% 89.9% 91.2% 

mean time  
of counting  

2.6 s 2.0 s 2.1 s 1.7 s 2.4 s 2.1 s 

Pedestrian counting 
 on the roadway 

correct answers  52.3% 53.0% 68.7% 71.6% 80.5% 87.3% 

1  Results obtained with untrained observers. 
2  Results obtained with trained observers. 

 

 

 

 

a) b) c) 

-
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8. Conclusions 
In this dissertation, issues concerning night-vision pedestrian detection were 

considered. The author proposed effective solutions in three parts: first, a new ROI 
generation approach for the thermal images based on image thresholding, second, the 
technique of additional ROI adjustment (slightly enlarging the ROI area of the image) 
before the object classification stage, third, the procedure for tuning of the object 
classification process with the universal performance index. These solutions were 
designed to improve the accuracy of the pedestrian detection process and to achieve 
real-time performance in order to apply it in vehicles (such as ADAS equipped cars or 
autonomous vehicles). 

At the beginning, it was pointed out that it is potentially possible to use segmentation 
by thresholding on thermal images at night. For this reason, the new ROI generation 
method was proposed. This method performs image segmentation multiple times with 
different threshold values, then the set of ROIs is extended with new additional areas 
with the regions enlargement technique and finally filtered with the proposed set of 
candidates selection techniques.  

The results obtained for both public datasets: CVC-14 and KAIST allow to conclude 
that it is possible to accurately and efficiently perform the segmentation of thermal 
images at night through the thresholding. Very low  values were achieved: 1.2% for 
the CVC-14 dataset and 8.8% for the KAIST dataset, still offering very high 
computational efficiency (varying from 44 to 347  depending on the settings) 
obtained using only the CPU.  

Next, the technique of additional ROI adjustment was proposed to address the 
problem of  inaccurate ROI adjustment. Inaccurate matching the edges of ROI to the 
outer edges of the pedestrian may lead to cases of not a whole pedestrian covered with 
the ROI. Such too small ROIs may finally be rejected by the classifier. The results 
presented for this technique show that it was possible to value for tested datasets. For 
example, in the CVC-14 dataset, with the ACF classifier  decreased from 29.1% 
to 24.8%. The proposed solution has a negligible impact on the computational time of 
detection process mainly due to the fact that only the ROI area is increased, not the 
object classifier input resolution.   

In the third part of this dissertation, tuning of the object classification stage was 
considered. It was pointed out that the classifiers are often used without an adaptation of 
their input resolution to the resolution of the specific dataset or camera, especially in the 
solutions with a complicated structure like deep convolutional neural networks.  

The specialized procedure for tuning of the object classification stage was proposed. 
This procedure is based on a novel and universal performance index. Using this 
procedure, the author demonstrates that properly tuning of the object detection stage to 
the analysed image source, e.g., to the sensor type, camera perspective and the 
resolution of image is important and significantly affects the computational 
performance. The results of experiments show that the properly tuned detectors achieve 
good detection accuracy even for relatively low resolutions. It can be seen that 
increasing the input resolution of the classifier above a certain level no longer increases 



115 
 

the detection accuracy, but will significantly slow down the operation of detection 
algorithm. Generally, the presented approach can be applied not only to the considered 
problem but it can be adapted to detection of any type of object with any classifier. 

In the fourth part of this dissertation, the whole pedestrian detection algorithm based 
on the proposed improvements was tested. These tests were carried out for two object 
detectors, namely ACF and AlexNet/CNN. The comparison of the results was 
performed for the pedestrian detection based on the proposed ROI generation technique 
with detection based on the sliding window technique and with the results presented in 
the literature.  

It was proved that the pedestrian detection based on proposed ROI generation 
approach (based on thresholding of thermal images) is more accurate than detection 
based on the sliding window technique and achieves much higher computational 
performance (even several dozen times faster, with up to 130  for using CPU only). 
Furthermore, the comparison with similar object classification methods presented in the 
literature shows that the proposed approach achieves better results (i.e. lower LAMR 
value and much higher FPS). The obtained detection accuracy for the single ACF 
detector is comparable to much complicated multispectral detectors. 

The multi-spectral imaging as an option for CCTV operators was the last part of this 
dissertation. The multi-spectral images were obtained by merging the conventional 
camera image with its thermal camera image counterpart. The experiments performed 
with observers show that the multi-spectral imaging effectively improves the manual 
CCTV scene analysis at night, shortens reactions and supports faster identification of 
objects.  

Concluding, the author  proposed improvements of the night-vision pedestrian 
detection procedure increase the detection accuracy and computational efficiency. 
Therefore, the scientific aim of this Ph.D. dissertation has been accomplished and the 
scientific thesis -vision pedestrian detection 
based on proposed ROI generation by thresholding of thermal images and by properly 
tuned object classification procedure improves detection accuracy and significantly 
increases  has been proven.  

The proposed pedestrian detection system can be applied in various vehicles, driver 
assistance systems, and autonomous cars. In case of safety-critical applications, it is 
recommended to support the proposed system by some other detection systems 
operating with different sensors in order to increase the final reliability of the system. 
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