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Abstract

This thesis presents research on indoor global localization methods using planar segments and
various types of cameras as sensors. It debates various aspects of global localization, from planar
segment representation to inference algorithms, and presents a complete solution to the problem.
It is based on a series of articles published in renowned journals and presented at top-tier
conferences. The importance of the topic of this work stems from the fact that global localization
is essential in virtually every mobile autonomous system that operates for an extended period
of time. It facilitates solving problems such as kidnapped robot or loop closure detection, and
making it reliable and robust is of utmost importance. Therefore, this dissertation introduces a
novel global localization method that builds a probability density function (PDF) representing
the belief about the pose of an agent. The PDF is constructed from local, partial, and uncertain
cues from planar segment features. The maximum of this PDF defines the agent’s pose that
is expressed with respect to a global map of planar segments and has 6 degrees of freedom.
New map building and map management algorithms are proposed that enable construction
of the global map. The same algorithms are also used to build a local map that represents
the current scene and is matched against the global map. Two versions of the system are
presented and evaluated, one using an RGB-D camera, and one using a passive stereo camera.
As a results of using an RGB-D camera, the first version, PlaneLoc, is capable of accurately
reconstructing the geometry of the scene. It utilizes a pose retrieval algorithm that computes
the pose using equations of infinite planes supporting the segments. Initial match candidate
retrieval is done using color-histogram-based descriptors. However, the limited effective range of
RGB-D sensors restricts the observations to nearby objects, which greatly reduces the number
of geometric constraints that can be used to retrieve the camera pose. The second version,
PlaneLoc2, avoids this problem by using a passive stereo camera that has a larger effective range.
To exploit the full potential of passive stereo cameras, a novel planar segment detection method
was introduced. The method exploits a new deep neural network (DNN) architecture that is
inspired by the Plane R-CNN and uses cost volume to extract geometry information from stereo
data. Additionally, it uses a novel camera-agnostic representation of normal vectors to improve
geometry reconstruction performance and robustness to camera parameter changes. The DNN
also contains an appearance description branch that produces planar segment descriptors used to
retrieve match candidates from the global map. The match candidates are used by an improved
pose retrieval algorithm that accommodates the uncertainty of depth estimation, making it
suitable for stereo cameras. Moreover, the algorithm exploits more constraints by considering the
boundaries of planar segments. The methods are evaluated in real-world scenarios and prove their
usefulness in global localization. The detection network outperforms the existing state-of-the-
art methods in terms of detection and geometry reconstruction accuracy. The proposed learned
descriptors allow to fetch fewer match candidates than the ones based on color histograms.
As a result of many improvements and novel solutions, the PlaneLoc2 achieves better results
than other global localization systems, yielding a high pose recognition rate without incorrect
recognitions (false positives).



Streszczenie

Niniejsza rozprawa przedstawia badania nad metodami globalnej lokalizacji wewnątrz pomiesz-
czeń z wykorzystaniem segmentów płaszczyzn.Omówiono w niej poszczególne aspekty globalnej
lokalizacji, od reprezentacji segmentów płaszczyzn po algorytmy wnioskowania, oraz przedsta-
wiono kompletne rozwiązanie problemu. Opiera się ona na serii artykułów opublikowanych w
renomowanych czasopismach i zaprezentowanych na uznanych konferencjach międzynarodowych.
Znaczenie tematu pracy wynika z faktu, że globalna lokalizacja jest niezbędna w praktycznie
każdym mobilnym systemie autonomicznym, który jest zaprojektowany do działania przez dłuż-
szy czas. Ułatwia ona rozwiązywanie problemów takich jak kidnapped robot czy wykrywanie
zamknięcia pętli, a zapewnienie jej niezawodności jest niezwykle ważne. Z tego powodu w ni-
niejszej pracy przedstawiono nowatorską metodę globalnej lokalizacji, która buduje funkcję gę-
stości prawdopodobieństwa (ang. probability density function, PDF) reprezentującą przekonanie
o położeniu agenta. PDF jest konstruowana na podstawie lokalnych, częściowych i niepewnych
przesłanek pochodzących z wykrytych segmentów płaszczyzn. Maksimum tego PDF wyzna-
cza położenie agenta o 6 stopniach swobody, określone względem globalnej mapy segmentów
płaszczyzn. W rozprawie zaproponowano nowe algorytmy budowy i zarządzania mapą, które
umożliwiają budowę mapy globalnej. Te same algorytmy są również wykorzystywane do budo-
wania mapy lokalnej, która reprezentuje bieżącą scenę i jest dopasowywana do mapy globalnej.
W toku prac przedstawiono i zweryfikowano eksperymentalnie dwie wersje systemu, jedną wyko-
rzystującą kamerę RGB-D oraz drugą wykorzystującą pasywną kamerę stereo. Pierwsza wersja,
PlaneLoc, w wyniku zastosowania kamery RGB-D jest w stanie dokładnie zrekonstruować geo-
metrię sceny. Wykorzystuje ona algorytm obliczania pozy, który oblicza pozycję przy użyciu
równań nieskończonych płaszczyzn wspierających segmenty. Wstępne wyszukiwanie kandyda-
tów do dopasowania odbywa się z wykorzystaniem deskryptorów opartych na histogramach ko-
lorów. Jednakże niewielki efektywny zasięg czujników RGB-D ogranicza obserwacje do pobliskich
obiektów, co znacznie zmniejsza liczbę ograniczeń geometrycznych, które można wykorzystać do
obliczenia pozy kamery. Druga wersja, PlaneLoc2, rozwiązuje ten problem przez zastosowanie
pasywnej kamery stereo, która posiada większy efektywny zasięg. Aby w pełni wykorzystać
potencjał pasywnych kamer stereo, wprowadzono nowatorską metodę wykrywania segmentów
płaszczyzn. Metoda ta wykorzystuje nową architekturę głębokiej sieci neuronowej (ang. deep
neural network, DNN), inspirowaną siecią Plane R-CNN, która wykorzystuje cost volume do
rekonstrukcji informacji o geometrii z danych stereo. Dodatkowo, wykorzystuje ona nową, nieza-
leżną od parametrów kamery reprezentację wektorów normalnych w celu poprawy dokładności
rekonstrukcji geometrii. Sieć ta zawiera także gałąź opisu wyglądu, która tworzy deskryptory
segmentów płaszczyzn wykorzystywane do pobierania kandydatów do dopasowania z globalnej
mapy. Informacja o potencjalnych kandydatach do dopasowania jest następnie wykorzystywana
przez ulepszony algorytm obliczania pozy, który uwzględnia niepewność estymacji głębi, dzięki
czemu lepiej wykorzystuje potencjał kamer stereo. Co więcej, algorytm ten wykorzystuje więcej
ograniczeń poprzez uwzględnienie granic segmentów płaszczyzn. Metody te są ewaluowane w
rzeczywistych scenariuszach i potwierdzają swoją przydatność w globalnej lokalizacji. Sieć wy-
krywająca segmenty przewyższa istniejące metody state-of-the-art pod względem skuteczności
wykrywania i dokładności rekonstrukcji geometrii sceny. Zaproponowane deskryptory pozwalają
na pobranie mniejszej liczby kandydatów do dopasowania niż te oparte na histogramach kolorów.
Dzięki licznym usprawnieniom i oryginalnym rozwiązaniom PlaneLoc2 osiąga lepsze wyniki niż
inne systemy globalnej lokalizacji, uzyskując wysoki współczynnik rozpoznawania pozycji bez
błędnych rozpoznań (rozpoznań fałszywie dodatnich).
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Abbreviations

AHRS Attitude and Heading Reference System
BRIEF Binary Robust Independent Elementary Features
CAD Computer Aided Design
DNN Deep Neural Network
FAST Features from Accelerated Segment Test
GPS Global Positioning System
LiDAR Light Detection And Ranging
ORB Oriented FAST and Rotated BRIEF
PDF Probability Density Function
RANSAC RANdom SAmple Consensus
RMSE Root Mean Squared Error
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
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Notation

𝑥𝑡 agent state at time 𝑡

𝑧𝑡 measurement at time 𝑡

𝑢𝑡 control command at time 𝑡

K camera matrix with intrinsic parameters
R𝑙,𝑔 rotation matrix from the local to the global frame of reference
p𝑔 3-D point expressed in the global frame of reference
t𝑙,𝑔 translation vector from the local to the global frame of reference
q𝑙 2-D point expressed in the local camera frame of reference
0 vector with zeros

𝜋 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧,−𝑑)𝑇
plane equation with the normal vector equal to (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)

𝑇

and the distance to the origin equal to 𝑑

Please note that each publication included in this thesis has its own notation.
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Chapter 1

Introduction

1.1 Motivation

The enormous development in the area of assisting technologies created an ever-rising demand for
precise and robust localization systems. For example, a personal navigation system that can guide
a person to a specific room in a large public building or shopping mall has to know the position
of the user to compute navigational instructions. Moreover, virtually every autonomous agent
must be equipped with the ability to localize itself, whether it is a mobile robot for inspecting oil
rigs or an augmented reality system used for 3-D design [Cadena et al. 2016]. It is predicted that
the global share of assisting technologies will be rising [World Health Organization 2019] and
that new areas of applications will be available as the technology becomes more reliable. With
aging population, autonomous medical assistants will be at hand, as well as autonomous workers
in small- and medium-sized companies for performing tedious and repetitive tasks. However, all
these applications require a robust and reliable localization technology. It has to work despite
varying conditions, such as lighting, in all types of environments, but what is more important,
it has to be able to determine whether it has lost tracking and be able to recover from such
a situation. Unfortunately, contrary to the outdoor case, where satellite navigation systems
greatly alleviated the problem, localizing indoors still poses many challenges, especially with
determining the position with respect to a single global frame of reference.

Usually, the localization problem is solved in a recursive manner, where consecutive poses are
computed using the assumption that the previous ones are known with sufficient certainty. How-
ever, there are many cases where that assumption is not true. An example is the initialization,
when the starting pose is unknown, or an occluded sensor that prevents tracking from being
continued. This problem is known as the kidnapped robot problem, because it resembles the sit-
uation of a kidnapped and blindfolded person who has the blindfold removed at a different place
and has to determine their location [Thrun et al. 2005]. Moreover, it is not necessarily a special
state of the agent or some kind of malfunction that prevents it from knowing precisely where
it is. An example can be a mall with a large loop around its center part as in Fig. 1.1. When
moving around the center part, the agent estimates its location by integrating displacement over
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Introduction 2

time. However, with every displacement it adds a little error to the estimate, which accumulates
as the trajectory grows. When it returns to the initial location, the accumulated error can be
so large that the agent will not recognize this fact. In all these situations, it is crucial to embed
the ability to determine the agent pose with respect to the global map, which is known as global
localization [Bresson et al. 2017]. Global localization introduces a significant difficulty because
of a much larger search space than in the case of recursive localization. Moreover, the fact that
it was not well researched yet makes it even more challenging due to the scarce knowledge of the
underlying problem [Cadena et al. 2016].

Figure 1.1: An example mall environment where traversing a trajectory denoted by a dashed
line would cause error accumulation. To correct the error, loop closure using global localization

is necessary.

Following [Thrun et al. 2005], localization can be formulated in terms of probability. The goal is
to compute the probability distribution of the robot’s state 𝑥𝑡 at time 𝑡. In the case of recursive
localization, the state is assumed to be complete, that is, knowing 𝑥𝑡−1, no prior variables provide
additional information that would be helpful in estimating the next states. This property is also
called the Markov’s assumption. Additionally, all measurements z1:𝑡 and all control commands
u1:𝑡 up to time 𝑡 are known. Therefore, the distribution can be calculated as follows:

𝑝(𝑥𝑡|z1:𝑡,u1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|z1:𝑡−1,u1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥𝑡−1|z1:𝑡−1,u1:𝑡−1), (1.1)

where 𝜂 is a normalizing factor. Contrary to this, global localization assumes no knowledge of the
previous states, measurements, and control commands. In terms of probability it is equivalent
to finding the following distribution:

𝑝(𝑥𝑡|𝑧𝑡). (1.2)

Without the prior knowledge of the history of the robot’s activity, the problem is much more
difficult, because the whole space of possible solutions has to be considered. There are no initial
constraints as to where to begin the search (see Fig.1.2).

To be able to operate and respond to events in the environment, every autonomous agent has to
have means of perceiving it and therefore has to be equipped with sensors. A natural choice for
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Figure 1.2: A schematic illustration of the difference between recursive localization, where
solutions are sought only in the vicinity of the agent (upper part) and global localization,

where solutions are sought in the whole considered world (lower part).

many autonomous agents is a camera. Cameras provide rich information about the environment,
because they are able to capture many details, such as texture and shading. They also resemble
human perception, and in many cases it is possible to recover geometric information about the
scene in a way that humans do. However, recovering geometry is a challenging task, requiring
strong prior knowledge about visible objects and structures. Humans gain this knowledge by
years of observations and trials, and it is not easy to implement it in an artificial system. Recov-
ering geometry is greatly simplified in the case of RGB-D cameras, where, usually, an infrared
projector is used. The projector illuminates the scene with a structured light and by observing
deformations of this pattern, the sensor estimates the distances of particular points from the sen-
sor [Halmetschlager-Funek et al. 2019]. Although the geometry reconstructed with this technique
is usually more accurate than the one reconstructed using a monocular camera, it deteriorates
with increasing the distance up to the point where it is not reliable any more. This limits the
effective range of RGB-D sensors to 4 - 6 m indoors, depending on conditions [Halmetschlager-
Funek et al. 2019], and hinders their usage outdoors, where sunlight makes the projected pattern
less visible. The range limitation is especially troublesome in the localization task as only the
geometry of a nearby part of the scene can be precisely reconstructed, limiting the available
information and narrowing the observable context of the scene. Another option to facilitate the
recovery of scene geometry is to use a passive stereo camera. By observing an object in two
images and knowing the stereo setup geometry, one is able to determine the distance to that
object. However, it is not a trivial task, because of problems with matching the pixels in one
image to the corresponding pixels in the second image, i.e. the pixels being the observations
of the same physical point. Nonetheless, passive stereo cameras enable unambiguous geometry
reconstruction [Smolyanskiy et al. 2018], and are relatively affordable, compared to e.g. 3-D
LiDARs, which are at least an order of magnitude more expensive.



Introduction 4

1.2 Challenges

The methods of computer vision were, until recently, mainly applied to appearance-based global
localization problems, where output information is strictly topological, i.e. adjacency of consid-
ered views. Relatively few papers are tackling the problem of metric global localization, where
the pose is described by coordinates in a six-dimensional space, related to the six degrees of
freedom. The reason is the size of the space of possible solutions that needs to be searched.
Because it is infeasible to exhaustively search this space, it is necessary to perform matching of
observations. By matching two observations of the same physical object, one from the current
view and one from the map, it is possible to impose constraints on the pose of the agent and
reduce the search space. Usually, it is required to narrow down the search space to a single
point or rather its vicinity, because of the measurement noise that generates inaccuracies. Most
of the metric global localization systems use salient points, i.e. points corresponding to distinct
features in an image (i.e. corners, intersections), as observations. It is well motivated by the
ease of use of points in equations constraining the pose in the 𝑆𝐸(3) space:

K(R𝑙,𝑔p𝑔 + t𝑙,𝑔)× q𝑙 = 0, (1.3)

where K is a calibrated camera matrix, (R𝑙,𝑔, t𝑙,𝑔) is the rotation and translation that transforms
the 3-D point p𝑔 expressed in the global frame of reference to the local frame of reference, and
q𝑙 is a 2-D point in the current image. These equations are linear and computing the pose
by minimizing the quadratic error is straight-forward. Unfortunately, this approach has many
disadvantages. A typical scene contains hundreds of salient points, which creates a very large
number of possible matching combinations that cannot be exhaustively examined in a reasonable
time. Moreover, because they occupy a small patch of the image, it is difficult to describe
them to limit the number of potential match candidates. There are numerous papers on salient
points description methods, including classic ones, such as SIFT [Lowe 1999] or ORB [Rublee
et al. 2011], and learned ones, such as SuperPoint [DeTone et al. 2018] and DualRC-Net [Li
et al. 2020]. The learned ones usually improve discrimination by using a hierarchical approach,
where features are matched at different resolutions to include as much surrounding as possible.
Nonetheless, unambiguously describing a small patch in the image is a difficult problem, because
the appearance of a large surrounding changes with a view-point change. Moreover, salient
points are sparsely scattered in the space, so a map built using these features is not particularly
useful in other tasks, such as path planning, navigation, and visualization. A map composed
from salient points has many holes (see Fig. 1.3a), especially in the areas where there is no
texture, e.g. empty walls, so it is impossible to perform reliable collision detection required in
path planning and navigation [Cadena et al. 2016].
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a) b)

Figure 1.3: a) An example sparse salient point map from ORB-SLAM3 [Campos et al. 2021],
and b) an example planar segment map from PlaneLoc [Wietrzykowski and Skrzypczyński

2019].

1.3 Contribution

The aim of this thesis is to remove the above-mentioned shortcomings, by using more complex
reference objects for global localization. The author chose planar segments, because they are
abundant in man-made environments, and the pose constraints imposed by them are relatively
easy to express using equations. Since this work tackles the problem of indoor global localization,
it can be assumed that the environment is man-made and contains enough planes to perform
global localization. As proven in [Wietrzykowski and Skrzypczyński 2019; Wietrzykowski 2022],
planes supporting planar segments can be detected using RGB-D and passive stereo cameras
and used to constrain the 𝑆𝐸(3) pose. What is more important, the solution to this problem
can be found quickly, unambiguously, and using a minimal number of equations (it is enough to
use three matched planes of which no two are parallel). Planar segments have spatial dimensions
greater than zero, occupying a certain area, so they are easier to describe than points. One
can describe not only the surrounding of the segments, as in the case of points, but also the
appearance of the segment itself. Another advantage of planar segments is the fact that they are
less numerous in a typical scene than salient points. Having fewer objects to match, it is easier
to find correct associations, because of fewer potential combinations to examine. Other, more
complex objects, such as whole items or pieces of furniture, would be even better to describe, but
geometrical constrains imposed by them are more difficult to exploit and additional information,
such as CAD models, is necessary [Salas-Moreno et al. 2013]. Therefore, the author considers
planar segments as a good compromise between descriptiveness and ease of exploitation of the
geometric properties.

All the above-mentioned reasons induce that the problem of metric global localization in indoor
environments is important and planar segments detected using RGB-D or passive stereo cameras
are a promising choice for reference objects. Thus, the aim of this work is to research a novel
approach to the problem exploiting these ideas, and the main thesis is as follows: Local, partial,
and uncertain cues from planar segment features allow to build a probability density
function describing the global metric pose of an agent in a man-made environment.
Auxiliary theses can be formulated as follows:
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• By considering many small sets of local geometric features in kernel density estimation it
is possible to build a function with the maximum corresponding to the global pose of an
agent.

• Observations of planar segments in man-made environments enable to determine the pose
of an agent with six degrees of freedom with respect to a predefined map of planar segments.

• Deep neural network facilitates detection and description of planar segments using a passive
stereo camera.

This work improves upon the existing methods by proposing novel solutions to the problems
arising in the global localization pipeline that are crucial for the overall performance and relia-
bility. Proper tailoring of the algorithms used in consecutive steps helps to achieve good results,
therefore the contribution of this work can be summarized as follows:

• A framework for global localization and a probabilistic inference algorithm for reasoning
about the pose of an agent in 𝑆𝐸(3), expressed with 6 degrees of freedom [Wietrzykowski
and Skrzypczyński 2017]. The algorithm uses many weak and incomplete cues to build
a probability density function describing the whereabouts of the agent. The cues have
the form of minimal sets of matched observations of planar segments that enable pose
retrieval. As a result, it is possible to quickly generate many pose hypotheses and use
them in a Gaussian kernel representation of the PDF.

• A method for building a map of the environment that is composed of planar segments [Wi-
etrzykowski 2022]. The method properly handles new observations by inserting new ob-
jects, merging existing ones, and deleting incorrect ones. It is based on views and instead
of explicitly merging point clouds representing different observations it stores separate in-
formation about the observations from different viewpoints. This reduces computational
burden of the merging procedure and enables proper uncertainty propagation.

• A system for detecting planar segments using a stereo camera that precisely recovers ge-
ometric information required in the task of global localization [Wietrzykowski and Belter
2022]. The system utilizes the concept of DNN that has proven to be effective in this type
of tasks, where rich data is available but the structure of the underlying problem remains
unknown [Sünderhauf et al. 2018]. Due to the use of a camera-agnostic representation of
normal vectors and a segmentation method suitable for the employed DNN architecture,
it outperforms the state-of-the-art methods and achieves a sufficient accuracy for global
localization.

• A method for describing planar segments using a DNN [Wietrzykowski and Skrzypczyński
2021; Wietrzykowski 2022]. The descriptors reduce the computational complexity of match-
ing by reducing the number of potential candidates that need to be considered to find a
correct match. The method mostly exploits existing DNN layers, adding only a few to
process the existing latent representation and a few necessary during training.

• Datasets used to train and evaluate detection, geometry reconstruction, and localization
methods. The datasets are made publicly available to benefit the community and to en-
able verification of the presented results. The first dataset is PUT RGB-D/Workshop



Introduction 7

collected in a workshop at Poznan University of Technology that contains reference pose in-
formation and RGB-D images [Wietrzykowski and Skrzypczyński 2017]. The second one is
the synthetic SceneNet Stereo dataset that includes calibrated stereo images, along with
reference poses, reference depth maps, and reference surface normal vectors [Wietrzykowski
and Belter 2022]. The last one is the real-world TERRINet dataset that also contains
calibrated stereo images, reference poses, and reference depth maps [Wietrzykowski and
Belter 2022].

1.4 Publications guide

This thesis is based on a series of publications that present incremental development of a global
localization method. The relations between articles and how they constitute a complete research
project are described in this section. The dissertation includes articles presented at top-tier
conferences, such as the International Conference on Intelligent Robots and Systems (IROS) and
the European Conference on Mobile Robots (ECMR), and published in renowned journals, such
as Robotics and Autonomous Systems (RAS) and Robotics and Automation Letters (RA-L).

1. Jan Wietrzykowski, “On the Representation of Planes for Efficient Graph-

based SLAM with High-level Features”, Journal of Automation Mobile Robotics

and Intelligent Systems,10 (3), 2016, pp. 3-11. [Wietrzykowski 2016]

As mentioned in Sec 1.1, to recover a pose in the global localization task, one has to know the
positions of objects or features of reference. In the case of 3-D points it is straightforward by
providing X, Y, and Z coordinates. However, in the case of planes it is more difficult, because
the representation using a normal vector and a distance to the origin 𝜋 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧,−𝑑)𝑇 is not
minimal. This representation is the easiest to use in transformations and to impose geometric
constraints, therefore it not being minimal is a major drawback, because a minimal represen-
tation is crucial when optimization is performed, as in localization and SLAM systems. The
work in [Wietrzykowski 2016] tests suitability of two plane representations to provide geometric
constraints to localize an agent. The first one is based on 𝑆𝐸(3) pose with a covariance matrix
describing constrained and not constrained directions, and the second one is based on a quater-
nion that encodes all values of 𝜋, proposed by Kaess [Kaess 2015]. The work focuses on a pose
and feature optimization backend using the g2o framework [Kümmerle et al. 2011]. To test the
representations in the context of optimization, a number of scenarios are simulated with varying
strength of constraints in certain directions and the accuracy of localization is measured. The
results suggest that minimal representation performs better when constraints are weak, which
is a common situation in real-world applications. This representation is used in [Wietrzykowski
and Skrzypczyński 2017] to assess whether two planes are similar and could be observations of
the same planar segment. However, as explained in [Wietrzykowski and Skrzypczyński 2019],
the major drawback of this representation is the different nature of rotational (normal vector)
and translational parameters, which makes the comparison unstable in the presence of noise. For
this reason, the comparison of two planar segments in [Wietrzykowski and Skrzypczyński 2019;
Wietrzykowski 2022] is done using point-to-plane metrics.
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2. Jan Wietrzykowski, Piotr Skrzypczyński, “A Probabilistic Framework for

Global Localization with Segmented Planes”, European Conference on Mobile

Robotics, pp. 1-6, 2017. [Wietrzykowski and Skrzypczyński 2017]

The quaternion-based minimal representation evaluated in [Wietrzykowski 2016] is used in [Wi-
etrzykowski and Skrzypczyński 2017], where a probabilistic framework for global localization was
introduced. This article proposes a novel global pose inference method that uses many small
sets of geometric features to build a PDF in the 6-D space of the agent pose. This idea is at the
core of the global localization method presented in this thesis and is a basis for the localization
algorithms presented in [Wietrzykowski and Skrzypczyński 2019; Wietrzykowski 2022].

The observation that planar segments are less numerous than keypoint features, recognized also
in [Fernandez-Moral et al. 2013; Taguchi et al. 2013], enables a different approach to reference ob-
ject matching. If there are fewer potential matches, it is possible to consider more combinations.
In this article, all plausible triplets of potential matches are examined. As a result, the space of
possible solutions is exhaustively searched and the pose supported by the majority of weighted
hypotheses is found. To evaluate the performance of pose recognition, the ElasticFusion [Whelan
et al. 2015] is used to build point clouds representing the local scene view (local map) and the
global map. The point clouds are then segmented using supervoxel clustering and the resultant
planar patches are merged into larger segments. The performance is measured using the rate
of correct and incorrect pose recognitions. It is worth noting that including even one incorrect
pose recognition can significantly deteriorate the pose estimate in SLAM and navigation tasks.
Therefore, it is of utmost importance to eliminate such recognitions. The data used during evalu-
ation was collected in a workshop and made publicly available as the PUT RGB-D/Workshop

dataset. It includes reference information about poses captured using OptiTrack motion capture
system. With proper parametrization, the proposed method achieves a high recognition rate
without incorrect recognitions.

The contribution of the author is the main idea, implementation, and preparation of Sec. I, III,
IV, V, VI of the article.

3. Jan Wietrzykowski, Piotr Skrzypczyński, “PlaneLoc: Probabilistic global lo-

calization in 3-D using local planar features”, Robotics and Autonomous Systems,

vol. 113, pp. 160-173, 2019. [Wietrzykowski and Skrzypczyński 2019]

The method from [Wietrzykowski and Skrzypczyński 2017] is extended in [Wietrzykowski and
Skrzypczyński 2019] by adding a completely new component responsible for building and man-
aging the map of planar segments, making it a standalone system that does not rely on the
ElasticFusion [Whelan et al. 2015]. The local and the global map can therefore be built us-
ing the same pipeline, enabling extension into a SLAM system. The article also introduces a
new measure of distance between planar segments that avoids the problems with the different
nature of rotational and translational plane parameters. The solution is compared with the
state-of-the-art salient point relocalization mechanism from the ORB-SLAM2 [Mur-Artal and
Tardós 2017], based on the DBoW2 algorithm [Gálvez-López and Tardós 2012]. While the ORB-
SLAM2 yields slightly higher recognition rates, they are concentrated in short fragments of the
trajectory, where enough salient features are visible. PlaneLoc, on the other hand, is able to
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localize even when only textureless walls are visible. However, during this research, three main
problems were identified that had to be addressed before further development:

• Planar segments further away than 4 m are not used due to the limited range of the RGB-D
sensor. This leads to discarding a large amount of valuable information about the scene.
The problem is addressed in [Wietrzykowski and Belter 2022] by introducing a DNN-based
segment detector that exploits a passive stereo camera.

• The appearance descriptors of planar segments used to retrieve candidate matches are
based on color histograms and do not discriminate well between segments. This forces
considering more potential matches in order to include the correct ones. A new description
method is proposed in [Wietrzykowski and Skrzypczyński 2021] to mitigate this issue.

• The pose retrieval algorithm assumes that planar segments are infinite planes and produces
implausible solutions that have to be verified. A pose retrieval procedure that avoids this
problem is described in [Wietrzykowski 2022].

The contribution of the author is the main idea, implementation, and preparation of Sec. 2, 3,
4, and 5 of the manuscript.

4. Jan Wietrzykowski, Dominik Belter, “Stereo Plane R-CNN: Accurate scene ge-

ometry reconstruction using planar segments and camera-agnostic representa-

tion”, IEEE Robotics and Automation Letters, vol. 7(2), pp. 4345-4352, 2022. [Wi-

etrzykowski and Belter 2022]

To extend the range of sensing and include distant planar segments, a different sensor had to be
used and a new detection method had to be developed. RGB-D sensors have a limited effective
range of 4-6 m [Halmetschlager-Funek et al. 2019] and it is not possible to accurately recover
the geometry of planar segments that are outside of this range. Therefore, the author resorted
to a passive stereo camera that has a larger effective range and is not as expensive as a LiDAR.
Unfortunately, the stereo-estimated depth has many holes and fluctuations that make geometric
scene segmentation impossible using the methods of [Wietrzykowski and Skrzypczyński 2017,
2019]. The holes and fluctuations also make classic plane fitting using RANSAC unreliable. The
above-mentioned problems are addressed in [Wietrzykowski and Belter 2022] by introducing a
DNN that detects planar segments in a single image and recovers their geometry using a cost
volume created from a pair of stereo images. The DNN was trained on the synthetic SceneNet

Stereo dataset introduced in this article, and tested on the real-world TERRINet dataset
collected during the TERRINet project1.

The detection module of the DNN is based on the Plane R-CNN [Liu et al. 2019] system that in
turn uses the Mask R-CNN architecture [He et al. 2017]. By improving the plane segmentation
procedure to suit the Mask R-CNN architecture, the proposed method achieves better detection
results. The detection performance is evaluated using a geometry-based measure to mitigate
the ambiguity of scene segmentation into planar segments. The overall score for the proposed
method is better than for the baseline, with superior performance observed for almost all segment

1This dataset was collected during the author’s visit to LAAS-CNRS in Touluse, within the TERRINet project
funded by EU H2020 under GA No.730994
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sizes. An improved geometry reconstruction performance is achieved by proposing a novel DNN
architecture based on a cost volume and by using a camera-agnostic representation of normal
vectors. The use of a cost volume for normal estimation was inspired by the work of [Kusupati
et al. 2020]. To assess the quality of geometry reconstruction, two measures are used. The
first one is the root mean square (RMS) error of the depth reconstruction accuracy, and the
second one is the RMS error of the normal vector reconstruction accuracy. In the case of both
measures, Stereo Plane R-CNN performs better, with results of normal vectors estimation being
better by a large margin than all other solutions. The improved results for both detection and
geometry reconstruction enable using a passive stereo camera for the task of global localization
in [Wietrzykowski 2022].

The contribution of the author is the main idea, DNN architecture, implementation, and prepa-
ration of Sec. I, II, III, IV, V of the article.

5. Jan Wietrzykowski, Piotr Skrzypczyński, “On the descriptive power of Li-

DAR intensity images for segment-based loop closing in 3-D SLAM” IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 79-85,

2021. [Wietrzykowski and Skrzypczyński 2021]

The problem of appearance descriptors is addressed in [Wietrzykowski and Skrzypczyński 2021],
where a method of training a DNN to produce descriptors of segments is proposed. This work
extends the SegMap [Dubé et al. 2020] system by adding an appearance descriptor that is used
during global localization. The SegMap is a LiDAR SLAM system that uses segments of point
clouds as reference objects, therefore adding an appearance descriptor is not trivial. The author
utilizes intensity readouts from the LiDAR and treats them as an image in order to add ap-
pearance information. Despite a different source of data than with camera-based indoor global
localization, the goal is the same, i.e. to describe a segment that occupies a fragment of the
image and then to find the corresponding segment in the global map. The source of data and
the architecture of the DNN can vary, depending on the specific problem, but the vital part
is the supervision of learning. When descriptors are being learned, they have no target values.
The only information is whether two segment observations should be close to each other in the
descriptor space (they are observations of the same segment) or distant from each other (they
are observations of different segments). This problem can be solved in many ways, i.e. using
triplet loss [Schroff et al. 2015], but most of them require a large database of samples to enable
large batches with multiple samples of the same segment and/or computationally expensive data
mining. A different approach to training the descriptors of geometry, used also in [Dubé et al.
2020], is to build a DNN that will classify the segment observations, such that each segment
will be assigned to a separate class. Then, every observation of the same segment should be
classified as the same class. To obtain a descriptor from such an architecture, a latent repre-
sentation can be extracted from the DNN, as in Fig. 1.4. A similar architecture and the same
supervision method is also used in [Wietrzykowski 2022]. To evaluate the performance of the
descriptors, a rank is computed for each observation. The rank is the number of neighbors from
the database of all descriptors that have to be fetched to get a correct match. The proposed
solution achieves lower ranks for all test sequences and all sizes of segments than the baseline
solution of SegMap. For bigger segments, in more than 50% of cases only one nearest neighbor is
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needed to get a correct match. Moreover, the influence on global localization is evaluated using
the same metric as in [Wietrzykowski and Skrzypczyński 2017, 2019; Wietrzykowski 2022], i.e.
the correct recognition rate. Using an improved matching procedure, new descriptors achieve
better results for sequences gathered using the Ouster OS1-64 sensor. The results for sequences
where the Velodyne HDL-64 sensor is used are inconclusive, which can be attributed to a poor
quality of the intensity images.

The contribution of the author is the main idea, DNN architecture, implementation, and prepa-
ration of Sec. I, III, IV, V of the article.

Figure 1.4: Architecture of the DNN describing segments in [Wietrzykowski and
Skrzypczyński 2021]. The part in the right dashed rectangle is used to supervise learning

and is later removed.

6. Jan Wietrzykowski, “PlaneLoc2: Indoor global localization using planar seg-

ments and passive stereo camera”, IEEE Access, 2022. [Wietrzykowski 2022]

The work presented in [Wietrzykowski 2022] addresses the issues identified during development
of the PlaneLoc [Wietrzykowski and Skrzypczyński 2019] and introduces the PlaneLoc2. It draws
inspiration from [Wietrzykowski and Skrzypczyński 2021] to propose an improved appearance
descriptor and a method to train the DNN that produces this descriptor. The appearance
descriptor module is added to a properly adapted DNN from [Wietrzykowski and Skrzypczyński
2021], and together they constitute a detection module. Moreover, a new view-based map and
a new view-based pose retrieval procedure are introduced that better suit the characteristics of
a passive stereo camera. The solution is evaluated by comparing the correct pose recognition
rate with the state-of-the-art ORB-SLAM3 [Campos et al. 2021] and HLoc [Sarlin et al. 2019]
systems. Among the cases without incorrect recognitions, the PlaneLoc2 achieves the best results
and also does not produce any incorrect recognitions for all cases. Additionally, the appearance
descriptors are evaluated by comparing them to ones based on color histograms, used in the
PlaneLoc. The same as in [Wietrzykowski and Skrzypczyński 2021], ranks are computed for
segments of various sizes. For all sizes, the learned descriptor outperforms the hand-crafted one,
proving its suitability for global localization.

The PlaneLoc2 concludes the research presented in this dissertation and proves the main thesis,
along with the auxiliary theses. The article presents a complete global localization system that
can be used for other tasks, such as SLAM and navigation. The system uses planar segments as
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reference objects that are detected using a DNN. During pose inference, it considers many small
sets of matched segments to build a PDF that describes the 6-D pose of an agent.
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Abstract:
Despite the fact, that dense SLAM systems are ex-

tensively developed and are ge ng popular, feature-
based ones s ll have many advantages over them. One
of the most important ma ers in sparse systems are
features. The performance and robustness of a system
depends strictly on the quality of constraints imposed
by feature observa ons and reliable matching between
measurements and features. To improve those two as-
pects, higher-level features can be used, and planes are
a natural choice. We tackle the problem of plugging
planes into the g o op miza on framework with two
dis nct plane representa ons: one based on a properly
stated SE(3) parametriza on and one based on a mini-
mal parametriza on analogous to quaternions. Proposed
solu ons were implemented as extensions to the g o
framework and experiments that verify them were con-
ducted using simula on.We provide a comparison of per-
formance under various condi ons that emphasized dif-
ferences.

Keywords: SLAM, features, plane parametriza on,
graph-based op miza on

1. Introduc on
The simultaneous localization and mapping

(SLAM) problem has to be solved whenever a mobile
robot explores unknown environment. It can be a
scenario of exploring a disaster site or a previously
unvisited building. A variety of potential applications
fosters development of new SLAM solutions and
improvement of the existing ones. Particularly inter-
esting is the domain of 3D SLAM systems based on
affordable depth sensors, such as Kinect, because of
their high availability, low price and ability to provide
rich information about the environment [14]. Despite
the recent growth of the number of dense SLAM
systems, feature-based solutions still outperform
them with respect to the precision of camera motion
estimation and real-time performance [12]. The main
component in feature-based systems are sparse fea-
tures. Features have to provide enough information
to determine the sensor/robot position relatively to
an existing map. They have to be distinctive enough
to prevent wrong associations between the new
observations and the map. As the state estimation
techniques, either iltration-based, like EKF [19], or
optimization-based [11] are not suited for handling
incorrect feature associations, the features in 3D
SLAM have to be chosen carefully to ful ill those

requirements.
Until recent, most systems were based on photo-

metric point features, such as SURF [1] or ORB [15]
or their geometric counterparts extracted from point
clouds [14]. They are easy to compute and manage,
but constrains produced by them are often inaccurate
and they can be easily mismatched, which is a major
issue. It is caused by the fact that point features are
computed from a small local patch of the photomet-
ric or depth image, where the pixel values depend on
many factors, such as lighting, camera exposition pa-
rameters or the depth range. A solution to this prob-
lem is to use higher level geometric features, whose
positions relative to the sensor can be precisely de-
termined from more global data. It is expected that
features that describe spatially extended structures
of the scene will be more distinctive and repeatable
when re-observed by the sensor. A natural extension
topoint features are edgeorplane features. Theplanes
are particularly interesting, as they commonly exist in
man-made environments, such as building interiors,
and can be easily detected and isolated using a Kinect-
like depth sensor.Walls, ceiling and loor are examples
of large planar segments that can be used in localiza-
tion and mapping. Due to the relatively small number
of detected planes in a typical environment, they can
be also easily matched between consecutive frames in
the data stream.

Beside the issues related to the front-end part of
a modern, optimization-based SLAM system [2], that
deals with processing of themeasurements and deter-
mination of measurement-to-object associations, at-
tention has to be paid to the back-end. The back-end
handles an optimization process that inds the po-
sitions of robot and features that minimizes certain
criterion, given measurements and measurement-to-
object associations. Among many such systems, par-
ticularly interesting are the factor-graph-based li-
braries, because of their lexibility and intuitive prob-
lem formulation. Thus, in section 5 we propose an ex-
tension to the popular factor graph g o back-end sys-
tem [11] in the form of a new constraint edge and a
corresponding feature vertex. The extension enables
a fast and accurate optimization of pose-to-plane con-
straints by means of a minimal parametrization of the
planes. We also compare the new approach to a sim-
pli ied solution based on an overparametrized repre-
sentation using the standard g o edges and vertices.
This simpli ied solution is presented in section 4. We
show at irst that using the standard vertices and con-
straints available in g o is inef icient for planar fea-

3
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tures, and then we compare the two solutions pro-
posed in the paper by applying the Absolute Trajec-
tory Error (ATE) and Relative Pose Error (RPE) met-
rics [17], widely used in the SLAM research commu-
nity. As this is a preliminary work on SLAM based on
high level features, we focus on the optimization back-
end and conduct simulations using a simpli ied sys-
tem that lacks a real front-end for the extraction and
matching of planar features. Similarly to the approach
introduced in [3] we replace the front-end by a simu-
lation that allows us to control the uncertainty ofmea-
surements by adding Gaussian noise and to control
the number and location of features (i.e. planes in our
case) in the environment.

2. Related Work
Since the introduction of theKinect, that started an

era of cheap depth sensors, many 3D SLAM solutions
using depth and visual information emerged.

Pixel intensities and depth measurements are di-
rectly used in dense SLAMsystems, like the onebyKerl
et al. [10]. A motion between two consecutive frames
is estimatedbyminimizing a difference between apre-
dicted and an actual measurement in both, photomet-
ric and depth, domains. A large scale system, using a
stereo camera instead of a depth sensor, is presented
by Engel et al. [5]. A transformation between camera
pose at two different frames can be also computed us-
ing iterative closest point, as in [13], whereKinect sen-
sor is used to map and track dense surfaces. Another
approach is to extract point features and use a sparse
representation of measurements, as in the work by
Belter et al. [2].

One of the earliest attempts to use planes as fea-
tures was by Weingarten and Siegwart [19]. They
adopted SPmodel [4] to represent planes and har-
nessed Extended Kalman Filter (EKF) to update the
SPmap containing robot pose and feature locations.
The SPmodel (symmetries and perturbation model)
uses a probabilistic representation of the imprecision
in the location of features, and the theory of sym-
metries to represent the partiality of the uncertainty
due to the parametrization of the feature. Unfortu-
nately, the plane representation is overparametrized
and EKF-SLAM cannot exploit the sparsity of feature
observations, in contrast to our solution.

Salas-Moreno et al. [16] proposed a method to
densely map an environment with usage of bounded
planes and surfels. Planar regions are re ined and ex-
tended during camera’s movement and can serve as a
display for an augmented reality content.

A solution based on both, point and plane fea-
tures was presented by Taguchi et al. [18]. They use
a general form equation to parametrize planes, which
is a non-minimal representation, and a sparse linear
solver in the Gauss-Newton iterative optimization al-
gorithm. Error calculation between the estimated and
the measured plane is accomplished by means of ran-
dom sampling of the measurement points. A sparse
solver is also employed in the work by Kaess [8],
where a minimal representation of planes based on

quaternions was introduced. Optimization is done by
the iSAM algorithm [9].

A popular tool for graph-based optimization is the
g o framework, that outperformsmanyother systems,
including iSAM [11]. It is widely used in point-feature-
based SLAM systems, such as those by Mur-Artal et al.
[12] or Belter et al. [3]. Thus, the g o library was cho-
sen as the framework wewant to test for handling op-
timization of pose-to-plane constraints, and then ex-
tend by a new minimal representation of the planar
features.

3. Problem Formula on Using Graph
The part of the SLAM problem related to the back-

end operation is to ind the camera and feature posi-
tions that best it the collected observations. To solve
this problem ef iciently, a proper representation of the
constraints is needed. One of the possibilities is to
model the system as a factorized probabilistic equa-
tion:

𝑝(𝐱|𝐳) = 1
𝑍

∈
Ψ (𝐱 , 𝐳 ), (1)

where 𝐱 are random variables, 𝐳 are measurement
variables, that are observed, 𝑍 is a normalization con-
stant, 𝐹 is a set of factors,Ψ (𝐱 , 𝐳 ) is a value of a fac-
tor 𝑎, 𝐱 is a subset of random variables that the factor
𝑎 depends on, and 𝐳 is a subset of measurement vari-
ables that the factor 𝑎 depends on. Factor Ψ (𝐱 , 𝐳 )
is a function, usually based on the Gaussian distribu-
tion, thatmeasures how likely the state of variables 𝐱
explain measurements 𝐳 . Throughout this paper, we
use the following form of factors:

Ψ (𝐱 , 𝐳 ) = exp −1
2𝐞 (𝐱 , 𝐳 ) Ω 𝐞 (𝐱 , 𝐳 ) ,

(2)
where 𝐞 (𝐱 , 𝐳 ) is an error function and an informa-
tion matrix is denoted by Ω .

The error function returns a vector of differences
between measurement prediction 𝐡 (𝐱 ) based on
the state of variables 𝐱 and an actual measurement
𝐳 :

𝐞 (𝐱 , 𝐳 ) = 𝐡 (𝐱 ) ⊖ 𝐳 , (3)
where⊖ is an operator that is a generalization of the
subtraction operation, for example taking into account
rotation ambiguities, de ined depending on the repre-
sentation. Dimensionality of the error vector depends
on the type of measurement and its representation. In
the case ofminimal representationof planes it is 3, and
in the case of SE(3) it is 6.

The problem can be presented using a probabilis-
tic graphical model, as shown in Fig. 1. The robot and
feature positions are encoded by subsets of variables
organized in a proper representation, e.g. a transla-
tion vector and 3 imaginary components of an unit
quaternion for SE(3). If the position 𝑖 has SE(3) repre-
sentation, then the set 𝐱 contains 6 variables. There
is no difference between variables representing fea-
ture and robot positions, besides from their mean-
ing. Factor is dependent on all variables that repre-
sent the robot and feature positions connected to it.

4
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Fig. 1. Probabilis c graphical model represen ng the
SLAM op miza on problem. Variables encoding robot
posi ons are marked as white circles, variables
encoding feature posi ons are marked as gray circles,
factors are marked as black squares and subset of
variables that represent posi on 𝑖 is denoted by 𝐱

This form emphasizes the sparsity of dependencies
between the robot positions and feature positions.
Properly exploiting the sparsity enables ef icient op-
timization and is in the core of back-end systems de-
velopment.

The optimization can be formulated as a process of
inding values of variables 𝐱 that maximizes the prob-
ability (1), denoted by 𝐱∗. By taking the logarithm of
probability it can be written as:

𝐱∗ = argmax
𝐱

1
𝑍

∈
Ψ (𝐱 , 𝐳 ) (4)

= argmin
𝐱 ∈

𝐞 (𝐱 , 𝐳 ) Ω 𝐞 (𝐱 , 𝐳 ) (5)

= argmin
𝐱 ∈

𝑙 (𝐱 , 𝐳 ). (6)

Although, in general, the problem is not convex, an
iterative method is used to ind the optimal values of
𝐱. The assumption is made, that initial guess is good
enough not to cause a divergence of the algorithm. At
every iteration step, the functions 𝑙 (𝐱 , 𝐳 ) are lin-
earized in the currently estimated state of variables 𝐱
and an optimal step is calculated, denoted by Δ𝐱∗. The
linearization is expressed by (we omit dependence on
𝐳 to simplify notation as values of 𝐳 are constant):

𝑙 (𝐱 + Δ𝐱 ) (7)
= 𝐞 (𝐱 + Δ𝐱 ) Ω 𝐞 (𝐱 + Δ𝐱 ) (8)
≃ [𝐞 (𝐱 ) + 𝐉 (𝐱 )Δ𝐱 ] Ω [𝐞 (𝐱 ) + 𝐉 (𝐱 )Δ𝐱 ]

(9)
= 𝐞 (𝐱 ) Ω 𝐞 (𝐱 )
+ 2𝐞 (𝐱 ) Ω 𝐉 (𝐱 )Δ𝐱
+ Δ𝐱 𝐉 (𝐱 ) Ω 𝐉 (𝐱 )Δ𝐱 (10)

= 𝑐 (𝐱 ) + 𝐛 (𝐱 )Δ𝐱 + Δ𝐱 𝐇 (𝐱 )Δ𝐱 , (11)

where 𝐉 is a Jacobianmatrix of the error functionwith
respect to variables 𝐱 in the current point. If we ex-
pand all vectors and matrices in equation (11) to in-
clude all 𝐱 variables, the iteration step can be written

as:

Δ𝐱∗ = argmin
𝚫𝐱 ∈

𝑙 (𝐱 , 𝐳 ) (12)

≃ argmin
𝚫𝐱 ∈

𝑐 + 𝐛 Δ𝐱 + Δ𝐱 𝐇 Δ𝐱 (13)

= argmin
𝚫𝐱

𝑐 + 𝐛Δ𝐱 + Δ𝐱 𝐇Δ𝐱, (14)

where 𝑐 = ∑ ∈ 𝑐 , 𝐛 = ∑ ∈ 𝐛 , and 𝐇 = ∑ ∈ 𝐇 .
The Δ𝐱∗ value is calculated using equation:

𝐇Δ𝐱∗ = −𝐛. (15)

After inding Δ𝐱∗, current estimate is updated accord-
ing to formula:

𝐱 = 𝐱 ⊕ Δ𝐱 ∗, (16)

where⊕ is a generalization of addition operator, de-
ined depending on the representation. Note that in-
crements are computed by considering derivatives of
the error function with respect to variables, therefore
units, inwhich those variables are expressed, are irrel-
evant.

Iterations are performed until an optimal solution
is found. Usually, algorithms like Gauss-Newton or
Lavenberg-Marquardt are used in combination with
sparse linear optimizers to solve equation (15). The
sparsity is encoded in the 𝐇 matrix, since only some
values are non-zero (value at position (𝑖, 𝑗) canbenon-
zero only if variables 𝑥 and 𝑥 are related by a factor).

The g o framework organizes probabilistic graph-
ical models in a form of vertices and edges. Vertices
are representing subsets of variables denoting robot
or feature poses and have to determine a proper
representation of those variables. Therefore, vertices
also implement ⊕ operator suitable for chosen rep-
resentation. Edges are analogues of factors and, as
such, they bind vertices with measurements. Gener-
ally, edges can connect multiple vertices, but in our
system they always connect two. The operation that
has to be implemented in an edge is error calcula-
tion, therefore they implement ⊖ operation. Option-
ally, edges can also implement analytical calculation of
the Jacobian matrices, which are by default computed
numerically [11].

4. SE(3) Plane Representa on
This section presents a simpli ied solution based

on a SE(3) representation of planes. It was necessary
to introduce some assumptions and simpli ications to
plug planes into overparametrized representation.

Usually, using depth sensors, a planemeasurement
is representedas anormal vector𝐧 in the sensor frame
of reference and distance 𝑑 to the sensor (hereinafter
called camera for convenience). Some assumptions
have to be made to convert this representation to the
SE(3) one, since the number of such overparametrized
representations is in inite. Hence, we assumed that a
plane coordinate system has the following properties:
- The origin is located in the plane point nearest to
a camera.

5
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Fig. 2. A schema c view of assump ons about
coordinate system of a plane

- The 𝑧 axis is perpendicular to a plane.
- The 𝑥 axis direction is determined by a cross prod-
uct of the normal vector and the [1, 0, 0] vector (if
they are parallel, with [0, 1, 0] vector). This assump-
tion is only important to assure that the 𝑥 axis will
be parallel to the 𝑧 axis.

- The 𝑦 axis direction is determined by a cross prod-
uct of the unit vectors in the 𝑧 axis and the 𝑥 axis
directions.

Obviously, there is an ambiguity in the representation,
and the global coordinates of a plane depend on the
camera position (they won’t be the same for different
camera poses). It is caused by the fact that a plane is an
object with 3 degrees of freedom (DOF), whereas the
SE(3) representation has 6 DOF. Therefore, the frame
of reference of an in inite plane can move freely along
the 𝑥 and 𝑦 axes of this plane, and can rotate around
it’s 𝑧 axis, which gives extra 3 DOF. The different place-
ment of the origin cannot be avoided in a real-world
scenario, but, as it will be shown, the difference has no
effect on results thanks to a proper informationmatrix
formulation. A schematic illustration of a plane coor-
dinate system is presented in Fig. 2.

The standard g o SE(3) vertex represents the posi-
tion in the form of a translation-quaternion (TQ) vec-
tor:

𝐯 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑡
𝑡
𝑡
𝑞
𝑞
𝑞

⎤
⎥
⎥
⎥
⎥
⎦

, (17)

where 𝑡 , 𝑡 , 𝑡 are Euclidean coordinates and 𝑞 , 𝑞 ,
𝑞 are imaginary components of an unit quaternion
with the real component 𝑞 ⩾ 0. In the SE(3) edge
values 𝐳 represent measurement of a transformation
from the camera frame of reference to the plane frame
and is also represented by a TQ vector. As 𝐱 and 𝐳 are
just sets of numbers, we use 𝐯(⋅) operator to indicate
that they should be treated as a TQ vector. The sym-
bols 𝐱 and 𝐱 denote subsets of 𝐱 variables rep-
resenting global camera and global robot position, re-

Fig. 3. Transforma ons between frames of reference.
Π is a global frame of reference, Π is a camera frame
of reference and Π is plane frame of reference

spectively. Transformations between frames of refer-
ence are depicted in Fig 3.

An error, introduced in the equation (3), is de ined
as follows:

𝐞 (𝐱 , 𝐳 ) = 𝐯(𝐳 ) 𝐯(𝐱 ) 𝐯(𝐱 ) , (18)
wheremultiplication is a concatenationof transforma-
tions (not a matrix multiplication), 𝐯 is an inversion
of the transformation𝐯, and𝐯(𝐱 ) 𝐯(𝐱 ) can be in-
terpreted as measurement prediction.

The error is de ined in the plane’s frame of refer-
ence, therefore an informationmatrix𝛀 has to be de-
ined in the same frame. In an overparametrized rep-
resentation, suchas theone consideredhere, the infor-
mation matrix is particularly important. It should de-
ine large (theoretically in inite) uncertainty in the di-
mensions, in which the representation is ambiguous.
If the 𝑖-th dimension is a surplus, then the element of
𝛀 at location (𝑖, 𝑖) should be equal to zero. Unfortu-
nately, the matrix constructed in such way would be
rank de icient and impossible to invert. The inability
to invertwoulddiscard a largenumber of optimization
algorithms. Therefore, we decided to circumvent this
limitation by inserting a very small number instead of
0. Another problemwas how to specify an information
matrix for rotation represented by a quaternion. To
overcome the problem, we constructed a covariance
matrix for the extended representation (including 𝑞
value) in the form:

𝐂 = 𝐂 𝟎 x
𝟎 x 𝐂 , (19)

where 𝐂 was de ined as follows:
𝐂 = diag(𝑐, 𝑐, 1) (20)

and 𝐂 as follows:
𝐂 = 𝐉 𝐂 𝐉 . (21)

Here 𝐂 is the covariance matrix for a rotation ex-
pressed by a 3×3 rotation matrix, de ined as (for a
row-major order of matrix elements):

𝐂 = diag(𝑐, 𝑐, 1, 𝑐, 𝑐, 1, 1, 1, 1) (22)
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and 𝐉 is Jacobian matrix of the conversion from a
rotation matrix to a quaternion at the identity point
(derived from the equation converting rotationmatrix
representation to a quaternion representation):

𝐉 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0.125
0 0 0.250 0
0 −0.250 0 0
0 0 −0.250 0
0 0 0 0.125

0.250 0 0 0
0 0.250 0 0

−0.250 0 0 0
0 0 0 0.125

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

In the above equations 𝑐 is some large value that indi-
cates that in this dimension a variance is in inite. We
used 𝑐 = 1000 which was a good compromise be-
tween accuracy and numerical stability. The inal in-
formation matrix is the 6×6 upper-left corner part of
the inverse of the 𝐂matrix:

Ω = [𝐂 ] × . (24)

The⊕ operator is realized by multiplying a trans-
formation represented by the current state of vari-
ables by a transformation expressed by the computed
increment Δ𝐱 ∗:

𝐯(�̂� ) = 𝐯(�̂� )𝐯(Δ𝐱 ∗ ). (25)

The implementation was intended to be simple
and demand small amount of work, so it was realized
using standard g o edges and vertices. The additional
advantage of this approach is that the g o framework
implements analytical calculationof Jacobianmatrices
for standard classes. It was necessary to compute in-
formationmatrix and implement ameasurement sim-
ulation. The simulation was accomplished by adding
Gaussian noise to the normal vector 𝐧 components
and a distance value 𝑑, and then calculating 𝐯(𝐳 ) us-
ing the previously de ined assumptions about the co-
ordinate system of a plane.

5. Minimal Plane Representa on
To represent a plane only 3 values are required,

since it is an object with 3 DOF. In this section we
present a solution based on a representation that uses
only 3 values and therefore is minimal. Nevertheless,
using a normal vector and adistance requires 4 values:
3 components of 𝐧 = [𝑛 , 𝑛 , 𝑛 ] and 𝑑. The same
problem occurs with a general plane equation:

𝑝 𝑥 + 𝑝 𝑦 + 𝑝 𝑧 + 𝑝 = 0. (26)

The solution is to normalize the general plane equa-
tion, so ‖𝐩‖ = ‖[𝑝 , 𝑝 , 𝑝 , 𝑝 ] ‖ = 1 and restrict
𝑝 ⩾ 0. After doing so, only the irst 3 components
of the vector 𝐩 are relevant, since the last one can be
retrieved using formula:

𝑝 = 𝑝 + 𝑝 + 𝑝 . (27)

It is an analogue to an unit quaternion and all oper-
ations on quaternions can be transfered to this repre-
sentation [8]. Therefore, it is aminimal representation
without singularities, what makes it suitable for opti-
mization purpose.

With the minimal representation, we used expo-
nential and logarithm map to calculate the error and
update current positions. An exponentialmap is amap
from the Lie algebra to a Lie group and a logarithm
map is a map in the reverse direction. The error cal-
culation in an edge connecting a camera position and
a plane position is performed using the logarithmmap
of quaternions:

𝐞 (𝐱 , 𝐳 ) = 𝐪 𝐓(𝐱 ) 𝐩(𝐱 ) ⊖ 𝐪(𝐳 ) (28)
= log 𝐪 𝐓(𝐱 ) 𝐩(𝐱 ) 𝐪(𝐳 ) ,

(29)

where 𝐪(𝐱 ) denotes a quaternion formed from vari-
ables 𝐱 , 𝐓(𝐱 ) is a homogeneous transformation ma-
trix constructed fromvariables𝐱 , and𝐩(𝐱 ) is a plane
equation based on variables 𝐱 . Note that transforma-
tion of a general plane equation from Π frame of ref-
erence to Π frame is expressed differently than the
same transformation for apoint. It is doneby the equa-
tion (𝐓 , denotes a homogeneous transformationma-
trix for a transformation from Π to Π ):

𝐩 = 𝐓 , 𝐩 (30)
= 𝐓 , 𝐩 . (31)

The logarithm map is a 3 dimensional vector given by
the equation:

log(𝐪) = 2cos (𝑞 )
‖𝐪 ‖ 𝐪 , (32)

where 𝐪 is an imaginary part of the quaternion 𝐪.
Updates of variables are done using exponential

maps for both, camera positions and plane positions.
The update for planes is done using the following for-
mula:

𝐪(𝐱 ) = exp 𝜔(Δ𝐱 ∗ ) 𝐪(𝐱 ), (33)

where exponential map for a plane is de ined as:

exp(𝜔) = sin( ‖𝜔‖)𝜔
cos( ‖𝜔‖) . (34)

The update for camera positions is done in a similar
way, but instead of quaternions, operations are per-
formed on TQ vectors:

𝐯(𝐱 ) = exp 𝐝(Δ𝐱 ∗ ) 𝐯(𝐱 ). (35)

The increment used in the above equation comprises
a translational and a rotational part, same as the TQ
vector:

𝐝 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜐
𝜐
𝜐
𝜔
𝜔
𝜔

⎤
⎥
⎥
⎥
⎥
⎦

= 𝜐
𝜔 (36)
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Denoting the result of the exponential mapping by:

exp(𝐝) = 𝐭
𝐪 , (37)

the calculation can be done using equations:

𝐭 = 𝐕𝜐 (38)

and
𝐪 = 𝐪(𝐑). (39)

Note that, in the notation above, a quaternion is
constructed from a rotation matrix, not from a 4-
dimensional vector. Thematrices𝐕 and𝐑 are given by
equations:

𝐕 = 𝐈 + 1 − cos(‖𝜔‖)
‖𝜔‖ [𝜔]× +

‖𝜔‖ − sin(‖𝜔‖)
‖𝜔‖ [𝜔]×

(40)
and

𝐑 = 𝐈 + sin(‖𝜔‖)
‖𝜔‖ [𝜔]× +

1 − cos(‖𝜔‖)
‖𝜔‖ [𝜔]×, (41)

where [𝜔]× is a skew-symmetric matrix:

[𝜔]× =
0 −𝜔 𝜔
𝜔 0 −𝜔
−𝜔 𝜔 0

. (42)

We implemented an extension to the standard set
of g o edges and vertices by adding a vertex repre-
senting a plane position and an edge connecting cam-
era position and plane position. As the camera posi-
tion vertex we used a SE(3) vertex that uses expo-
nential map, included in the framework. During ex-
periments, measurements were simulated by adding
Gaussian noise to the components of the normal vec-
tor 𝐧 and to the distance 𝑑 value. The quaternion rep-
resentation was obtained by constructing a general
plane equation, and then properly normalizing a vec-
tor of parameters. The vector had the following form:

𝑝 =
⎡
⎢
⎢
⎣

𝑛
𝑛
𝑛
−𝑑

⎤
⎥
⎥
⎦
. (43)

In the current version, the Jacobian matrix was com-
puted numerically.

6. Experiments and Results
To experimentally evaluate the proposed models

of planar features and the constraints related to them,
we simulatedmotion of a camera in an empty room. As
demonstrated in [3], such a simple experiment clearly
reveals how the behavior of the optimization back-end
depends on the parametrization of the uncertainty
model of the features. The simulated front-end does
not introduce any errors due towrong feature associa-
tions ormultiplicated features, thus the results are iso-
lated from the qualitative errors that are unavoidable
in a real front-end. In order to make the simulation
maximally realistic as to the dynamics of the sensor

Fig. 4. An overview of the simulated environment.
Normal vectors 𝐧 , 𝐧 , 𝐧 and distance values 𝑑 , 𝑑 ,
𝑑 were noised measurement values

motion we used an example trajectory from the ICL-
NUIM Of ice Room Dataset [7] and inserted a virtual
loor and two walls that were always observed by the
sensor. An overview of the simulated environment is
shown in Fig. 4. Normal vectors𝐧 ,𝐧 ,𝐧 anddistance
values 𝑑 , 𝑑 , 𝑑 were the common source of infor-
mation for both parametrizations. All representations
were obtained from those values with added Gaussian
noise of the standard deviation equal to 0.01.

Optimization was done in batch mode. First, all
vertices, along with their initial position estimations,
and edges were added to the graph and than the
optimization process was triggered. In both cases
we used Gauss-Newton algorithm with the Precon-
ditioned Conjugate Gradient (PCG) linear solver. The
numberof iterationswas limited to100, although in all
tests the algorithm converged earlier. We tested when
a change of the error value 𝑙 between iterations will
drop below 10 𝑙. For the SE(3) representation it was
after the 26-th iteration and took 0.343 s. In the case
of theminimal representation, it happened after the 9-
th iteration and took 0.257 s. Both results enable real-
time operation, but the optimizationwith theminimal
representation converges faster and needs fewer iter-
ations.

An initial guess to camera positions was obtained
by simulating dead reckoning (e.g. visual odometry, as
used in [2]). We calculated differences between con-
secutive poses in the ground truth trajectory, added
noise to every difference and then build an odometry
trajectory by stacking noised difference transforma-
tions. If �̃� , is a noised transformation from ground
truth trajectory pose 𝑖 to pose 𝑖+1, then the odometry
pose 𝑖 + 1 is expressed by:

𝑂 = 𝑂 �̃� , . (44)
First, we investigated a behavior of the system

when the information matrix 𝛀 for SE(3) represen-
tation was set to identity to highlight that using this
representation for planes is not obvious. Setting the
information matrix to identity is a common practice,
but should be done carefully, in particular when the
measurements or the state variables span over non-
Euclidean manifold spaces [6]. Effects of neglecting
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Fig. 5. Visualiza on of the SE(3) op miza on results
with the informa on matrices set to iden ty

Tab. 1. Results of the SE(3) and minimal representa on
op miza ons with perpendicular planes

measure SE(3) minimal

RPE translational [m]

rmse 0.034 0.031
mean 0.031 0.028
median 0.029 0.026
std 0.014 0.013
max 0.111 0.107

RPE rotational [∘]

rmse 1.001 1.139
mean 0.923 1.049
median 0.016 0.018
std 0.389 0.446
max 2.859 2.960

ATE [m]

rmse 0.021 0.017
mean 0.019 0.016
median 0.019 0.015
std 0.008 0.007
max 0.062 0.042

the partiality of uncertainty in planar features can be
seen in Fig. 5. As expected, when the identity matri-
ces are used, the optimized trajectory is a degenerated
version of the ground truth one, because the least-
squares minimization could not be constrained to the
proper manifold.

The next experiment compared the SE(3) andmin-
imal representations with properly set information
matrices for the situation when the plane features
were perpendicular each to the other. This “natural”
con iguration of walls in a room provides also the best
constraints to the simple system under study, as there
are similar constraints along each axis of the global
coordinate system. Quantitative results are gathered
in Tab. 1, while the estimated trajectories are visu-
alized in Fig. 6. We apply the ATE and RPE metrics.
ATEcompares thedistancebetween the estimatedand
ground truth trajectories, whereas RPE corresponds
to the drift of the trajectory [17]. From the trajectories
it is clearly visible that both solutions reconstructed
the camera motion with small errors. The numeric re-
sults are slightly better for the minimal representa-
tion, but the differences are rather irrelevant.

Fig. 6. Results of the SE(3) and minimal representa on
op miza ons with perpendicular planes

Fig. 7. Results of the SE(3) and minimal representa on
op miza ons when walls approach floor inclina on.
The 𝜃 is an angle by which walls were lted

Differences emerged with more challenging se-
tups, in which walls were not perpendicular to the
loor and each to the other. A dependency between the
angle by which the walls were tilted and the errors in
trajectory estimation is visible in Fig. 7. When the an-
gle is small and the measurements of the positions of
walls impose strong constraints, the error values are
similar to the ones obtained in the previous experi-
ment, but when the walls approach the loor inclina-
tion and are close to being parallel to the groundplane,
the error for estimationwith the SE(3) representation
grows faster. Note that the ATE metrics plot behaves
exactly as the relative positional error plot, which is
caused by the fact, that there are no signi icant loop
closures in the small simulation environment, hence
the trajectory does not changemuch after the inal op-
timization. The resultswithwalls tiltedby80∘are visu-
alized in Fig. 8.

7. Conclusions
We proposed two solutions to the problem of rep-

resenting plane-based features in the g o framework.
First solution was based on a standard set of ver-
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Fig. 8. Visualiza on of the SE(3) and minimal
representa on op miza ons results with walls lted
by 80∘

tices and edges from the framework and represented
planes using SE(3) parametrizationwith carefully pre-
pared information matrix. Second solution used min-
imal representation of planes and required an imple-
mentation of the vertex and the edge that extended the
g o functionality. The implementation is an important
contribution as it can be easily used in further devel-
opment, as well as in other applications. Experiments
veri ied that both approaches give reasonable results
and can operate in real-time. When overparametrized
representation is used, it is important to carefully con-
struct informationmatrix. Thematrix instructs the op-
timization algorithm which dimensions are relevant
andwhat are relations between coordinate uncertain-
ties. Despite the fact that presented approaches are
theoretically equivalent, when conditions are harsh,
themore speci ic solution performs better as comes to
accuracy and convergence time. The work gives an in-
sight how surplus dimensions affect the optimization
process. The difference could bemore signi icant if Ja-
cobian matrices were computed analytically in both
cases. Although experiments in a synthetic environ-
ment, without a real front-end, give no possibility to
compare the performance of our approach with other
systems, the presented solution provides a good start
point for development of a complete SLAM system
based on higher-level features.

Future work will focus on adding a front-end func-
tionality to the system. We want to develop an al-
gorithm for detecting and isolating planes, matching
planes between consecutive frames and recognizing
visited places. Considering other types of features in
a single framework to build a robust and versatile sys-
tem is also planned.
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A Probabilistic Framework for Global Localization
with Segmented Planes

Jan Wietrzykowski and Piotr Skrzypczyński

Abstract— This paper proposes a novel approach to global
localization using high-level features. The new probabilistic
framework enables to incorporate uncertain localization cues
into a probability distribution that describes the likelihood of
the current robot pose. We use multiple triplets of planes
segmented from RGB-D data to generate this probability
distribution and to find the robot pose with respect to a global
map of planar segments. The algorithm can be used for global
localization with a known map or for closing loops with RGB-
D data. The approach is validated in experiments using the
publicly available NYUv2 RGB-D dataset and our new dataset
prepared for testing localization on plane-rich scenes.

I. INTRODUCTION

Solutions to the Simultaneous Localization and Mapping
(SLAM) problem in 3-D [1], [2], [3] usually assume incre-
mental localization, relying on the robot/sensor pose prior
for matching the current perception to the map. However, if
a reliable prior is unavailable, the robot has to find the pose
with respect to the already learned or a priori known map
by means of a global localization method.

Consider exemplary indoor scene views depicted in Fig.
1a. Are those the same scenes observed from different
viewpoints or are they just similar? A human can tell that
easily (Fig. 1b) using the semantic context, but a robot has to
rely on numerical computations on the basis of some scene
representation. The abstraction level of scene representation
is perhaps the most important problem in developing robust
global localization methods. Point features are most common
in 3-D SLAM [1], [3], but if we exploit higher-level features
[4], the local environment geometry can resolve ambiguities
stemming from an abundance of repetitive or similar visual
patterns [5]. As recovering the geometry from passive vision
data requires intensive computations we focus on active
RGB-D sensors, which are cheap, compact, and provide a
rich description of the scene.

Therefore, we propose a novel approach to the problem
of global localization using higher-level features. Unlike
many 3-D SLAM solutions that focus on accurate mapping
of small areas, our localization system1 works on larger
indoor scenes, with loopy sensor trajectories of extended
duration. We contribute: (i) a new probabilistic localization
framework utilizing Gaussian kernel approximation; (ii) a
localization solution using this framework and segmented

*This work was funded by the PUT DSMK/0172 and DSPB/0162 grants
Jan Wietrzykowski and Piotr Skrzypczyński are with the In-

stitute of Control and Information Engineering, Poznań University
of Technology, 60-965 Poznań, Poland {jan.wietrzykowski;
piotr.skrzypczynski}@put.poznan.pl

1Available at https://github.com/LRMPUT/PlaneLoc

Fig. 1. Example of place recognition in a 3-D environment: perceived
local views (a), and the global map view (b)

planes as features; (iii) RGB-D dataset suitable for evaluation
of the proposed method.

II. RELATED WORK
In keyframe-based 3-D SLAM systems, large loop clo-

sures are detected using appearance-based place recognition
techniques [6]. One of the most widely used algorithms from
this group is FAB-MAP [7]. In ORB-SLAM/ORB-SLAM2
[3] such a technique, based on the fast to compute ORB
features is used also for relocalization [8]. Although Williams
et al. [9] demonstrated that appearance-based methods scale
better than map-based SLAM algorithms for large environ-
ments, these methods do not provide accurate estimates of
the robot pose with respect to the map. SLAM systems that
do explicit map reconstruction usually need to have a reason-
able guess of the sensor pose before they attempt to match
the local perception to the map [1]. The recent ElasticFusion
system [10] that maintains a dense environment model ap-
plies an appearance-based approach for location recognition,
but the database of locations contains predicted views of the
dense map. If the global map is feature-based, synthesizing
frame views becomes infeasible. Among the feature-based
approaches, Heredia et al. [11] proposed a two-stage point-
feature matching algorithm that facilitates global localization.
Higher-level geometric features, that provide more local-
ization constraints than points have been employed in a
number of systems. An early attempt to use plane features
was the 3-D EKF-SLAM by Weingarten and Siegwart [12].
More recently, an optimization-based approach to SLAM
exploiting both, point and plane features was presented [13].
Optimization-based approaches to SLAM with infinite planes



as features are described in [14] and [4], whereas [2] explores
plane segments in dense visual SLAM. Those approaches
tackle, however, the incremental SLAM problem. Pathak et
al. [15] proposed a fast method for registration of noisy
planes. Although the Minimally Uncertain Maximal Con-
sensus algorithm was demonstrated in [15] assuming limited
translations and rotations between consecutive views, this
method can solve unknown correspondences between planes,
hence it has a potential for application in global localization.
Similarly, Cupec et al. demonstrated in [16] that their earlier
planar surface segments registration algorithm can be used
for global localization employing a multi-hypothesis EKF
to handle correspondence outliers. The solution of [17] is
similar in spirit to our approach, but it addresses the place
recognition problem by matching subgraphs representing the
local topology of neighboring planar patches in a plane-
based global map. Hence, although it uses a geometric rather
than appearance-based approach, it is unable to produce an
accurate estimate of the global robot pose.

III. PROBLEM STATEMENT AND SOLUTION

Consider two scenes visible in Fig. 2a, where the same
place in a global map was shown from two different views
using planes. These planes can be matched in a number of
ways (Fig. 2b), but, if the views present the same place,
only one association is valid. However, as examining all
possible combinations is intractable, we build a probability
distribution of the robot pose using cues from small subsets
of planes.

Fig. 2. Schematic illustration of generating the global robot pose PDF by
matching sets of planes

At least three non-parallel pairs of matching planes are
required to obtain an SE(3) transformation. Unfortunately,
we don’t know the associations between plane segments. We
can try to discover them employing appearance (e.g. color),

size and global location. However, using such criteria is in-
sufficient, and there is a need to examine constraints imposed
by the geometric transformations between the potentially
matching features. Unfortunately, even using multiple above-
mentioned criteria for matching we sometimes obtain wrong
associations that act as strong outliers in typical estimation
procedures, e.g. involving Kalman filtering [16]. A common
solution to this problem is to embed the estimation into a
RANSAC procedure, which however spawns other issues,
such as extensive hypothesis evaluation and setting proper
thresholds for outlier rejection. Therefore, our novel idea is
to use multiple triplets of potentially corresponding planes to
generate a kernel-based global probability density function
(PDF) that describes the likelihood of the robot/sensor pose.

The triplets consist of three pairs of associated plane
features (cf. Fig. 2b). Each triplet is evaluated if it induces
a plausible transformation by projecting planes from the
coordinate frame of the current sensor view into the co-
ordinate frame of the global map (Fig. 2c). But even the
plausible triplets should not contribute equally to the final
pose hypothesis, as some triplets contain better matches than
others. Therefore the contribution has to be weighted, which
is illustrated in a simplified form in Fig. 2d. Inspired by
[18], where a probability distribution was constructed from
samples to find a feasible grasping sequence, we construct
a PDF to find the transformation that best explains the
observed triplets of segmented planes. A triplet supports the
transformation by introducing a weighted Gaussian kernel
that adds to the PDF. The kernels are placed in the location
space, i.e. each point in that space corresponds to a possible
transformation between the sensor view and the map. Hence,
if many kernels are placed in some area, the probability
density in that area is high. During localization, we seek
the maximum of the PDF and finally test it for being the
correct transformation.

IV. TRIPLETS OF PLANES

This section describes data processing steps used in gen-
eration and evaluation of triplets. The process begins with
plane segmentation that isolates planar surfaces from a point
cloud. The extracted planes are then matched to a set of
planes in a global map and outcome pairs are used to form
triplets of pairs representing possible transformations. Each
transformation is evaluated to test if it is plausible and then
passed to the probabilistic framework.

A. Extracting planes

We extract planar surfaces from a point cloud representing
the observed scene using a simple method based on seg-
mentation and segment merging by flood fill. The method is
designed for the presented system because none of the off-
the-shelf algorithms (e.g. [19]) satisfied our requirements.
The point cloud is segmented by means of supervoxel
clustering (Fig. 3a) and each segment with a low curvature
is considered as a seed. The algorithm, using supervoxel
adjacency list, recursively merges all segments connected to a
seed that are sufficiently flat, their normals are approximately



parallel to the normals of the seed, and there are no steps
between them. Merged segments are tested to have at least
minimal size to avoid adding many small segments. The
last operation is to compute plane equations using all points
belonging to the generated segments (Fig. 3b).

Fig. 3. Segmentation of planar surfaces with visualized normals (white
lines): supervoxels (a), and merged segments (b)

B. Selecting triplets

Having the current view and the global map represented as
planes, we pick pairs of planes, one plane from the current
view, and another one from the map. Those pairs are potential
matches, and each of them may be either correct if the two
planes indeed represent the same planar surface, or incorrect
if they don’t. To limit the number of pairs only planes that
are visually similar are considered. The appearance of each
plane is represented as a histogram of the Hue and Saturation
components of the HSV color model and is embedded into
a vector hs

i for the i-th plane from the current view, and
into a vector hm

j for the j-th plane from the map. Planes i
and j are considered similar if the difference between their
histograms doesn’t exceed the predefined threshold:

h(i,j) = |hs
i − hm

j | < τh. (1)

As three pairs allow to compute an SE(3) transformation, we
form triplets of pairs that represent a valid transformation
if all three matches are correct. Again, to limit the size
of the search space, each triplet has to fulfill the following
conditions:
• Each plane i and j has to appear in at most one of three

pairs, as the same plane segment cannot be matched
more than once.

• The map planes must not be further than τd each from
the other. The map can be large in comparison to the
current view, therefore if two planes are far from each
other, they won’t be visible in the same view.

C. Computing transformations

To evaluate correctness of the established triplets it is nec-
essary to calculate an alleged SE(3) transformations between
the frames of reference of the local view and the global map
induced by those triplets. We use a general method that takes
as input n ≥ 3 pairs of planes and outputs a transformation
given by the translation vector t = [tx ty tz]

T and the
rotation quaternion r = [rx ry rz rw]

T . The method
consists of two steps. At first it calculates the rotation using

normal vectors of the planes ns
i and nm

j , then the translation
is obtained using distances from origins dsi and dmj also. The
normal vector and distance from the origin are parameters
of the plane, and can be used to form an equation satisfied
by every point q belonging to that plane: n · q − d = 0.
A derivation of the rotation calculation algorithm is based
upon the method of Walker et al. [20]. The algorithm tries to
minimize the differences between the views’s plane normal
vectors and the transformed map’s plane normal vectors:

e(i,j) = |W(r)TQ(r)nm
j − ns

i |2

= 2
[
1− rTQ(ns

i )
TW(nm

j )r
]
. (2)

The total energy to minimize is given by equation:

E =
∑

(i,j)

2
[
1− rTQ(ns

i )
TW(nm

j )r
]
= rTCr+ const.,

(3)
where: C = −2∑(i,j) Q(ns

i )
TW(nm

j ). Taking a derivative
of (3) with respect to r and using a Lagrangian multiplier
we obtain equation:

−1

2
(C+CT )

︸ ︷︷ ︸
D

r = λr (4)

where the solution r∗ is given by the eigenvector of matrix
D that corresponds to the largest eigenvalue. The computed
rotation is an unambiguous solution to (4) if the largest
eigenvalue is unique as well. The planes are considered to be
one-sided, and the normal vectors point in direction opposite
to the direction which a plane was observed from. The one-
side assumption is justified by the fact that we want to use
planar surfaces of objects that have some volume.

Computing the translation between frames of references
is done by minimizing square error between the sensor
view’s plane distance, and the transformed global map’s
plane distance [21]:

S =
∑

(i,j)

(dsi − dmj − (nm
j )T t)2 = |A−Bt|2, (5)

where:

A =
[
dsi,1 − dmj,1, . . . , d

s
i,n − dmj,n

]T
, (6)

B =
[
nm
j,1, . . . ,n

m
j,n

]T
. (7)

The solution is given by the pseudo-inverse method:

t∗ = (BTB)−1BTA. (8)

D. Evaluating transformations

Unfortunately, as the transformation computation is only
minimizing the errors, the solution may actually be implau-
sible in case of planes mismatch. To verify this, we use plane
parametrization represented as a unit quaternion [14]:

p =
1√

1 + d2
[nx, ny, nz,−d]T , (9)

and the transformation from map’s frame of reference to the
local view’s frame of reference as a homogeneous matrix



Tm,s. If the transformation is valid, for each pair of planes
a representation of map’s plane transformed to the view’s
frame should be approximately equal to the representation
of the view’s plane. The difference between those represen-
tations is computed using the logarithm map of quaternions:

f(i,j) = log
{[

TT
m,sp

m
j

]−1
ps
i

}
. (10)

Note that using a homogeneous matrix to transform quater-
nions is different than when transforming points:

ps = T−T
s,mpm = TT

m,sp
m, (11)

and the result has to be normalized afterwards. Finally, the
criterion has a form |f(i,j)| < τf , i.e. a norm of the logarithm
map difference has to be below a certain threshold τf .

Planes are infinite and the computed transformation can
be implausible, because the solution can point to a dis-
tant location, far away from the investigated environment.
Therefore, it is also necessary to check if the transformation
is justified by the available observations. In this work we
assume the solution to be plausible when the convex hulls
of the points belonging to the map planes, denoted by
chull(Pm

j ), after transformation to the current view frame
of reference, overlap with the convex hulls of the points
belonging to the current view planes, denoted by chull(Ps

i ):

G(i,j) =
[
T−1

m,schull(P
m
j )

]
∩ chull(Ps

i ). (12)

In other words, we check if for each pair of planes the
same segment of the plane is observed and represented in the
global map and the current scene (Fig. 4). The area of the co-
observed part has to have a certain size: area(G(i,j)) > τg .

Fig. 4. Transformed point cloud of the map and point cloud of the current
view (a), and intersection of convex hulls (b)

V. PROBABILISTIC FRAMEWORK

The set of triplets T generated in previous processing
steps is next included in the probabilistic framework. Each
triplet is scored and the computed scores are treated as
weighting factors used to build a PDF. The final outcome
of the method is the SE(3) transformation, which is most
probable according to the supporting evidence.

A. Assigning weights

The triplet weight takes into consideration the appearance
difference h(i,j) (1) and the area of the convex hulls inter-
section area(G(i,j)) (12). Moreover, the weight depends on
how frequently the respective plane segment was employed,
as the same plane can be a part of multiple triplets, and

therefore can introduce a bias to the PDF. We handle it by
calculating an occurrence factor for each triplet a and each
pair (i, j) ∈ Sa within the triplet. The more triplets including
the same plane in a vicinity of induced transformation, the
lesser the weight:

wa,(i,j) =

⎡
⎣∑

b∈T

∑

(k,l)∈Sb

Ii=k exp(−y(a,b))

⎤
⎦
−1

, (13)

where Ii=k is an indicator function equal to 1 whenever i = k
and 0 otherwise, and y(a,b) is a norm of a SE(3) logarithm
map of a difference between transformations v for the triplets
a and b:

y(a,b) =
∣∣log(v−1

a vb)
∣∣ . (14)

Note that, in opposition to Section IV, transformations are
parametrized as 6-D vectors v that contain 3 translation
variables tx, ty , tz and 3 rotation variables rx, ry , rz (the
rw can be always restored assuming that is non-negative and
the quaternion is a unit quaternion). The overall weight for
the triplet a is expressed by the equation:

wa =
∑

(i,j)∈Sa

area(G(i,j))wa,(i,j) exp(−h(i,j)). (15)

B. Constructing localization distribution

The SE(3) transformations induced by triplets are rep-
resented as points in a 6-D space with 3 variables for
the position, and 3 for the rotation. The strength of the
contribution is controlled by a weight given by (15), and
we convert this contribution to the probabilistic language by
placing a weighted Gaussian kernel in each transformation
point. The final PDF is therefore a sum of all kernels:

p(x) =
1

Z
p̃(x) =

1

Z

∑

a∈T
Ka(x), (16)

where Z is a normalizing constant, and the kernel is:

Ka(x) = wa exp
{
− log(v−1

x va)
T Ia log(v

−1
x va)

}
. (17)

The distance between kernel’s center va and the transfor-
mation vx represented by the point x is computed using
logarithm map, and is embedded in the square form of
multidimensional Gaussian distribution with the information
matrix Ia.

Having a probability distribution, we seek for the point
with the highest probability. Inference in general distributions
can be complicated and to avoid this, we exploit the fact that
we already have a list of possible solutions. For each triplet,
we evaluate the transformation induced by this candidate, and
choose the one with the highest probability, denoted further
as x1. Additionally, we search for the second-best solution
x2 that is properly distant from the best one. To decide that
the transformation x1 is correct, its probability has to exceed
a certain threshold:

p̃(x1) > τp (18)

and has to be significantly greater than for the second-best
maximum:

p̃(x1)− p̃(x2) > τpd. (19)



The last test is the fitness score test. It refers back to
point clouds and assesses if the current view’s point cloud
transformed to the map’s frame of reference is aligned with
the map’s point cloud. This test involves computation of the
sum of squared distances from each point of the transformed
views’s point cloud Ps to the nearest neighbor in the map’s
point cloud Pm, and has to be below the threshold:

∑

qs
l∈Ps

(qs
l − q̂m

l )2 < τfs, (20)

where q̂m
l is the nearest neighbor in map’s point cloud.

It’s worth noting that the fitness score test examines only
points belonging to plane segments, and is much faster than
ICP, as (20) is equivalent to a single iteration of ICP on
a reduced size point cloud. If the transformation fulfills all
three conditions, it is assumed to be the correct one.

VI. EXPERIMENTAL EVALUATION

We evaluated the proposed algorithm in the global local-
ization task with a known map, as the software is not yet
integrated within a SLAM system. For global localization,
the algorithm requires a point cloud representing the current
view (local scene), and a global map composed of plane
segments. As we are not aware of any experimental RGB-
D dataset for which a map of plane features is available,
we built a “global” point cloud using the ElasticFusion
software [10], with the dataset’s ground truth trajectory used
for registration to avoid drift. The fused point cloud was
then segmented into plane features, as described in Section
IV. Our approach needs also the local point cloud to extract
planes in the current view. Using a single RGB-D frame for
that purpose is not enough because a sufficient number of
planes has to be detected. Hence, to widen the local view
context, we used again ElasticFusion to fuse together point
clouds from the last 100 RGB-D frames. Considering the
Kinect frame rate this short sequence takes few seconds, and
in most cases does not accumulate significant drift. For the
local perception, the ElasticFusion’s trajectory estimates are
used in the presented experiments.

The main dataset used is the PUT RGB-D/Workshop (PUT
RGB-D/W)2, which consists of 10 sequences (seq1 to seq10)
acquired in a 8×8 metres robotic workshop. The ground
truth data was captured using the OptiTrack motion capture
system. Three non-overlapping sequences seq5, seq6 and
seq7 were used to build the global map that contains 56
segments. Moreover, we used a sequence from the publicly
available NYUv2 dataset [22] acquired in a typical household
environment. Unfortunately, in NYUv2 no ground truth data
for the sensor trajectory is provided. Thus, we had to use the
poses computed by ElasticFusion as ground truth.

The localization performance was measured by counting
the locations that were correctly recognized, and those that
were recognized incorrectly (if any). For the performance
tests, we applied the algorithm to every 10-th pose of the
recorded sequence, attempting to localize the sensor with

2Available at http://lrm.put.poznan.pl/rgbdw/

Fig. 5. Global localization results for the PUT RGB-D/W dataset seq2 for
τp = 1.1, τpd = 0.2, and τs = 0.07. Test trajectories are marked with
red lines, recognized places with blue dots, whereas green lines connect
recognized locations to their respective ground truth poses

respect to the global map. We treated as correct the sensor
poses that were distant at most 0.11 from the respective
ground truth pose, using the metrics given by (14). The 0.11
value was chosen, because re-localization within this range
usually enables to recover tracking in our RGB-D SLAM
[1], and should be suitable for other similar SLAM systems.
Additionally, mean Euclidean d̄ and angular ᾱ distances
between the computed poses and the ground truth trajectory
were computed in all tests. Results are gathered in Tab. I,
where four sets of parameters were evaluated: optimal for the
PUT RGB-D/W dataset, optimal for the NYUv2 dataset, with
probability difference test switched off, and with point cloud
alignment test switched off. Visualizations of the recognized
places are presented in Fig. 5 and 6, for the PUT RGB-D/W
and NYUv2 datasets, respectively. We used the following
parameter values: τd = 5.0, τh = 2.5 (1.3 for NYUv2),
τf = 0.05 and τg = 0.1.

TABLE I
GLOBAL LOCALIZATION RESULTS FOR DIFFERENT PARAMETER SETS

parameters PUT RGB-D/W NYUv2
τp τpd τfs corr incorr unk d̄ [m] ᾱ [◦] corr incorr unk d̄ [m] ᾱ [◦]
1.1 0.2 0.07 49 0 112 0.123 0.24 134 6 78 0.113 2.23
1.2 0.2 0.03 33 0 128 0.113 0.28 113 0 105 0.085 0.15
1.2 0.0 0.03 33 3 125 0.492 12.81 113 0 105 0.085 0.15
1.2 0.2 ∞ 49 13 99 0.559 35.82 147 7 64 0.122 2.07

The results obtained using two different datasets indicate
that the proposed method is reliable, finding a large number
of locations along the test trajectories. If the algorithm
is correctly parametrized, it produces no false positives,
which is of pivotal importance in localization task. The
main cause for the number of places (local views) that
remained unrecognized was the insufficient quality of depth
data used to create the global maps. Maps produced from a
single sequence (NYUv2) or few sequences of very limited
overlapping had many areas that were empty or contained



point clouds of insufficient density to extract correct planes.

Fig. 6. Global localization results for the NYUv2 dataset for τp = 1.2,
τpd = 0.2, and τs = 0.03. Test trajectories are marked with red lines,
recognized places with blue dots, whereas green lines connect recognized
locations to their respective ground truth poses

The mean computing time for a single global localization
act in the experiments was 21 s on a Core i5 2.6 GHz laptop.
However, the most time-consuming step (14 s in average)
was the computation of the fitness score (20). This step can
be made much faster using approximate nearest neighbor
search, taking less than 1 s, as shown by a preliminary
implementation employing octree. Further optimization of
the computation time is a matter of our current research.

VII. CONCLUSIONS

We tackled the problem of global localization applying a
novel approach that creates a PDF describing the likelihood
of sensor’s pose using plane features. The experimental
results suggest that the proposed method performs well in
large-room-sized environments, yielding correct and accurate
pose estimates whenever it is possible to provide a good
quality of the a priori map and there are features available
in the environment.

An important advantage of the new probabilistic frame-
work is that not only paired planes can contribute to the PDF.
The framework can handle localization cues coming from
other feature types, or from other sensing modalities, e.g. an
orientation sensor like AHRS. Applications of the presented
algorithm are not limited to global localization and loop-
closing. It can be easily adapted for matching plane features
in graph-based SLAM utilizing planes [4].
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The global localization problem concerns situations when a map of the environment is known but there
is no initial guess of the agent position. Whereas the ability to perform global localization is required in
many practical situations, it is still an open problem, particularly if the agent requires to find an accurate
estimate of its 3-D pose. In this article, we describe PlaneLoc, a novel probabilistic approach to 3-D global
localization, which integrates multiple local cues to construct a probability distribution that describes
the likelihood of the agent pose. This framework enables to incorporate various types of localization cues
but we demonstrate its feasibility using segmented planes abstracted from RGB-D data. We use multiple
triplets of planar segments to generate candidate probability distribution and employ it to find the most
probable pose with respect to a global map of planar segments. The PlaneLoc implementation uses the
ORB-SLAM2 system that serves as visual odometry andmakes it possible to generate observation in a form
of sets of local segments online. The proposed approach can be used for global localization with a known
map or for loop closing and re-localization in Simultaneous Localization and Mapping. The implemented
system is validated in experiments using publicly available RGB-D data sets, including our own data set
acquired specifically for testing localization methods based on planar features.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and problem formulation

Continuous development in the field of mobile robotics and
other autonomous systems (e.g. personal localization using smart-
phones) establishes an ever-rising demand for accurate and reli-
able localization. As far as GPS-denied indoor environments are
considered, the localization problem is typically solved in an incre-
mental manner, employing one of the Simultaneous Localization
and Mapping (SLAM) algorithms [1]. In SLAM, consecutive agent
poses are tracked assuming that the pose has theMarkov property,
and the previous pose is known with an acceptable uncertainty.

Unfortunately, such prior pose is not accurate enough or is not
available in many practical scenarios, due to a wrong matching
of the local perception to the map or ’’kidnap situation’’, when
the Markov assumption is violated. Also if the agent comes back
to an already mapped area after making a large loop, its current
pose is often too uncertain to be used for matching with the map.
To recover from these situations, the agent has to localize itself
again with respect to the known part of the environment map.
In the SLAM terminology, this process is known alternatively as

∗ Corresponding author.
E-mail addresses: jan.wietrzykowski@put.poznan.pl (J. Wietrzykowski),

piotr.skrzypczynski@put.poznan.pl (P. Skrzypczyński).

re-localization for the tracking failure, and loop closing for re-
visiting already known environment. Both cases can be regarded
as variants of the global localization problem, which we define
as finding the pose of an agent in a known map without any
knowledge of the past agent poses. In the experiments presented
in this paper, we do not use any pose prior, and we treat all the
localization acts as ‘‘kidnap situations’’.

As far as 3-D localization is considered, an important matter is
the source of data.Whereas visual place recognition is arguably the
most popular way of recognizing locations in robotics [2], such al-
gorithms localize the agent only topologically, by finding the image
in the global map that is most similar to the current perception.
Then, local point features are required to compute the camera
metric pose, e.g. using the PnP algorithm [3]. On the other hand,
the knowledge of the local view and the map geometry enables
the agent to directly compute an SE(3) transformation between
the local and the global frame. However, recovering this geometry
from vision data requires intensive computations, while 3-D lidars
are still expensive and often suitable for outdoor applications only.
Thus, for the indoor use, we focus on RGB-D sensors, because they
are cheap, compact, and provide rich enough description of the
scene, including both photometric and geometric features [4].

But even considering both, the visual and geometric, features
it is not easy to figure out whether the sensor is observing a
known location or not (Fig. 1). The main reason for this difficulty
is the locality of perception, which makes the observed features

https://doi.org/10.1016/j.robot.2019.01.008
0921-8890/© 2019 Elsevier B.V. All rights reserved.
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Fig. 1. Indoor place recognition from local 3-D views: local views rendered from
RGB-D point clouds (a), and a global map of the same environment (b).

susceptible to changes due to the changing viewpoint, as seen in
the snapshots in Fig. 1a. A human can tell with a high dose of
confidence that the local views correspond to the numbered places
in the globalmap (Fig. 1b). But artificial autonomous agents cannot
synthesize all the cues that are evident for a human being and
have to rely on numerical computations on the basis of some scene
representation.

The abstraction level of scene representation is perhaps the
most important problem in developing robust global localization
methods. Point featureswith descriptors [5,6] or image patches are
the most common in contemporary 3-D SLAM systems. However,
in global localization, it is difficult to unambiguouslymatch a small
region of an image to hundreds or thousands of other regions from
the map, due to the huge number of combinations that quickly
makes examining all of them intractable as the map size increases.

Therefore, geometric features at a higher level of abstraction
should be considered for global localization if we would like to
estimate the agent metric pose in a one-shot manner. Among
the simple geometric features that can be extracted from RGB-
D point clouds planar segments seem to be the most useful and
most universal, and they are abundant in all man-made indoor
environments.

However, to efficiently use the planar features to constrain the
agent pose in 3-D we need a method that computes possible SE(3)
transformations between the current perception (expressed as a
set of segments), and the global map made of compatible features.
Inspired by [7], where a probability distribution was constructed
from samples to find a feasible grasping sequence, we construct a
probability density function (PDF) to find the transformation that
best explains the constraints between the local set of segments and
the map. This formulates a probabilistic framework that enables
to incorporate even partial and uncertain localization cues into a
distribution that describes the likelihood of the current pose of the
agent. In this paper, we demonstrate PlaneLoc, a practical localiza-
tion solution within this framework, which uses planar segments
extracted from RGB-D data to infer about the agent whereabouts.

1.2. Related work

The majority of existing global localization systems employ
appearance-based methods that rely on visual data provided by
cameras [2]. Although the place recognition algorithms scale better
than map-based SLAM algorithms for large environments [8], they
provide only topological localization, notmetric information about
the agent pose.

One of the most widely used algorithms from this group is FAB-
MAP [9], that applies the Bag of VisualWordsmethod [10] to decide
whether the currently observed scene is similar to a previously vis-
ited one. This algorithm can also be applied as stand-alone topolog-
ical SLAM [11]. It performswell outdoors, and in environments rich
in point features, but its feasibility for practical indoor localization
with a hand-held camera is limited [12]. The Bag of Visual Words
technique is used in a number of other place recognition methods,
such as DBoW2 [13] that applies vocabulary tree and binary fea-
tures to reduce the computation time. Appearance-basedmethods
also use different frame encoding schemes: randomized ferns [14]
or features containing geometric properties [15]. In the last few
years, learning-based approaches employing convolutional neural
networks (CNN) rose to prominence in computer vision. These
methods are successfully applied in appearance-based localiza-
tion [16]. However, adopting the deep learning paradigm formetric
global localization was only shown in few very recent papers,
e.g. for outdoor scenarios [17]. The adoption of CNN promises
better performance and robustness due to using features learned
from data instead of hand-crafted ones, but deep learningmethods
require very large labeled data sets for training. So far, such data
sets for indoor metric localization at the global scale are hardly
available.

A place recognition approach canbe also used for re-localization
in incremental SLAM, assuming that the adopted algorithm en-
sures at least approximately real-time performance. For example,
a further development of DBoW2 employing ORB features [18] is
used in ORB-SLAM [3] and ORB-SLAM2 [6] for both re-localization
and loop closing. However, after finding the most similar image
frame in the learned map a lot of effort is necessary for map man-
agement to ensure correct matching between the already mapped
features and the observed ones [3].

If explicit geometricmap reconstruction is performed, the SLAM
system usually needs to have a reasonable guess of the sensor pose
before it attempts to match the local perception to the map [5].
Therefore, accurate metric global localization is highly desirable
for loop closing and re-localization. Older SLAM systems, oper-
ating with 2-D maps built from laser scans solved this problem
by matching of a number of local features (2-D line segments,
corners, etc.) to themap and trackingmultiple hypotheseswith the
Extended Kalman Filter (EKF) to handle matching ambiguity [19].
In contrast, the Markov Localization algorithm [20] established
a probability distribution over the discretized space of possible
agent positions and then localized the agent using the Markov as-
sumption. One prominent approach for localization with a known
environmentmap is particle filtering [21].Whereas localization al-
gorithms employing particle filtering can re-localize a ‘‘kidnapped’’
robot [22], they suffer from problems with representing the uni-
form probability distribution in global localization. As particles
have to be sampled over the entire state space, which increases
with the map size, the filter converges slowly and may require to
move the sensor until ambiguities are eliminated. This problem
can be also circumvented providing a coarse initial position of the
sensor, as shownby Ito et al. [23],who combinedRGB-Dperception
with WiFi signal strength used to compute the initial guess.

Considering 3-D localizationwith images or RGB-D datawe find
only a few examples of metric global localization. Whenmaintain-
ing a dense model of the environment, it is possible to synthesize
frame views, as in ElasticFusion [24]. If the current RGB-D frame
matches the one synthesized from the global, surfel-based map,
the map gets globally aligned. The efficiency is ensured using
randomized ferns to encode frames at the matching stage. For
sparse map representation, Heredia et al. [25] proposed a two-
stage point-feature matching algorithm that facilitates global lo-
calization. However, relying solely on point features has a number
of drawbacks. To compute the SE(3) transformation it is necessary
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tomatch a number of feature points, while any incorrectmatch can
result in a wrong transformation. It is also difficult to incorporate
information about the scene geometry and the underlying seman-
tics in the matching of point features.

Higher-level features, as line segments or planar segments, are
more distinguishable in the environment than point features. A
number of approaches to solving the incremental SLAM problem
(without global localization) employ such higher-level geomet-
ric features that provide more strict localization constraints than
points. An early 3-D EKF-based SLAM employing planes as features
was described in [26]. The system presented in [27] used infinite
planes as features in an optimization-based approach to SLAM,
while employing both, point and plane features, was proposed
in [28]. Extraction of planes was also included in a direct SLAM
approach [29] to reduce drift.

Efficient detection of planes and planar segments has been
widely studied in the context of computer graphics, computer
vision, and robotics. Fast plane detection algorithms based on
RANSAC [30] are not well suitable for processing of unordered
point clouds, because non-deterministic fitting of the model can
lead to suboptimal results depending on the order of picking the
data points from the cloud. Whereas the Hough transform is a
voting scheme that enables extraction of multiple planes from
unordered point clouds [31], it is computationally expensive due to
the high-dimensional Hough space. Recent research on 3-D scene
segmentation and object detection resulted in many approaches
that extract planar primitives by region growing and clustering,
such as the agglomerative hierarchical clustering algorithm [32].
The extraction of planar segments has been implemented accord-
ing to this idea in the preliminary version of our global localiza-
tion system [33]. The inspiration was taken from the algorithm
described in [34]. We have noticed that the original algorithm
from [34], aimed at segmentation of RGB-D data for object recog-
nition, produced plane-basedmodels that were considerably over-
segmented for our purposes.

Only a few researchers proposed to use features at a higher level
of geometric abstraction for global localization. Pathak et al. [35]
proposed a fast, global method for registration of noisy planes.
Cupec et al. [36] demonstrated the use of their planar segments
registration algorithm in a global localization system, employing
a multi-hypothesis EKF to handle correspondences. In contrast,
the work by Fernàndez-Moral et al. [37] uses sub-graphs of plane
adjacency to find a corresponding location in a global map. The
method uses a series of unary and binary tests to check if the
geometry of scenes matches. Unfortunately, due to examining all
combinations of matches it is possible to check only sub-graphs
that are composed of direct neighbors of the chosen plane. An in-
teresting choice for global localization is complete object features.
They can be easily distinguished, and their number in a typical
scene is much smaller than the number of geometric features of
any type. However, perception systems are not yet robust enough
and object detection requires some sort of a priori object models
(e.g. CAD models) [38,39].

1.3. Contribution

We propose a novel approach to the problem of global local-
ization using a probabilistic framework based on a mixture of
weighted Gaussian kernels that represent local and partial local-
ization cues. Though this framework is able to use different types
of localization cues, it is applied here to handle the constraints
that are imposed on the six degrees of freedom (6-d.o.f.) pose of a
free-floating RGB-D sensor bymatching the locally observedplanar
segments to a global map of planar features.

While we demonstrate the PlaneLoc system1 in generic global
localization tasks, using an a prioripreparedmapof thewhole envi-
ronment, it is possible to apply our solution for both re-localization
and direct (metric) loop closing with any RGB-D SLAM algorithm.
To facilitate the use of PlaneLocwith online learnedmapswe show
also a new and efficient algorithm for extracting planar segments
from RGB-D point clouds, and a method that incrementally inte-
grates the resulting features into a global map.

This journal article builds upon our recent conference
paper [33] that introduced the idea of metric global localization
with planar features and demonstrated some preliminary results.
These results were obtained using maps of planar segments ex-
tracted from unordered global point clouds integrated using the
ElasticFusion software [24]. In this research, we no longer need
the ElasticFusion or any other software that integrates the RGB-D
points in an off-line fashion. The newversion of PlaneLoc integrates
planar segments extracted online from a number of consecutive
RGB-D frames into a local view map. Although we use the ORB-
SLAM2 system to obtain sensor pose estimates while building the
local map, PlaneLoc can be integrated with any other RGB-D SLAM
or visual odometry software for that purpose. Hence, major contri-
butions of this article with respect to the conference paper are new
and improvedmethods for the representation andmatching of the
segments that enable the use of our global localization framework
in the context of online navigationwith learnedmaps. In summary,
the contributions of this work are as follows:

• a novel global localization framework employing Gaussian
kernel approximation to integrate local and partial localiza-
tion cues to represent the likelihood of the agent pose,
• a particular instantiation of this framework that uses sets of

planar segments to establish the localization cues,
• new algorithms that extract planar segments from the RGB-D

frames and integrate them into either local or global
segment-based maps,
• experimental evaluation of the new version of PlaneLoc on

publicly available data sets, including a comparison to the
state-of-the-art ORB-SLAM2 system in the re-localization
task.

The remainder of the paper has the following structure: The global
localization framework is introduced in Section 2. In Section 3 the
algorithm used to obtain the global and local maps of planar seg-
ments is presented. Next, the practical global localization system
employing the planar segments is detailed in Section 4. Section 5
presents our experimental methodology and the results of testing
the PlaneLoc system on two publicly available RGB-D data sets.
Finally, a brief discussion on the advantages and limitations of
the proposed approach to localization, and conclusions with an
outlook of future research are provided in Section 6.

2. Localization framework

A fundamental problem in global localization is to associate the
local perception (scene view) to a unique location in the known
map of the environment. If both the scene view and the global map
are represented by planar segments, this problem transforms into
finding associations between the locally observed segments and
the segments in the globalmap.We can try to discover the associa-
tions between planar segments employing appearance (e.g. color),
or size and global pose of the segments. However, many ambigu-
ities remain when using such criteria, which make it necessary to
examine constraints imposed by the geometric relations between
the potentially matching features. Since infinite plane primitives
provide only partial constraints on 6-d.o.f. poses of the associated

1 Open source code: https://github.com/LRMPUT/PlaneLoc.
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segments, at least three non-parallel pairs of matching segments
are required to obtain a SE(3) transformation. Note that we do
not use directly the shapes of the segments (i.e. their hulls) in
matching, as a shape extracted from a noisy point cloud cannot
be considered a reliable feature, neither we are aware whether the
whole object has been already observed. Therefore, we propose the
process of associating the planar segments to themap as illustrated
in Fig. 2. Two sets of planar segments representing the same place
seen from two different viewpoints are shown in Fig. 2a. These sets
can be associated in a number of ways, as demonstrated in Fig. 2b
and 2c. However, if both sets indeed represent the same place, only
one association is valid.

In the global localization procedure, one of these sets represents
the local view at the current pose of the agent, while the other
one represents a location picked from the available global map.
Thus, examining all the possible matching combinations becomes
intractable even for room-size maps. Moreover, even combining
the pairwise relations between the sets of planar segments and
the unary constraints (appearance, size) as criteria in thematching
procedurewe can obtain somewrong associations due to local sim-
ilarities of the environment geometry and visual appearance simi-
larities. These associations act as outliers in recursive estimation
procedures, e.g. involving Kalman filtering [36], and degenerate
the results. A common solution to this problem is to embed the
estimation into a RANSAC scheme, which however spawns other
issues, such as extensive hypothesis evaluation and setting proper
thresholds for outlier rejection. Therefore, our idea introduced
in [33] is to build a probability distribution of the agent pose
using triplets of associated planar segments as localization cues.
We use triplets as it is a minimal number of associations that fully
constrains SE(3) pose. Employing many potentially corresponding
planar segments combinations, we generate a kernel-based global
PDF that describes the likelihood of the agent pose.

The triplets consist of three pairs of associated plane features
(cf. Fig. 2b). Each triplet is evaluated if it induces a plausible
transformation by projecting planar segments from the coordinate
frame of the current sensor view into the coordinate frame of the
global map (Fig. 2c). But even the plausible triplets should not
contribute equally to the final pose hypothesis, as some triplets
providemore reliable information. Thus, the contribution has to be
weighted, which is illustrated in a simplified form in Fig. 2d. Then,
we construct a PDF to find the transformation that best explains the
associations of the triplets observed from the current agent pose.
A triplet supports the transformation by introducing a weighted
Gaussian kernel that adds to the PDF. The kernels are placed in the
location space, i.e. each point in that space corresponds to a possi-
ble transformation between the sensor view and the map. Hence,
if many kernels are placed in some area, the probability density in
that area is high. During localization, we seek the maximum of the
PDF and finally test it for being the correct transformation.

The data processing steps used in generation and evaluation
of the triplets of planar segments for global localization are sum-
marized in Fig. 3. The process begins with plane segmentation
that isolates planar surfaces from the acquired RGB-D frames. The
extracted segments are merged into a local map of segments that
plays the role of the local 3-D view. Individual planar segments
from the local map are then matched to segments in the global
a priori map, and the outcome pairs are used to form triplets
of pairs representing possible transformations. Each transforma-
tion is evaluated to test if it is plausible and then passed to the
probabilistic localization framework that computes the agent pose
PDF and finds the most plausible pose with respect to the global
coordinate system.

3. Representing a scene using planar segments

A proper representation of the scene is essential for our system
to achieve good performance. A scene should be represented with
a sufficient detail level and there should be incorporated as few
false-positive observations as possible. Therefore, the preliminary
implementation of our systemdescribed in [33]was extendedwith
a method of extracting planar segments directly from individual
RGB-D frames and a mechanism for managing the map of planar
features.

Thus, we no longer use an external system to fuse the acquired
RGB-Ddata fromanumber of consecutive sensor frames into larger
point clouds, that were afterward segmented into planar patches.
Instead, the frame processing pipeline starts with the extraction
of planar segments directly from the incoming RGB-D images.
The extracted segments are then merged with the planar features
already kept in the localmap.However, individual planar segments
do not impose enough constraints to obtain frame-to-frame sensor
motion while building the local map. Because knowing sensor
motion is crucial for map accumulation from consecutive frames,
we use the ORB-SLAM2 system to provide visual odometry that
runs along the local map update process.

3.1. Extracting planar segments

We extract planar surfaces from RGB-D images (Fig. 4) and
exploit the fact that both the RGB image (Fig. 5a) and the depth
data (Fig. 5b) yielded by an RGB-D sensor are stored in dense,
two-dimensional arrays. Processing dense 2-D data is less com-
putationally expensive than sparse 3-D clouds because the ad-
jacency relations between points are straightforward. The most
time-consuming step in the previous version of the system, namely
supervoxel clustering [33], is now replaced by 2-D image segmen-
tation, enhanced with the depth information. The segmentation
algorithm merges individual pixels into larger patches that are
internally consistent and is based on thework by Felzenszwalb and
Huttenlocher [40]. It is a graph-basedmethod that assigns aweight
to each edge of the graph. This weight depends on the similarity
between the neighboring pixels it connects.

The regions are then merged using a criterion concerning edge
weight and the internal variability of the region, starting with
edges of the lowest weight (Fig. 5c). The weight between the ith
and jth pixel is given by the following equation:

ω(i,j) = 0.5|Ii − Ij| + 0.5c|Di − Dj|, (1)

where Ii is the ith pixel intensity value, Di is the ith pixel depth
value, and c = 64 is a scaling factor that assures the same ranges
for pixel intensities and depth values. Since (1) accounts also for
the variability of depth values, our region merging criterion takes
into account the geometry of the scene, unlike the criterion in [40].
Finally, only planar patches satisfying the following criteria are
taken into further consideration:

• The number of points in a patch has to be above the threshold
τeppts to ensure that sufficient statistics have been collected.
The threshold depends on the accuracy of depth measure-
ments in the given depth range. The value of 50 is used
for Kinect/Xtion, because it eliminates small patches whose
shapes cannot be determined when observing exemplary
depth images. This value should be increased for sensors of
lower accuracy of depth measurements.
• The curvature of a segment has to be below the threshold

τecurv, so it is indeed a planar segment. The curvature is
computed as a ratio of the smallest eigenvalue to the sum of
all eigenvalues: λ3

λ1+λ2+λ3
. The value of the threshold is related

to the accuracy of depth measurements and is set to 0.06
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Fig. 2. Conceptual illustration of how the agent global pose PDF is generated by matching sets of planar segments.

Fig. 3. Simplified block scheme of the PlaneLoc global localization system. Rounded blocks represent data structures in the processing pipeline.

for Kinect/Xtion. This value eliminates patches that are not
considered as planar when observing point clouds generated
from exemplary frames.
• The ratio of the smallest eigenvalue and both the second and

the third smallest has to be below the threshold τeeig. Those
ratios are the measures of how precisely the normal vector
is estimated in the two directions spanning the plane. Same
as for the curvature, the threshold is related to the accuracy
of the depth measurement, and the value of 0.4 is set to
eliminate patches that cannot be unambiguously recognized
as planar.

Planar patches are then merged by the flood fill algorithm
(Fig. 5d). The algorithm, using patches adjacency list, merges all
patches that are sufficiently flat, their normals are approximately
parallel to each other, and there are no steps between them.
Merged patches are considered as planar segments if they contain
at least τespts = 1500 points to avoid further processing of
poorly estimated segments. The value of τespts has been adjusted
to eliminate small, non-planar objects that could be observed in
point clouds generated from exemplary frames. Using a threshold
depending upon the number of points, instead of area, makes it
possible to accept small, but well-estimated segments, e.g. those
observed from a small distance. The last operation is to estimate
the equation of the infinite plane supporting the planar segment
and the hull embracing all data points belonging to the segment
(see Section 3.3).

Fig. 4. Schematic overview of the planar segments extraction algorithm. Only the
processing blocks are shown in the pipeline.

3.2. Managing the map of planar features

To build amap of planar segments that can be used in a localiza-
tion task, it is necessary to carefullymanage the process ofmerging
information from consecutive frames. The model of each plane
should be refined when new observations are available, avoiding
the fusion of the data coming from wrong associations at the
same time. To maintain good performance in terms of speed and
efficiency of localization, it is alsomandatory to remove planar seg-
ments originating from wrong measurements or faulty extraction.
To assure that our system follows this strategy,we have introduced
two mechanisms: end of life value ls for all planar segments in the
map, and delayedmerging of complexmatches (Fig. 6). The value of
ls reflects the certainty that the feature is a valid planar segment,
based on the available observations. Each new planar segment has
a value linit = 4 assigned. This value is then decreased by ldec = 1,
whenever the segment should be observed from the current pose
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Fig. 5. Extraction of planar surfaces: RGB image (a), depth image (b), planar patches
segmented using RGB and depth information (c), and merged segments (d).

Fig. 6. Block scheme of the local map update and management process. Rounded
blocks represent data structures in the processing pipeline.

of the sensor, but it is not. Conversely, this value is increased by
linc = 2 whenever an observation is matched with the segment.
When ls reaches 0, the planar segment is removed from the map.

The delayed merging mechanism is used when a new planar
segment is matching two or more map segments at once. Since
associating the new planar segment with multiple map segments
would effectively merge all these segments, it has to be taken with
care because the merging cannot be undone. Thus, we postpone
such complex merges until enough evidence is available that they
are indeed observations of the same planar segment. All potential
complex merges are kept in the storage of pending associations,
and each pending association, similarly to planar segments, has its
own end of life value la. The value is decreased by ldec every time a
new frame is processed and increased by linc when an observation
that matches the same set of planar segments occurs. Eventually,
pending associations are executed when their la reaches lexe = 6
or removed from the storage when the value drops down to 0. The
whole map management process is summarized by Algorithm 1.

3.3. Representation and merging

In the presented system, the measurements have a form of sets
of points in 3-D. Having determined which points belong to which
planar segment, all other properties of segments are obtained
from the analysis of spatial and visual attributes of those points.
Therefore, in the following section, we describe how to compute
the necessary values.

A pose of an infinite plane in 3-D space can be obtained from
analysis of the scattering of the points belonging to the plane. The
points should be scattered mainly in two orthogonal directions,
while the variation in the third orthogonal direction should be

Algorithm 1 Updating the map of planar features
Let PA be short for pending association
Let Ss be the set of local scene segments
Get visible map segments Sm

for all ss ∈ Ss do
Initialize matches set M = ∅
for all sm ∈ Sm do

if ss and sm match then
M =M ∪ sm

end if
end for
if |M|= 0 then

Add new segment ss to map with ls = linit
else if |M|= 1 then

Merge ss and sm
else

if ∃ PA for M then
la ← la + linc

else
Add new PA with la = linit

end if
end if

end for
Merge PAs with la > lexe
Decrease PAs’ la by ldec
Remove PAs with la ≤ 0
for all sm ∈ Sm do

if sm has not been matched then
Decrease segment’s ls by ldec

end if
end for
Remove segments with ls ≤ 0

relatively small. This analysis can be accomplished bymeans of the
Singular Value Decomposition (SVD) on a covariance matrix of the
positions of points. The eigenvector corresponding to the smallest
eigenvalue determines the normal vector n of the plane and the
position of the points centroid can be used to compute the shortest
distance d from the plane to the origin, therefore defining the plane
equation:

nq− d = 0, (2)

which holds for all points q laying on the plane.
Other parameters describing the planar segment are then de-

rived from the centroid position and the covariance matrix. There-
fore, we maintain those values during merging. Having two planar
segments with the centroid positions µi, µj, the covariance matri-
ces Si, Sj, and the numbers of points ni, nj belonging to the segment,
we compute the combined centroid position as in [41]:

µ =
niµi + njµj

ni + nj
, (3)

while the covariance is given by:

S = Si + Sj +
ninj

ni + nj
(µi − µj)(µi − µj)

T . (4)

Since every planar segment has some boundaries, another im-
portant description of a segment is its hull. Planar segments can
have arbitrary shapes, therefore we use non-convex hulls. To com-
pute the hulls, we utilize alpha shapes, which are further processed
to obtain 2-D polygons representing boundaries of the planar
segment. For computations related to hulls on a plane, we have
used the CGAL library.2 The polygons are then simplified to reduce

2 https://www.cgal.org/.
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the number of points necessary to represent them to speed up the
process of finding intersections of two hulls. The number of points
for each polygon rarely exceeds 20.

During merging, the hull is re-computed using all data points
from both planar segments. To avoid excessive accumulation of
the points in segmentsmerged frommany observations, the points
are filtered using a voxel grid filter after each merging operation.
The data points from bothmerged segments are projected onto the
plane of the merged segment. Then, the filter averages all points
that were projected into a single voxel. In result, the points be-
longing to a planar segment retain approximately constant spatial
density through the lifetime of this feature.

3.4. Matching

The procedure of determining which planar segment repre-
sentations are actually observations of the same planar segment
is crucial for the map maintenance. It starts with selecting the
map segments that should be visible from the current pose of
the camera. The planar segments are considered to be one-sided
and the normal vectors point towards the camera. The one-side
assumption is justified by the fact that we want to use planar sur-
faces of objects that have some volume. Thus, only these segments
from the map that are facing the same direction as the currently
perceived ones are considered as visible.

To check, considering occlusions, whether a visible segment
could be actually observed, we build a depth buffer for every pixel.
For every pixel, we construct a list of planar segments that a ray
cast from the camera origin intersects by projecting hulls of every
segment onto the image plane. By employing hulls of segments,
the projection operation is computationally inexpensive, as the
hulls contain a small number of points, which is below 20 for
the most cases. Given a ray, we test if it intersects the hull, thus
avoiding testing every pixel against every segment. Due to a rel-
atively small number of planes in the map and a limited depth
range of the sensor, this process is fast and considerably limits the
number of segments involved in further computations. Once the
depth buffer is established, we count the number of pixels that a
segment could be observed at. We consider only the intersections
closest to the RGB-D sensor, and additionally the intersections
found within 0.2 m behind those closest because the error of
Kinect/Xtion depth measurements rarely exceeds 0.2 m in the
assumed depth range [42]. A planar segment is considered visible
if it is detected at more than τmpix = 1000 pixels. The threshold
depends on the accuracy of visual odometry (frame of reference
transformation) and was adjusted to eliminate the cases when a
correct map segment is considered visible but not matched to any
of the detected segments. The threshold prevents from processing
segments for which only a small patch is visible and it is not
obvious that this segment is indeed in the field of view of the
sensor. We use a pixel-based threshold, rather than area-based
one because it better reflects the amount of evidence provided
by the depth sensor. Furthermore, it does not affect localization
itself, because it only prevents merging segments, but does not
discard them. This choice follows the policy to avoidmergingwhen
there is no strong evidence that the segments are parts of the same
structure.

Measuring how similar are the two considered planar segments
is not as trivial as in the case of a pair of points. One can measure
how similar are the parameters of the infinite planes supporting
those segments, but the parameter values depend strongly on the
choice of the reference frame. The d value in (2) is the distance
from the origin of the coordinate system. If the plane equations
are estimated from point clouds located close to this origin, the
uncertainty of the estimated directions of the normal vectors does
not influence their d values significantly. However, if the planar

segments are far from the origin, even a small change in the normal
directions changes significantly the d value, as shown in Fig. 7.
Therefore, we have decided to refer back to the primary source of
information about the plane and measure how much the sets of
RGB-D points can differ to still represent the same plane. Assuming
that the first planar segment has a centroid µj and normal vector
nj, and the compared planar segment has a centroid µi and a
covariance Si, we define the similarity metric f(i,j) between the ith
and jth segment. This metric is computed as a variance of points
positions of the segment i in a direction of the normal nj, but
represented with respect to the centroid µj:

f(i,j) =
1
ni
nT
j Si→jnj, (5)

where Si→j is a covariance of the planar segment iwith respect the
centroid of the planar segment j:

Si→j =

ni∑
k=1

(qk − µj)(qk − µj)
T

=

ni∑
k=1

(qk − µi + µi − µj)(qk − µi + µi − µj)
T

=

ni∑
k=1

(qk − µi)(qk − µi)
T
+ (qk − µi)(qk − µj)

T

+ (qk − µj)(qk − µi)
T
+ (µi − µj)(µi − µj)

T

= Si + ni(µi − µj)(µi − µj)
T , (6)

where the last step follows from the fact that
∑ni

k=1 qk − µi is equal
to 0.

To recognize two planar segments as the same they have to
fulfill the following criteria:

• The angle between the directions of their normal vectors has
to be below the threshold τmnorm = 45◦, which is only a rough
test if the segments are faced in the same direction.
• Both, the f(i,j) and f(i,j) metrics have to be below the threshold

τmmet = 0.02. The value of the threshold depends on the
accuracy of the depth measurement and was adjusted to
the highest value that did not cause incorrect merging on
exemplary segments.
• The difference between their color histograms h(i,j) has to

be below the threshold τmhist − 4.5, which is a coarse test
for appearance similarity. The threshold is adjusted to accept
correct matches in exemplary sequences.
• Their hulls have to overlap, which is assumed to be true if

a ratio of an area of intersection and an area of the hull is
above the threshold τmarea = 0.3 for one of the segments.
This threshold helps to avoid associating segments that are
actually disjoint in spite of being located on the same infinite
plane and takes into account possible inaccuracy in the sensor
pose estimation.

4. Localization with planar segments

4.1. Selecting triplets

Having the current view and the global map represented as
planar segments, we pick pairs of segments, one segment from
the current view, and another one from the map. Those pairs are
potential matches and each of them may be either correct, if the
two planar segments indeed represent the same planar surface, or
incorrect if they do not. To limit the number of pairs only segments
that are visually similar are considered. The appearance of each
plane is represented as a histogram of the Hue and Saturation
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Fig. 7. Simplified illustration of the influence the location of the planar segments with respect to the origin of the global coordinate frame on the uncertainty of the plane
parameters.

components of the HSV color model and is embedded into a vector
hs
i for the ith plane from the current view and into a vector hm

j for
the jth plane from the map. Planar segments i and j are considered
similar if the difference between their histograms does not exceed
the threshold:

h(i,j) = |hs
i − hm

j | < τlhist. (7)

The HSV model, that closely aligns with the way human vision
perceives colors, enables the algorithm to distinguish differently
colored surfaces, even using a consumer-grade camera with auto-
exposure and auto-white balance, such as the one in Microsoft
Kinect. The threshold τlhist is dependent upon the environment’s
characteristics and its default value is set to 2.5. However, if the
number of produced pairs exceeds 275, we dynamically trim this
value to select only 275 most similar pairs.

As three pairs allow to compute an SE(3) transformation, we
form triplets of pairs that represent a valid transformation if all
three matches are correct. Again, to limit the size of the search
space, each triplet can be early rejected if it does not fulfill one of
the following conditions:

• Eachplane i and jhas to appear in atmost one of three pairs, as
the same plane segment cannot be matched more than once.
• The pairwise relations between planar segments have to be

the same in the set of map segments and scene segments. An
easily verified relation between planar segments is an angle
between the induced infinite planes, therefore we check if
angles between the planes are approximately equal in both
sets (with the margin of τlang = 15◦). This threshold was ad-
justed to the minimal value that accepts correct matches and
should be increased if a sensor of lower depth measurements
accuracy is applied.
• The map planar segments must not be further than τldist = 5

m each from the other. The map can be large in comparison
to the current view, therefore if two planar segments are far
from each other, they cannot be visible in the same view. The
value of τldist is correlatedwith the range and the field of view
of the sensor.

4.2. Computing transformations

To evaluate the correctness of the established triplets it is nec-
essary to calculate the alleged SE(3) transformations between the
frames of reference of the local view and the globalmap induced by
those triplets. We use a general method that takes as input n ≥ 3
pairs of planar segments and outputs a transformation given by the

translation vector t = [tx ty tz]T and the rotation quaternion
r = [rx ry rz rw]T . The method consists of two steps. At first,
it calculates the rotation using normal vectors of the planes ns

i and
nm
j , then the translation is obtained using distances from origins

dsi and dmj . A derivation of the rotation calculation algorithm is
based upon the method of Walker et al. [43]. The process tries to
minimize the differences between current view’s normal vectors
and transformed map’s normal vectors:

e(i,j) = |W(r)TQ(r)nm
j − ns

i |
2

=
[
W(r)TQ(r)nm

j − ns
i

]T [
W(r)TQ(r)nm

j − ns
i

]
= (nm

j )
TQ(r)TW(r)W(r)TQ(r)nm

j

− 2ns
iW(r)TQ(r)nm

j + (ns
i )

Tns
i

= 2
[
1− rTQ(ns

i )
TW(nm

j )r
]
. (8)

The total energy to minimize is given by the equation:

Er =
∑
(i,j)

2
[
1− rTQ(ns

i )
TW(nm

j )r
]
= rTCr+ const., (9)

where: C = −2
∑

(i,j) Q(n
s
i )

TW(nm
j ). To constrain rotation quater-

nion to the length 1, a Lagrangian multiplier λ was introduced to
the equation:

Ẽr = rTCr+ λ(rT r− 1), (10)

which can be solved by taking the derivative with respect to r:

∂ Ẽr
∂r
= (C+ CT )r+ 2λr = 0. (11)

After rearrangement we obtain:

−
1
2
(C+ CT )  

D

r = λr (12)

where the solution r∗ is given by the eigenvector of matrix D that
corresponds to the largest eigenvalue.

An important question is whether the computed rotation is
the only solution to Eq. (12) or there are many possible solutions
because the planes do not impose enough constraints. It turns out
that the solution to (12) is unambiguous if the largest eigenvalue
has no counterpart with a negative sign. This additional criterion is
induced by the assumption that the segments are one-sided. Only
equations for a fully constrained rotation do not have a solution
where normal vectors are pointing in the opposite directions,
maximizing the energy, instead of minimizing it.
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Fig. 8. Using simplified hulls of the planar segments in matching: triplet of planar
segments from the local view (a), aligned local and global planar segments with
overlapping hulls — slashed areas are the overlapping ones (b), and aligned local
and global planar segments with hulls that are not overlapping enough for an
acceptable match (c).

Computing the translation between frames of reference is done
by minimizing a square errors between current view’s plane dis-
tances and the transformed global map’s plane distances [44]:

Et =
∑
(i,j)

(dsi − dmj − (nm
j )

T t)2 = |b− At|2, (13)

where:

A =
[
nm
j,1, . . . ,n

m
j,n

]T
, (14)

b =
[
dsi,1 − dmj,1, . . . , d

s
i,n − dmj,n

]T
. (15)

The solution is obtained using SVD decomposition with an ad-
ditional assertion of the A matrix rank to determine if enough
constraints are present to compute the translation.

4.3. Evaluating transformations

Unfortunately, as the transformation computation is only mini-
mizing the errors, the solution may actually be implausible in case
of a mismatch between the segments. It is the case when the sys-
tem of equations imposed by the planar constraints is inconsistent.
Therefore, each calculated transformation has to be testedwhether
it is valid or not. This is a preliminary step, before selecting the
final correct transformation, that eliminates impossible transfor-
mations. This step consists of evaluating two criteria:

• the plane representation projection criterion,
• the overlapping of the hulls criterion.

If the transformation is valid, a representation of map’s plane,
transformed to the current view’s frame, should be approximately
equal to the actual one of the current view’s plane for each pair of
segments. The difference between those representations is com-
puted using the similarity metric (5) and has to be below a thresh-
old τlmet = 0.02:

f(i,j) < τlmet ∧ f(j,i) < τlmet. (16)

Same as τmmet, the value of the threshold depends on the accuracy
of the depth measurement.

Planes are infinite and the computed transformation can be still
implausible, despite similar plane representations. It is often the
case that the solution point to a distant location, far away from the
investigated environment. Therefore, it is also necessary to check
if the transformation is justified by the available observations. We
assume the solution to be plausible when the hulls of the points
belonging to the map planar segments, denoted by η(Pm

j ), after
transformation to the current view frame of reference, overlap
with the hulls of the points belonging to the current view seg-
ments, denoted by η(Ps

i ):

G(i,j) =
[
T−1m,sη(P

m
j )

]
∩ η(Ps

i ), (17)

where Tm,s denotes a homogeneous transformation matrix from
themap frame to the current view frame. In other words, we check
if for each pair of infinite planes the same segment of the plane is
observed and represented in the global map and the current scene
(Fig. 8). The area of the co-observed part has to be a certain fraction
of the smaller convex hull to take into account inaccurate location
estimation:

α
(
G(i,j)

)
min

{
α

(
η(Pm

j )
)
, α

(
η(Ps

i )
)} > τlarea, (18)

where α(.) is a function returning the area of the hull and τlarea =

0.3.

4.4. Assigning weights

The set of triplets T generated in the previous processing steps
is then included in the probabilistic framework. Each triplet is
scored and the computed scores are treated as weighting factors
used to build a PDF. The final outcome of the method is the SE(3)
transformation, which is the most probable according to the sup-
porting evidence.

To this processing stage, we have at our disposal a set T of
triplets along with corresponding transformations that exclude
implausible ones. But not every triplet has the same value in terms
of a correct transformation inference. Due to this fact, we have to
assign a weight to each triplet, before we will be able to construct
a probability distribution that will reflect our whereabouts knowl-
edge. The triplet weight takes into consideration the appearance
difference h(i,j) (7) and the area of the convex hulls intersection
α(G(i,j)) (17). Moreover, the weight depends on how frequently
the respective plane segment was employed, as the same plane
can be a part of multiple triplets and therefore can introduce a
bias to the PDF. We handle it by calculating an occurrence factor
for each triplet a and each pair (i, j) ∈ Sa within the triplet. The
more triplets including the same plane in a vicinity of induced
transformation, the smaller the weight:

wa,(i,j) =

⎡⎣∑
b∈T

∑
(k,l)∈Sb

Ii=k exp(−y(a,b))

⎤⎦−1 , (19)

where Ii=k is an indicator function equal to 1 whenever i = k and 0
otherwise, and y(a,b) is a squared norm of an SE(3) logarithm map
of a difference between transformations T for the triplets a and b:

y(a,b) =
⏐⏐log(T−1a Tb)

⏐⏐2 . (20)

The overall weight for the triplet a is expressed by the equation:

wa =
∑

(i,j)∈Sa

α(G(i,j))wa,(i,j) exp(−h(i,j)). (21)

4.5. Constructing localization distribution

The SE(3) transformations induced by triplets are represented
as points in a 6-D space. These points should form clusters near
plausible locations and the largest cluster should be near the cor-
rect location. We consider each transformation as a hint that the
correct localization is in the vicinity of this transformation. The
strength of the contribution is controlled by the weight given by
(21) and we convert this contribution to the probabilistic domain
by placing a weighted Gaussian kernel in each transformation
point. The final PDF is, therefore, a sum of all kernels:

p(x) =
1
Z
p̃(x) =

1
Z

∑
a∈T

Ka(x), (22)
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where Z is a normalizing constant, and the kernel is:

Ka(x) = wa exp
{
− log(T−1x Ta)T Ia log(T−1x Ta)

}
. (23)

The distance between the kernel’s center, defined by the 6-D coor-
dinates x and represented by homogeneous matrix Tx, and the 6-D
point for triplet a, represented by the homogeneous matrix Ta, is
computed using logarithm map. The logarithm map is embedded
in the square form of the multidimensional Gaussian distribution
with the information matrix Ia. The role of the information matrix
is to scale the kernel along the dimensions of the 6-D space,
i.e. with respect to the particular degrees of freedom. Since the
triplets of planar segments we use for localization always provide
constraints in all six degrees of freedom, we use identity matrices
as Ia. However, this can change if we introduce partial localization
cues, e.g. from inertial sensors that yield only an orientation of the
agent, or from WiFi fingerprinting that provides its 2-D position.

Having a probability distribution, we seek the point with the
highest probability. Inference in general distributions can be com-
plicated and to avoid this, we exploit the fact that we already
have a list of possible solutions. For each triplet, we evaluate the
transformation induced by this candidate and choose the one with
the highest probability, denoted further as x∗. To decide that the
transformation x∗ is correct it has to pass three tests that ultimately
verify the recognition. First of all, its probability has to exceed a
certain threshold:

p̃(x∗) > τlprob (24)

This condition checks if there is enough evidence to be confident
about the location. The value of the threshold was adjusted on a
subset of local scenes to eliminate false positives.

The second test controls whether there are redundant con-
straints that the transformation was computed from. Three pairs
of infinite planes (represented by their respective segments) are
sufficient to compute a transformation, but no information is left to
verify that transformation. Therefore, we check howmany distinct
planes can be matched using the transformation x∗. We transform
current view’s planar segments, perform matching with map seg-
ments and examine the sets of matched segments. For both, the
map and the current view, we check the number of distinct planes
using the criterion for f(i,j) values. Note thatwedonot count distinct
planar segments, but distinct planes to avoid counting multiple
times e.g. a wall split into a few planar segments. The number
of distinct planes has to be above a threshold τldiv. According to
our experience, the τldiv value of 6 rejects nearly all incorrect
recognitions that have not been eliminated by the first criterion.

The last test is the fitness score test. It refers back to the point
clouds and determines if the current view’s point cloud trans-
formed to the map’s frame of reference is aligned with the actual
map’s one. This test involves computation of the sum of squared
distances from each point of the transformed current view’s point
cloudPs to its closest neighbor in the point cloud of the global map
Pm. This residual distance has to be below a threshold:∑
qsl∈Ps

(Tx∗qs
l − q̂m

l )
2 < τlres, (25)

where q̂m
l is the nearest neighbor in map’s point cloud. The thresh-

old was adjusted on a subset of local scenes used for initial tests
to produce no false positives. It is worth noting that the fitness
score test examines only points belonging to planar segments,
and is much faster than the popular Iterative Closest Points (ICP)
algorithm, because (25) is equivalent to a single iteration of ICP on
a reduced size point cloud.

If the transformation fulfills all three conditions, it is assumed
to be the correct one.

Fig. 9. Visualization of the PUTRGB-D/Workshop environment: coloredpoint cloud
made from three RGB-D sequences registered in a common frame (a), and the global
map of planar features built from these three sequences (b). Note that individual
planar segments are represented by the measured points that belong to these
segments, shown in random colors.

5. Experimental evaluation

The PlaneLoc system has been evaluated in the global local-
ization task with an a priori known map. Because PlaneLoc is not
yet integrated within an RGB-D SLAM system (e.g. PUT SLAM [5]),
we have employed the state-of-the-art ORB-SLAM2 [6] software to
obtain reliable visual odometry for the incremental construction of
local, segment-based maps.

Besides a representation of the local view in terms of planar seg-
ments, to performglobal localization, the PlaneLoc system requires
a global map, also composed of planar segments. This requirement
makes it difficult to evaluate PlaneLoc on a publicly available data
set that was already used by other localization or SLAM systems.
Unfortunately, RGB-D data sets obtained experimentally usually
do not contain ground truth for the observed objects, thus it is
not possible to prepare a ‘‘ground truth’’ global map of planar
segments. Such a perfect a priori map is in principle not available
also if the localization system works online with an RGB-D sensor.
Even a map generated from an up-to-date CAD model of the envi-
ronment can be imperfect due to unmodeled or non-static objects.
Therefore, in the presented experiments we build the global maps
off-line using the described planar segments extraction and map
management methods. This approach is analogous to a situation
when a SLAM system is used to build a global map and then this
map is re-used for localization. However, when using a data set
that contains ground truth trajectories for theRGB-D sensor (which
is common), we use these ground truth trajectories instead of the
SLAM-estimated ones to increase the accuracy of the global map.

Regarding local maps, using a single RGB-D frame to build them
is not enough, because a sufficient number of planar segments has
to be detected. Hence, to widen the local view context, we use the
same procedure as for global map building to obtain a set of planar
segments from 50 consecutive RGB-D frames. In this case, the
necessary visual odometry is delivered by the ORB-SLAM2 system.
Considering the Kinect frame rate, the short sequence used in local
mapping takes less than 2 s and in most cases, the trajectory does
not accumulate significant drift, despite enforcing no loop closures
within this short time window. Creating both the global segment-
basedmaps and the local sets of planar segmentsweuse only depth
measurements acquired in the ranges between 0.2 and 4 m. This is
motivated by the depth noise characteristics of the commonly used
RGB-D sensors based on structured light technology [42]. These
sensors cannotmeasure very close objects, whereas errors in depth
measurements increase with distance from the sensor. Hence,
measurements in the range above 4 meters would rather corrupt
the perceived geometry than contribute to correct localization.

For evaluation, we have employed two data sets: the publicly
available NYUv2 [45], and the PUT RGB-D/Workshop,3 which has

3 Available at http://lrm.put.poznan.pl/rgbdw/.
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Fig. 10. Global localization results for the PUT RGB-D/Workshop data set seq2 for
τlprob = 1.0, τlres = 0.07, and τldiv = 6. Test trajectories are marked with red lines,
recognizedplaceswith blue dots,while green lines connect the recognized locations
to their respective ground truth poses (for interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article).

been prepared specifically to support this research. The NYUv2
data set was acquired in a typical household environment and is
aimed at evaluating semantic segmentation. Since no ground truth
for the sensor trajectory is provided in this data set, we used the
sensor trajectory computed byORB-SLAM2 to build a globalmap of
segments from these data. Themap contained 55 planar segments.
The PUT RGB-D/Workshop data set was acquired in an 8 × 8
meters robotic workshop at PUT (Fig. 9a), with the ground truth
sensor trajectory obtained using the OptiTrack motion capture
system. This data set consists of 10 sequences (seq1 to seq10). Three
non-overlapping ground truth trajectories and their corresponding
RGB-D sequences (seq5, seq6, and seq7) were used to build a global
map that contains 93 segments (Fig. 9b).

Our motivation for using a motion capture system in the global
map building process was the need for a good quality a priori
map to test global localization only, which was the main focus of
the presented research. However, we are aware that ground truth
sensor trajectories (e.g. from OptiTrack) rarely are available in
practical applications of indoor localization systems. Thus, if SLAM
is used to produce the global map, the relative pose errors (RPE in
the sense of the localization quality metrics defined in [46]) in the
trajectorywould have to be bound, to avoidwrong alignment of the
planar segments extracted from consecutive RGB-D frames in the
matching procedure (see Section 3.4). Specifically, the translational
RPE should have to be smaller than the 0.2 m tolerance defined in
the depth buffer, as the error in sensor translation adds here to the
depth sensor error. The rotational RPE must have not exceeded 5◦
to ensure that tests based on the normal vectors of the segments
work properly. It should be noticed that in our experiments the
RPE values achieved by ORB-SLAM2weremuch smaller than these
thresholds, for example on the seq1 trajectory of the PUT RGB-
D/Workshop data set the translational RPEMRSEwas 0.01m,while
the rotational RPE MRSE was only 0.52◦.

In all presented experiments the localization performance was
measured by counting the locations thatwere correctly recognized
(true positives — TP), those that were recognized incorrectly (false
positives— FP), and those not recognized at all (negatives— N). For
the performance tests, we applied PlaneLoc to every 10-th pose of
the investigated sequence, attempting to localize the sensor with

Fig. 11. Global localization results for the NYUv2 data set for τlprob = 1.0,
τlres = 0.07, and τldiv = 6. Test trajectories are marked with red lines, recognized
places with blue dots, while green lines connect the recognized locations to their
respective ground truth poses (for interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

respect to the entire global map. The metrics given by Eq. (20) was
used to tell if the estimated sensor pose is acceptable with respect
to the ground truth pose. For all sequences sensor poses that were
distant at most 0.16 from the respective ground truth pose have
been considered as correct. This particular threshold was chosen
because our experience with ORB-SLAM2 and PUT SLAM [5] shows
that re-localization within this range usually enables to recover
tracking.Webelieve that this value should be suitable also for other
similar SLAM systems.

Additionally, mean Euclidean d̄ and angular ᾱ distances be-
tween the estimated sensor poses and the ground truth trajectory
were computed in all experiments. Results are summarized in
Table 1, where three sets of parameters were evaluated: with all
consistency tests, with the point cloud fitness test (25) switched
off, and with the number of distinct planes test switched off. Visu-
alizations of the recognized places are presented in Figs. 10 and 11,
for the PUT RGB-D/Workshop and NYUv2 data sets, respectively.

The results obtained using two different data sets indicate that
the proposed method is reliable, finding a large number of lo-
cations along the test trajectories. In contrast to our preliminary
results [33], the cloud alignment test is no longer the main fail-
safe against incorrect recognitions. The introduced test for distinct
planes took over most of this functionality. If the algorithm is
parametrizedwith the τ thresholds chosen according to the guide-
lines given in the paper, it produces no false positives, which is of
pivotal importance in the localization task. The main cause for the
number of places (local views) that remained unrecognized was
the absence of sufficient planar segments to constrain the pose in
all 6 degrees of freedom. This suggests that planar segments should
be further augmented with other features, such as line segments
(edges).

The mean computing time for a single global localization act in
the experiments was 19 s on a Core i5-3230M 2.6 GHz laptop. A
more detailed breakdown of the computation time with respect
to the four main blocks of the PlaneLoc architecture (cf. Fig. 3)
yields the following results (averaged over all experiments): single
frame processing — 736 ms, generating the local observation —
518 ms, computing the pose likelihood — 16439 ms, and final
localization — 2255 ms. From these figures, it is clear that the
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Table 1
Global localization results for three RGB-D sequences and three different parameter sets. Setting τlres = ∞ or τldiv = 0 means that the respective tests are switched off.
Localization Sequence Parameters Statistics

system τlprob τlres τldiv TP FP N d̄ [m] ᾱ [◦ ] lmax

PlaneLoc

PUT RGB-D/W seq1
1.0 0.07 6 32 0 184 0.136 2.55 370
1.0 ∞ 6 32 0 184 0.136 2.55 370
1.0 0.07 0 57 14 145 0.638 18.64 330

PUT RGB-D/W seq2
1.0 0.07 6 48 0 118 0.125 2.09 264
1.0 ∞ 6 48 1 117 0.199 3.845 264
1.0 0.07 0 60 7 99 0.342 12.680 264

NYUv2 living room 3
1.0 0.07 6 176 0 47 0.090 1.59 —
1.0 ∞ 6 176 0 47 0.090 1.59 —
1.0 0.07 0 200 1 22 0.100 2.03 —

ORB-SLAM2 PUT RGB-D/W seq1 — — — 66 0 155 0.145 1.65 570
PUT RGB-D/W seq2 — — — 74 0 97 0.139 1.86 300

most time-consuming step (16 s in average, 35 s maximum when
many similar combinations of planar segments were present in an
environment with repetitive geometric structures) is the genera-
tion of candidate triplets and computation of transformations for
these triplets. Fortunately, those steps can bemademuch faster by
parallelization on a GPU, as these computations are independent.
They can be scheduled to separate threads without any synchro-
nization between them, e.q. using CUDA framework. With Nvidia
GTX Titan it is possible to run simultaneously up to 2688 threads,
which should enable the algorithm to run fast enough to be used
as a relocalization or loop-closing module. It should be noticed
that although PlaneLoc can generate a large number of individual
localization cues that contribute to the final PDF, we have observed
that the average number of triplets included in the final PDF for
correct recognitions was only 111.

To demonstrate the advantages of PlaneLoc over the classic
approach to re-localization in SLAM, we have processed the PUT
RGB-D/Workshop sequences with ORB-SLAM2. Since ORB-SLAM2
uses its ownmap of point features, such amap has been built using
the seq5, seq6, and seq7 sequences. To ensure a fair comparison
to PlaneLoc that uses a global map obtained from ground truth
trajectories, we have used the same ground truth data to correct
poses of keyframes in ORB-SLAM2.

Then, we have investigated if ORB-SLAM2 is able to re-localize
at every 10-th frame employing this known map. Sequences seq1
and seq2 were used for re-localization evaluation. The estimated
sensor poses were accepted or rejected using the same metrics
and the threshold value of 0.16 as for PlaneLoc. In general, the
re-localization in ORB-SLAM2 performed well in the feature-rich
workshop environment, yielding accurate sensor pose estimates
at the same locations as PlaneLoc. However, there were few ar-
eas, particularly in the seq1 sequence, that ORB-SLAM2 could not
re-localize in, whereas PlaneLoc managed to produce acceptable
sensor poses in these parts of the trajectory (Fig. 12). For seq1
ORB-SLAM2 did not recognize 155 frames and among them were
14 frames recognized by PlaneLoc. For those frames, the maximal
error, measured using (20), was 0.104 and average errorwas 0.039,
where the threshold was 0.16. In case of seq2 there were 97
frames unrecognized by ORB-SLAM2, 18 of them were recognized
by PlaneLoc with the maximum error of 0.111 and the average
error of 0.035. Although the total number of recognized locations
(TP) was bigger for ORB-SLAM2 in both trajectories considered for
this comparison, the trajectory segments in which the systems
could not localize were shorter for PlaneLoc. This is shown by the
lmax metrics, that stands for the maximum number of consecutive
frames without a correct recognition.

6. Discussion and conclusions

This paper considers the global localization problem in 6 d.o.f.
applying a novel probabilistic approach that creates a PDF describ-
ing the likelihood of the agent pose from local and weak cues. The

Fig. 12. Example locations that ORB-SLAM2 was not able to re-localize in (neither
in their wider neighborhood): visualized trajectory with PlaneLoc (blue dots) and
ORB-SLAM2 (yellow dots) recognitions (a), RGB frames with ORB features marked
as green rectangles (b), (d), and their counterpart localmaps of planar segments that
PlaneLoc successfully localized within the global map (c), (e) (for interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article).

proposed implementation, called PlaneLoc, uses sets of local planar
segments extracted from RGB-D data as the cues.

In opposition to many RGB-D and visual SLAM systems that
are available as open source and can be used for performance
comparison, no comparable RGB-D global localization software
was accessible to us during the presented experiments. Therefore,
it was not possible to directly compare PlaneLoc to other global
localization solutions on the same data sets. However, the experi-
mental results demonstrated that PlaneLoc performswell in room-
sized environments, yielding correct and accurate pose estimates.
In particular, the comparison to ORB-SLAM2 in the re-localization
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task demonstrated that PlaneLoc to a less extent depends on the
local appearance of the environment than a typical approach to
re-localization in SLAM, based on a combination of visual place
recognition and pose estimation using point features. In practice,
PlaneLoc in its current variant cannot use a depth-only sensor,
because the color data are necessary to improve the efficiency
of segmentation into planar patches (described by Eq. (1)), and
are essential for early rejection of incompatible pairs of planar
segments (using the color histograms). However, the similarity
of visual appearance between the a priori map and the images
acquired during localization is not at the core of the computations.

Contrarily, our approach depends more on the geometry of
the environment that should have enough planar structures to
build an a priori map and to extract planar segments at local
views. For example, in a long corridor without any distinguishable
local structures, PlaneLoc cannot find triplets of planar segments
that constraint the pose hypothesis in all six degrees of freedom.
When encountering geometric symmetries in the environment,
particularly combined with a limited number of detected triplets,
our approach cannot distinguish between a number of the agent
pose hypotheses having equal probability. These situations can
be to some extent circumvented by enlarging the perceived local
environment, e.g. using a sensor with a bigger range of the depth
measurements, that can see features outside the area of degenerate
geometry. Additionally, localization cues obtained from inertial or
WiFi sensors can substitute the agent pose constraints not avail-
able in the degenerate cases. On the other hand, visual appearance
similarity tests that are more discriminative than the simple color
histograms could help to distinguish between objects of similar
geometry. The current implementation of PlaneLoc, using only a
Kinect/Xtion RGB-D sensor is most suitable for man-made envi-
ronments, such as offices, labs, and industrial shop floors, which
are rich in local geometric structures.

A more general advantage of the proposed probabilistic frame-
work is that not only paired planar segments can contribute to
the PDF. The framework can easily accommodate localization cues
coming from other geometric features, or even from other sensing
modalities, e.g. an orientation sensor like Inertial Measurements
Unit (IMU). Although the application of different sensors is not a
unique feature among the localization algorithms, an advantage
of our approach is that sensors of very different modality can be
used together, as long as they generate localization cues (also par-
tial) in the common probabilistic framework. Our approach favors
modularity, as the localization mechanism remains exactly the
same, nomatterwhat types of sensors or processing algorithms are
applied. Although a number of parameters should be set properly
to obtain useful localization cues, most of these parameters are
specific to the particular localization cues and they depend on the
characteristics of the sensory data. In this article the parameters
of a module that generates 6 d.o.f. cues from RGB-D data using
planar segments have been discussed and explained in relation to
the depth data characteristics.

Also, the applications of the presented approach are not limited
to global localization and re-localization in SLAM. The methods
developed for extraction and merging of planar segments can be
easily adapted formatching planar features in a graph-based SLAM
framework, where poses of planar segments in the global map are
updated by optimizing parameters of the infinite planes support-
ing these segments, togetherwith the optimized sensor poses [47].
Note that this 6 d.o.f. localizationmethod can be applied to a broad
range of robots and autonomous agents, from smartphones with
compact RGB-D sensors (Intel RealSense), through different legged
robots, to quadcopters operating indoors.

Further research focuses on decreasing the localization time to
a practically acceptable value (less than 5 s) by optimizing the code
and implementing selected operations on the GPU. Then, we plan

to extend PlaneLoc adding edge features, and finally, integrating
IMU localization cues. The independent orientation cues should
enable pose estimation from local views that do not contain ge-
ometric features constraining all six degrees of freedom.
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Stereo Plane R-CNN: Accurate scene geometry
reconstruction using planar segments and

camera-agnostic representation
Jan Wietrzykowski1 and Dominik Belter1

Abstract—The article introduces a novel method for planar
segments detection and description from a stereo pair of images.
The existing systems for planes detection utilize single RGB
images and have accuracy- and scale-related problems regarding
3D reconstruction with the obtained planar segments. The
proposed approach draws inspiration from deep-learning-based
systems for plane detection and depth reconstruction. Firstly, we
improve the planes detection in the image. Secondly, we enhance
geometry reconstruction accuracy using a stereo setup. To achieve
the 3D model of the observed planes, we introduce a novel
neural network architecture and training strategy that jointly
optimizes the prediction of disparity, normal vectors, and plane
parameters. Moreover, the proposed approach utilizes an efficient
camera-agnostic representation of the problem. Finally, we show
that our system outperforms existing approaches to planar
segments detection and parameters estimation and improves the
reconstruction accuracy of indoor environments.

Index Terms—Deep Learning for Visual Perception; Mapping;
Semantic Scene Understanding

I. INTRODUCTION

AKEY factor in introducing camera-based localization
systems to everyday life is their robustness. One way to

improve the robustness is to include a relocalization mech-
anism that uses higher-abstraction-level objects as matched
features [1], [2]. Viable alternatives to point features are
planar segments because they can be reliably detected and
are common in man-made environments [2]. However, precise
3D pose estimation of those segments is crucial, not only for
camera localization [3] but also for scene reconstruction [4].
Unfortunately, geometry reconstruction of planar segments
using a monocular camera is a difficult task [2], [5] due
to problems with metric scale estimation and ambiguity in
the orientation of planes. A solution can be to use RGB-D
sensors that became widely used in the last years. However,
their effective range is limited, which leads to discarding
a lot of beneficial information about distant regions of the
scene [1]. Promising alternatives are stereo cameras that have
a larger effective range than the available RGB-D cameras
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Fig. 1. Architecture of the proposed system. The plane detection module
detects planes on a single RGB image, and a novel geometry module utilizes
stereo pair of images to estimate the 3D poses of the detected planes.

and enable more accurate geometry reconstruction than a
monocular camera [6]. However, most of the stereo-based
reconstruction research focuses on dense depth estimation
from a pair of images [6], [7] and neglects the role of position
and orientation of higher-level planar features, useful in the
localization and scene reconstruction.

Almost all state-of-the-art research on planar segments
detection is focused on the application of Deep Neural Net-
works (DNNs) to images from monocular cameras [2], [3],
[4]. This group includes the Plane R-CNN [5] that uses an
architecture based on Mask R-CNN [8] and achieves state-of-
the-art detection performance. However, our tests indicate that
the performance of this method on a different dataset drops
significantly, especially for distant planes. Also, geometry
reconstruction is still unsatisfactory due to problems stemming
from using a monocular camera, namely, inaccurate estimates
of distances to planes and normal vectors.

Considering the limitations of the existing methods, we
propose a new DNN-based system that detects planes and
utilizes depth information encoded in a stereo pair of images
to estimate 3D plane parameters. We bridge a gap between
RGB-based plane detectors and systems that densely estimate
depth from stereo pairs of images to obtain an accurate set of
planar segments describing the scene (Fig. 1). Our contribution
can be summarized as follows1:

• An improved plane segmentation method that deals with
the problem of suppressed plane segments in the detection

1Implementation and dataset are available at https://github.com/LRMPUT/
sprcnn
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methods based on Regions Of Interest (ROIs) and Non-
Maximum Suppression (NMS).

• A novel neural network architecture that leverages dis-
parity information from a stereo camera to accurately
reconstruct scene geometry.

• A camera-agnostic normal vector representation that im-
proves the robustness of the neural network to changes
of the camera parameters that naturally arise when de-
ploying a system in a real-life scenario.

• A training procedure that simultaneously utilizes global
parameters of planes, pixel-wise normal vectors, and
disparity prediction to improve the accuracy of plane
parameters estimation.

• A fully automatically generated photorealistic synthetic
dataset containing stereo images annotated with planar
segments.

II. RELATED WORK

A. Pixel-wise depth and normal estimation

Research on scene geometry estimation focuses on recov-
ering pixel-wise depth information from a single image [9],
[10]. However, the work by Smolyanskiy et al. [6] argues
that a 3D precise geometric reconstruction requires a stereo
camera. They also propose a semi-supervised method for
learning depth prediction. The ground truth data utilizes 3D
laser scanner measurements and is augmented by unsupervised
photoconsistency evaluation between stereo images. Convo-
lutional neural networks (CNNs) have also been proven to
be efficient in estimating normal vectors for each pixel of
an RGB image [11]. However, recent work suggests that
a coupled estimation of normal vectors and depth values
provides more consistent and accurate estimates [12]. Also,
Kusupati et al. [13] show that joint learning depth and normal
vectors and enforcing consistency give significantly better
results than separate learning. A generalized approach to con-
sistency learning demonstrated on normal and depth estimation
is presented in [14]. Unfortunately, knowledge about depth
and surface normals could be only supplementary information
for the generation of geometric features. Nonetheless, in this
article, we follow the joint learning approach and optimize
simultaneously losses related to disparity, pixel-wise normal
vectors, and plane parameters estimation to provide more
accurate results.

B. Detection of planar segments

Planar segments are a promising alternative to pixel-wise
geometry reconstruction. Indoor environments are rich in
planar segments and can be described just by a few of these
geometric primitives. Another advantage is that the geometric
properties of the underlying infinite planes can be easily
described by a linear equation with only 4 parameters. Our
initial experiments [15] prove that planes are also suitable for
the global localization methods. An end-to-end approach to
recover 3D planes from a single image is presented in [16],
where supervision of learning is done indirectly by using
depth ground truth. The parameters of the detected planes
are estimated from values extracted from the latent space of

the neural network. The limitation of their method is that
only five planar segments can be detected in the scene, and
learning requires a complete depth map for every training
image. A limited number of planar segments can be also
processed by the PlaneNet method [17]. The architecture of the
neural network proposed in [17] contains separate branches for
plane segmentation and for estimation of plane parameters. In
our research, we also utilize a separate branch for estimation
of plane parameters, but, at the same time, we train dense
branches for disparity and normal vector estimation and show
that this approach provides more accurate results. The SVPNet
method [18] focuses on the binary classification of pixels
into planar and non-planar segments and the extraction of
embeddings where the same plane instances are close to each
other. The planar segments are extracted using the mean-
shift algorithm, and the plane parameters are estimated for
each pixel in the first processing stage. In [5] the proposed
Plane R-CNN method detects planar regions and reconstructs
a piecewise planar depth map from a single RGB image. The
plane instances are detected using a network based on the
Mask R-CNN [8]. Then, a segmentation refinement network
improves the consistency of the detected planar segments. The
depth image is estimated directly from the RGB image by the
decoder connected to the feature pyramid network (FPN) [19].
Estimation of the normal vectors consists of two components.
The classifier picks one of the seven anchor normal directions
and separately estimates the residual 3D vector. We, however,
use a direct normal estimation because it provides better
results.

C. 3D reconstruction and applications
Detected planar segments can be used in further scene

reconstruction. Park and Yoon [20] show that stereo matching
and disparity estimation can be improved by plane hypotheses
generation and global optimization with plane hypotheses.
In [21], information about planar segments from a single
omnidirectional camera image is used to design plane-aware
loss that improves normal vectors’ predictions accuracy. The
Plane R-CNN has been already used to detect and reconstruct
planes that are occluded by other objects on a single camera
view [22]. Ye et al. [2] added a plane description network
which is later used to match detected planes between images
and estimate the motion of the camera. Also, Xi and Chen [3]
show that multi-view regularization of planar segments im-
proves the reconstruction of indoor scenes. Another approach
is presented in [4] where the neural networks predict if planes
are orthogonal, parallel and if two planes are in contact.
In our method, the stereo pair of images is used instead
of multiple views and the regularization of two views is
embedded in a new DNN architecture designed by us to
recover 3D geometry. We focus on the accurate estimation of
3D geometry because the correct poses of planes are crucial
for camera localization [2] and scene reconstruction [21].

III. DETECTION AND RECONSTRUCTION OF PLANAR
SEGMENTS

The proposed network consists of two main components:
a plane detection module and a geometry module (Fig. 1).
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Fig. 2. Architecture of the geometry module in the Stereo Plane R-CNN. Each 3D convolution is 3×3×3 and 2D convolution is 3×3

The plane detection module is inspired by the Plane R-
CNN [5] architecture that detects planar segments on a monoc-
ular image (the left one in our system). We improved the
detection quality of planar segments by applying ROI-aware
segmentation during training and by learning on a properly
labeled dataset. The geometry module is inspired by the work
of Kusupati et al. [13] that exploits stereo setup to infer about
the geometry of the scene. This module builds a cost volume
for a 3D space observed by the sensor and processes neural
network embeddings to estimate pixel-wise disparities, normal
vectors, and plane parameters for the detected segments. We
jointly minimize losses related to all estimated values and use
a camera-agnostic normal representation to improve geometry
reconstruction performance.

A. Geometry module architecture

Although 3D coordinates of points computed from esti-
mated disparity do not guarantee a precise fitting of a plane
model, the geometry module (Fig. 2) utilizes features produced
during disparity estimation to estimate normals and plane
parameters. The module is based on a cost volume created
in a proposed ŨVD space (explained in Sec. III-C), where
features from the left and right image are concatenated for
every point in that space. A disparity branch (green block in
Fig. 2) is based on the Pyramid Stereo Matching Network [7]
that uses 3D convolutions to process concatenated features
and produce probability distributions of disparities for each
pixel. Expected values are computed from those distributions
to regress final disparity values. Features from the beginning
and the end of the disparity estimation branch are concatenated
with ŨVD coordinates and used in a disparity reduction
branch (light blue). Using 3D convolutions with stride 2 in
the disparity dimension, that halves this dimension’s size after
each operation, we reduce this dimension of the feature maps
to 1. This step effectively removes the disparity dimension,
leaving rich 2D normal features. The 2D normal features are
concatenated with visual features from the left image and
processed using 2D convolutions with various dilations to
return three parameters of normals for every pixel. The visual
features help to smooth the estimates by providing visual cues
about the surface. Moreover, 2D features are also used in a

Fig. 3. ROI-aware segmentation: NMS removes some detections for complex
scenes where bounding boxes overlap (top). Oversegmentation of the complex
shapes (bottom) produces a larger number of smaller detections, but preserves
planes that are crucial for scene reconstruction

plane parameters subbranch (purple in Fig. 2) that samples
them using ROI align according to detected ROIs. Sampled
features that do not belong to the segment but are inside the
ROI are masked by zeroing their values and such feature map
is processed using two convolutional and two fully connected
layers to estimate a plane normal.

B. ROI-aware detection and segmentation

We have observed that Plane R-CNN has problems with
planar segments occupying a large area of the image, espe-
cially the ones also interleaving with other segments (illus-
trated in Fig. 3). We noticed that it was due to ROI boxes
containing multiple segments. Boxes for different segments
are overlapping with each other and got suppressed in the
Non-Maximum Suppression (NMS) step. The same problem
exists for prolonged segments and in general for all segments
whose shape is far from square. Therefore, we propose to
divide target segments during training into smaller ones with
more square-like shapes. It is worth noting that segmentation
into planar segments is often arbitrary and can be done in
many correct ways. For example, the front of the cupboard
can be segmented as one segment or as separate segments for
each door. Both segmentations are correct regarding the plane-
based localization or navigation [1]. We employed a simple
algorithm we call ROI-aware segmentation based on flood
fill, that can be executed on the fly when loading training
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Fig. 4. Angle of observation of a normal in the XYZ space as a function
of angle of observation in the UVD space (top) and ŨVD space (bottom) for
different disparities, fx = fy = 550, cx = ox = 320, cy = oy = 240,
baseline b = 0.2, and scale constant a = 320. Note values on vertical axes.
For ŨVD all lines overlap.

samples. The algorithm starts at a random pixel and floods
the segment as long as the ratio of the area of the grown
region to the area of the smallest bounding box is above 0.5.
If the ratio is below this threshold, the bounding box is much
larger than the segment itself and is mostly empty. This implies
that the segment’s shape is deviating from being square-like
and that the ROI of this segment can be overlapping with
ROIs of the neighboring segments. Although it is a greedy
algorithm that does not guarantee optimal segmentation, we
found it works well in practice with an acceptable level of
over-segmentation. Therefore, instead of a refining module
proposed in [5], we use carefully segmented target masks
during learning to obtain good quality detections when testing.
Note that it is not necessary to use this mechanism during
the inference because a neural network has already learned to
produce proposals that are ROI-aware.

C. Scene geometry from stereo camera

A mapping between 3D coordinates of points or normal
vectors and pixel coordinates relies heavily on the camera
intrinsic parameters. If a black box model (e.g., neural net-
work) is applied to the estimation of 3D coordinates from an
image it has to capture this relation. Thus, we make the normal
representation camera-agnostic to simplify this problem and to
avoid unnecessary transformations that DNN would have to
learn. If an input to the DNN is a pair of stereo images, data
structures containing those images are organized according
to image coordinates (u, v) and disparities (d). Hence, u, v,
and d are known to the network for every processed point.
What the network does not know, are XYZ coordinates of
points because camera parameters are necessary to compute
them. Therefore, instead of performing estimation in XYZ
space associated with a camera frame and physical dimensions,
we exploit disparity-normalized UVD (ŨVD) space associated
with pixel coordinates and disparity. This mitigates problems
with deployment in real-life scenarios that stem from differ-
ences between available training datasets and target hardware.
The transformation between XYZ space and ŨVD space is
linear, so planes remain planes under this transformation. To
derive this transformation, let us consider equations of a 3D

world point (x, y, z) projection for a calibrated stereo camera
with a baseline b: 

u =
fxx

z
+ cx − ox

v =
fyy

z
+ cy − oy

d =
fxb

z
,

(1)

where (x, y, z)T is a 3D position of a point in a camera frame,
fx, fy , cx, cy are intrinsic camera parameters, and ox, oy is
an origin of the UVD coordinate frame, which can be chosen
arbitrarily to move it from the upper left corner of the image.
Transformation of point p =

(
x, y, z, 1

)T
from XYZ to

a point pD in UVD using homogeneous coordinates can be
written as:

pD = GD,Cp, (2)

where GD,C is a matrix following (1). Therefore, plane
parameters in UVD πD =

(
nu, nv, nd, −rD

)T
that

satisfy πD · pD = 0 can be transformed to XYZ using:

π = GT
D,CπD = G−TC,DπD, (3)

derived using (2), where π =
(
nx, ny, nz, −r

)T
. This

transformation is also linear, however has an undesired prop-
erty that for small disparities (distant objects), a relatively
small angular error in normal estimation in UVD propagates
as a large error in XYZ. To illustrate this, consider a plane
observed at different horizontal angles (rotation around the Y-
axis of the camera) in front of the camera. In the top part
of Fig. 4 an angle of observation in the XYZ space was
plotted as a function of an angle of observation in the UVD
space for example camera parameters. It is visible that the
smaller the disparity, the sharper the transition and thus the
larger the derivative, which is a multiplicative factor in the
error propagation. To overcome this problem, we normalize
the coordinates in the UVD space with the disparity:

ũ =
u

d
=

fx
fxb

x+
cx − ox
fxb

z

ṽ =
v

d
=

fy
fxb

y +
cy − oy
fxb

z

d̃ =
a

d
=

a

fxb
z,

(4)

where a (320 in the experiments) is an arbitrary constant
assuring uniform scaling of the space and forcing values
in ŨVD to be of the same magnitude. By virtue of this
normalization, and using values of ox, oy close to cx, cy
(usually optical centers of cameras do not vary much and are
close to image center), relation of observation angles in XYZ
and ŨVD is approximately linear and does not depend on d
(see bottom part of Fig. 4). Using homogeneous coordinates
it can be written as:

pD̃ =


ũ
ṽ

d̃
1

 =


fx
fxb

0 cx−ox
fxb

0

0
fy
fxb

cy−oy
fxb

0

0 0 a
fxb

0

0 0 0 1



x
y
z
1

 = GD̃,Cp.

(5)
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This space is camera-agnostic, meaning that to calculate a
plane equation in this space it is sufficient to know image co-
ordinates and disparities of points forming this plane, without
knowledge about focal lengths fx, fy , optical center cx, cy , and
baseline b. Moreover, the space is scaled similarly to the XYZ
space and therefore angular errors are not significantly mag-
nified. To transform plane πD̃ =

(
nũ, nṽ, nd̃, −rD̃

)T
from ŨVD space to XYZ space we use equation analogous to
(3):

π = G−T
C,D̃

πD̃. (6)

In the plane parameters branch of the DNN, we estimate
only the normal vector of the segment. To estimate the distance
to the origin r we use RANSAC and disparity estimates from
the disparity branch. In the procedure, we seek the best set
of inliers using RANSAC and a threshold on the relative
distance nh·proj(p)

rh
< 0.05, where proj(p) is a 3D XYZ

point expressed in inhomogeneous coordinates, nh is a normal
vector of the RANSAC hypothesis, and rh is a distance to
the origin of the RANSAC hypothesis. Finally, r is estimated
using all inliers from the best hypothesis, leaving the DNN
estimated normal unchanged (RANSAC estimated normal is
ignored).

During detection, we use only two classes (planar and non-
planar). We found that using anchors for normal directions
and dividing planes into classes related to those directions, as
in [5], does not improve normal estimation accuracy compar-
ing to direct estimation of 3 normal parameters.

IV. TRAINING

A. Dataset

To the best of our knowledge, there is no large real-
world dataset with stereo images and ground truth depth
information for the indoor environment. Moreover, the quality
of depth information and created mesh models in existing
monocular datasets, such as ScanNet [23], are insufficient.
We examined the labeling of ScanNet used by Plane R-
CNN [5], which turned out to be of poor quality due to noisy
and inaccurate mesh models produced using an RGB-D sensor.
Thus, we generated a synthetic dataset called SceneNet
Stereo to train the neural network. To generate scenes and
render photorealistic images, we exploit a method from the
SceneNet RGB-D dataset [24] by adapting it to produce
stereo images. As a result of having perfect information about
the geometry of rendered scenes, the training set was very
accurate, which is difficult to obtain on real-world images.
We generated 200 random scenes with 300 images for each
scene. Finally, we selected approximately 35k training images
and 2k testing images.

B. Loss and parameters

We use weights pre-trained on the Coco dataset for the de-
tection module and weights pre-trained on the ScanNet [13]
dataset for feature extraction layers and disparity branch of the
geometry module. We train the whole model simultaneously,
using different loss functions for specific branches. We use
a loss from [5], without plane parameters component, to

TABLE I
STATISTICS ON DETECTED PLANES FOR TESTING DATASETS

bin no. 1 2 3 4 5 6
A [px] 0-50 50-100 100-150 150-200 200-250 250-640

SceneNet
Stereo

no. of planes 19258 10283 3025 1612 1329 2450
area [%] 3.9 7.8 7.1 7.6 10.5 39.7

TERRINet
no. of planes 138739 70501 16052 4670 3608 4286
area [%] 6.4 12.2 8.3 5.0 6.6 13.8

supervise the detection module and denote it as Lr. The
disparity estimation is supervised using L1 smooth loss for
all pixels P that have a valid target depth:

Ld =
1

|P|
∑
p∈P

f1(dp, d
∗
p), (7)

where f1 is a smooth L1 difference function, dp is a disparity
for pixel p, and d∗p is a target disparity for pixel p. Because
we are interested only in pixels belonging to planar segments,
we exclude pixels near edges of objects during computation
of pixel-wise normal vector loss Ln:

Ln =
1

|P|
∑
p∈P

f1(np,n
∗
p), (8)

where np and n∗p are an estimated and a reference normal
vector, respectively. The plane parameters loss is computed
for all detections D returned by the detection module:

Lp =
1

|D|
∑
d∈D

f1(nd,n
∗
d). (9)

The final loss is a sum of weighted losses Lr and (7)–(9):

L = Lr + wdLd + wnLn + wpLp, (10)

where wd = 1, wn = 100, and wp = 100 to accommodate
for different scales of values. For a fair comparison, we use
the same weights during training of the baseline Plane R-CNN
model (note that it is different from the original setup because
of the different value of wp). The training takes 10 epochs
using Adam optimizer with a learning rate equal to 10−5 and
weight decay equal to 10−4. We augment training examples
using random color and sharpness manipulation, Gaussian
noise, and random cropping. For the baseline solution (Plane
R-CNN), we skip augmentation as it worsens results.

V. EXPERIMENTAL VERIFICATION

We use three metrics that measure geometric aspects of
segmentation that are important during localization [1]:
• Detection Error (DE) - measures how planar is the area

labeled as one segment. It is computed as RMS of
point-to-plane distance in 3D between points belonging
to the segment and plane fit into those points using
RANSAC. It also measures the quality of segmentation,
like metrics evaluating the similarity of pixels clustering,
while avoiding problems with the ambiguity of correct
segmentation.

• Depth Reconstruction Error (DRE) - measures RMS of
depth differences between 3D points belonging to the
segment and depthmap induced by a plane estimated by
the DNN. We use only points classified as inliers by
RANSAC to accommodate for imperfect segmentation
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Fig. 5. Dependence between the NRE (a,b) and DRE (c,d) for the SceneNet
Stereo (a,c) and TERRINet (b,d) datasets. Confidence intervals are marked
with light-colored regions. Relations between the bin numbers and planar
segments sizes are presented in Tab. I

and incorrect ground truth depth at the edges. We also
crop plane induced depth to 15 m as we do not consider
objects that are further away.

• Normal Reconstruction Error (NRE) - measures RMS of
differences between normals found using RANSAC and
ones estimated by the DNN.

In all metrics, we use ground truth depth information to pre-
cisely estimate plane equations. Robust estimation mitigates
situations when segment masks spill over edges of surfaces or
depth is incorrect at the edges.

Two different datasets were used during the evaluation to
show various aspects of planar segments detection and geome-
try reconstruction. The first one is a testing part of the synthetic
SceneNet Stereo dataset with nine different scenes and
approximately 2k images. Note that the number of planes used
to evaluate the accuracy of the methods is significantly higher.
The second one is a real-world TERRINet dataset gathered
in office and laboratory environments2. It contains several
indoor sequences of stereo images, Velodyne VLP-16 lidar
scans, and ground truth poses from a Qualisys motion capture
system. By using ground truth poses and lidar measurements
we built a precise point cloud representation of the scenes.
Then, the point cloud was used to compute a depth map for
every stereo image pair. We used approximately 8.5k images
from 3 different environment settings.

To give more insight into the geometry reconstruction of
various planar segments, we present results as a function of the
segment’s area expressed in pixels. We divide segments into
six bins, depending on the square root of their area, denoted as
A, which can be intuitively compared to the area of a square
with a side length equal to A. Statistics regarding bins for used
datasets are presented in Tab. I, where area denotes mean area
per image.

A. Geometry reconstruction using stereo

The main experiment shows that our system, trained on a
photorealistic synthetic dataset, can be used in a real-world
scenario and has a superior performance over the baseline

2Dataset collection was supported by the TERRINet project funded by EU
H2020 under GA No.730994

Plane R-CNN solution in terms of geometry reconstruction.
The Plane R-CNN yields the best results in the literature with
other systems only presenting functionalities added on the
top of the Plane R-CNN [4], [22] or being closed-source [3].
Those functionalities can be also added on top of Stereo Plane
R-CNN if necessary, but would obfuscate the results. The
methods used for comparison are shortly characterized below:
• Plane R-CNN (PR-CNN), pre-trained - baseline version

presented in [5] with anchors for normal estimation
and refinement module, trained by the authors on the
ScanNet dataset, using left image only.

• PR-CNN, no anchors - baseline version without anchors
and the refinement module, trained on the SceneNet
Stereo dataset, using left image only.

• PR-CNN, anchors - baseline version with anchors
but without the refinement module, trained on the
SceneNet Stereo dataset, using left image only.

• RANSAC, SGBM depth - the method that uses non-learned
Semi-Global Block Matching stereo depth estimation and
performs classic plane fitting using RANSAC.

• RANSAC, DNN depth - the method that uses learned
stereo depth estimation architecture from [7] trained on
our dataset and performs RANSAC plane fitting.

• Stereo Plane R-CNN (SPR-CNN), ŨVD - the proposed
method described in Sec. III.

The results of the experiment are presented in Tab. II. To
eliminate the influence of segment detection on the results, we
used the same detections for all tests. Detections were gener-
ated and saved by one version of the system and are loaded in
all test cases, except the pre-trained Plane R-CNN due to the
presence of the refinement module. Table II presents qualita-
tive results, while detailed results on TERRINet dataset are
visible in Fig. 5, where performance as a function of the square
root of the area A is presented. Both learned stereo versions
perform significantly better in terms of depth errors, which
suggests that it is crucial to precise geometry reconstruction.
However, the classic approach to stereo depth estimation does
not provide enough valid points to precisely fit a plane. As
for normal errors, Stereo Plane R-CNN outperforms other
systems by a large margin. Results also indicate that using
anchors does not improve normal estimation accuracy which
is why we do not use this technique. Please also note that
the pre-trained version of Plane R-CNN detects less distant
segments (mean distance to points is 3.39 m, compared to 4.21
m for detections used for other versions), which explains better
results of the pre-trained version compared to the version
trained by us when testing on the TERRINet dataset. Figure 7
shows visualizations of example scenes for the baseline Plane
R-CNN without ROI-aware segmentation and Stereo Plane R-
CNN.

B. Detection using ROI-aware segmentation

This experiment aims at showing the effects of the proposed
adaptation to the ROI-based processing. We use the DE score,
which is designed to measure the quality of detection, to show
the differences between methods. We employ the synthetic
dataset only because it has precise depth information for all
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TABLE II
GEOMETRIC ACCURACY (DRE AND NRE) FOR BOTH DATASETS

SceneNet Stereo TERRINet
DRE [m] NRE [◦] DRE [m] NRE [◦]

PR-CNN, pretrained [5] 2.82 25.64 1.00 20.75
PR-CNN, no anchors 1.05 11.13 1.66 21.34
PR-CNN, anchors 0.98 12.81 1.52 24.12
RANSAC, SGBM depth 0.44 11.28 2.17 30.84
RANSAC, DNN depth 0.22 10.13 0.38 22.88
SPR-CNN, ŨVD (full arch.) 0.24 7.09 0.34 15.07

TABLE III
DETECTION ERRORS FOR THE SceneNet Stereo DATASET

bin no. 1 2 3 4 5 6 all
SPR-CNN
w/o ROI-aware

DE [m] 0.180 0.206 0.185 0.187 0.152 0.118 0.147
area [%] 1.3 5.5 6.3 8.0 11.5 43.8 76.5

SPR-CNN
w. ROI-aware

DE [m] 0.148 0.127 0.123 0.166 0.102 0.136 0.134
area [%] 4.1 9.4 8.5 8.3 10.6 39.0 79.8

pixels. Quantitative results are presented in Tab. III, where
despite a larger area of detected segments, DNN trained
with ROI-aware segmentation performs significantly better.
However, the most notable differences can be seen in Fig. 7,
where visual comparison is presented.

C. Ablation study

To justify our design choices we conduct an ablation study
comparing different versions of Stereo Plane R-CNN:
• SPR-CNN normal vec. only - version without plane

parameters branch, plane normals are estimated by av-
eraging pixel-wise values from the normal vector branch,
using ŨVD.

• SPR-CNN, plane param. only - version without the super-
vision of pixel-wise normals in the normal vector branch,
using ŨVD.

• SPR-CNN, XYZ (full arch.) - estimates normals in the
XYZ space, instead of the ŨVD space.

• SPR-CNN, UVD (full arch.) - estimates normals in the
UVD space, instead of the ŨVD space.

• SPR-CNN, ŨVD (full arch.) - proposed method.
Results are presented in Tab. IV and suggest that having
a specialized branch for plane parameters estimation boosts
performance significantly. However, supervision of normals at
the level of pixels and ŨVD representation also contribute to
the final result notably. Additionally, it is clearly visible that
regular UVD space (without normalization) is not suitable for
normal estimation as it yields the worst results as far as NRE
is concerned.

D. Robustness to camera parameters change

The goal of the last experiment is to show that the proposed
camera-agnostic representation performs well when camera
parameters change. Because there is no real-world dataset
that contains images from different cameras with different
parameters, we use the synthetic SceneNet Stereo dataset
in this experiment. Test sequences were rendered once more
with fixed lighting and with different camera parameters. We
were changing diagonal field of view (FoV, change of, both, fx
and fy), vertical FoV (change of fy), horizontal FoV (change

TABLE IV
ABLATION STUDY OF DIFFERENT VERSIONS OF STEREO PLANE R-CNN

SceneNet Stereo TERRINet
DRE [m] NRE [◦] DRE [m] NRE [◦]

SPR-CNN, normal vec. only 0.29 8.75 0.38 18.77
SPR-CNN, plane param. only 0.28 8.28 0.37 16.09
SPR-CNN, XYZ (full arch.) 0.36 7.21 0.71 16.07
SPR-CNN, UVD (full arch.) 0.25 10.41 0.48 21.30
SPR-CNN, ŨVD (full arch.) 0.24 7.09 0.34 15.07
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Fig. 6. Dependence between NRE (left) DRE (right) and camera parameters
change for the PR-CNN (blue), SPR-CNN XYZ (red), and SPR-CNN, ŨVD
(orange). The most left values on horizontal axes are used during learning.

of fx), and baseline (b). We do not consider different cx and
cy values, without a loss of generality, because their change
only shifts image left/right and up/down. In this experiment,
we compare monocular Plane R-CNN that estimates normals
in XYZ, Stereo Plane R-CNN that estimates normals in XYZ,
and the proposed method that estimates normals in ŨVD. The
results are summarized in Fig. 6. The increase of NRE for
the version exploiting camera-agnostic representation is lower
than for the version using XYZ representation, which supports
the thesis that such a representation is beneficial to assure
robustness to camera parameters change. However, despite
using camera-agnostic representation, the whole model is not
completely camera-agnostic because of changing incidence
relations when fx, fy , or b change. The model seems to be
more sensitive to fx change (change of diagonal and horizontal
FoV) than to fy and b change (change of vertical FoV and
baseline). It is worth noting that changing the diagonal FoV
in the monocular system slightly lowers the normal estimation
error. This phenomenon comes from the fact that changing,
both, fx and fy only scales the image. Moreover, with the
wider camera field of view, a broader context is captured and
the normal estimation error decreases. Nonetheless, results for
the monocular system are still worse than for the stereo ones.
In terms of DRE, the performance of both stereo versions
slightly deteriorates, which can be again attributed to changing
incidence relations. However, changing camera parameters
introduces the scale change and increases significantly the
DRE value for the monocular version when the diagonal FoV
changes.

VI. CONCLUSIONS

In this article, we propose the Stereo Plane R-CNN method
that detects and computes the parameters of planar segments
from stereo pairs of images. The system is trained on the
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PR-CNN SPR-CNN ground truthPR-CNN SPR-CNN PR-CNN SPR-CNN ground truthPR-CNN SPR-CNN

a b

c d

Fig. 7. Comparison of segment detection and scene geometry reconstruction performance on the four scenes (a,b,c,d) from the TERRINet dataset. Note
scale problems of the monocular version for the first example (a).

synthetic dataset that provides accurate information about the
depth of the scene, segmentation, and plane parameters. The
system is verified on the dataset obtained in the indoor unstruc-
tured and challenging environment. The proposed method is
compared to other the state-of-the-art methods. Moreover, we
provide ablation studies on the contributions of main compo-
nents in our system to justify our design choices and to show
the performance of the proposed method. The results presented
in Tab. II show that the proposed problem representation and
neural network architecture outperform other approaches. The
mean inference time for our solution is 0.419 s on RTX
3090 with batch size 1, which is approximately twice as
much as Plane R-CNN and is caused by a larger amount of
computations needed to process the cost volume. However,
the obtained computation time is sufficient for the global
localization task [1].

In particular, we show that improved image segmentation
deals with the suppression problems of methods based on ROIs
and NMS (results in Tab. III). We also propose a novel neu-
ral network architecture that leverages disparity information
from a stereo camera to precisely reconstruct scene geometry
(Fig. 7). The neural network uses the proposed camera-
agnostic normal representation ŨVD that improves robustness
to camera parameters change (Fig. 6). Finally, we propose a
training procedure that simultaneously utilizes parameters of
planes, pixel-wise normal vectors, and disparity prediction to
improve the accuracy of reconstruction (results in Tab. II and
Fig. 5). In the future, we are going to integrate the Stereo Plane
R-CNN with our global relocalization system [1] to improve
localization in the indoor environment.
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On the descriptive power of LiDAR intensity images
for segment-based loop closing in 3-D SLAM

Jan Wietrzykowski1 and Piotr Skrzypczyński1

Abstract— We propose an extension to the segment-based
global localization method for LiDAR SLAM using descriptors
learned considering the visual context of the segments. A new
architecture of the deep neural network is presented that learns
the visual context acquired from synthetic LiDAR intensity
images. This approach allows a single multi-beam LiDAR to
produce rich and highly descriptive location signatures. The
method is tested on two public datasets, demonstrating an
improved descriptiveness of the new descriptors, and more
reliable loop closure detection in SLAM. Attention analysis of
the network is used to show the importance of focusing on the
broader context rather than only on the 3-D segment.

I. INTRODUCTION

3-D laser SLAM methods recently became one of the key
components of autonomous vehicles. A majority of them
are based on variants of the ICP (Iterative Closest Points)
concept, i.e. on matching laser points to other points or ad-
hoc created local structures, such as planes and line seg-
ments [1], [2], [3]. The accuracy of such methods is sufficient
for most navigational tasks, thus the development is focused
on making them more reliable and robust by giving an ability
to recover from failures and to correct drift when the same
location is revisited. Unfortunately, working on the level of
points makes the tasks of loop closure and re-localization
difficult due to a lack of discriminative features that could
be matched between temporarily distant observations. On
the other hand, point cloud retrieval, like in [4], provides
only place recognition, not metric localization. A different
approach to laser SLAM is to cluster the point clouds into
larger segments representing meaningful objects or their
parts, e.g. cars, trees, parts of buildings [5]. Those segments
can be then matched between the current observation and
the map, enabling metric global localization used for loop
closing and re-localization. However, relying solely on the
geometry of isolated objects leaves a lot of uncertainty,
because there could be many objects with similar shapes
e.g. trees, walls. We conjecture that it would be beneficial
for the descriptiveness of those segments to include also
information about the texture and the surroundings, which
together constitute a broader (visual) context.

Using a single sensor is practical in applications, as it
does not require accurate calibration that is necessary if a

*This work was supported by the National Science Centre (NCN),
contract no. UMO-2018/31/N/ST6/00941. The work of P. Skrzypczyński
was supported by TAILOR, a project funded by EU Horizon 2020 research
and innovation program under GA No. 952215

1Jan Wietrzykowski and Piotr Skrzypczyński are with
Institute of Robotics and Machine Intelligence, Poznan Uni-
versity of Technology, Piotrowo 3A, 60-965 Poznań, Poland
name.surname@put.poznan.pl

Fig. 1. Concept of enhancing descriptors of 3-D segments by exploiting the
broader visual context acquired from LiDAR intensity images. The included
attention map shows that the network focuses on the context (warmer colors)
rather than on the masked segment (pointed by the blue arrow).

LiDAR-camera pair is employed [6]. However, it is prob-
lematic to obtain a visual context in LiDAR-only perception.
Fortunately, modern LiDARs provide also information about
the intensity of the reflected beam. Recent results [7] suggest,
that LiDAR intensity is more reliable for place recognition
than regular camera images in some scenarios. The nearer
the wavelength to the visible light spectrum, the closer
the readout to a passive camera image [8]. This comes in
handy when multi-beam LiDARs are used, which provide
a relatively dense scan of the scene. By arranging intensity
readouts in a regular grid on a cylinder around the LiDAR,
this information can be treated similarly to a camera image.
The intensity image carries a lot of information, not only
about the appearance of the segment it may depict but also
about the segment’s surroundings. Thus, it can be used to
retrieve the visual context.

This paper attempts to bridge the gap that exists between
the 3-D segment-based approach to loop closing, which
turned out to be very practical in LiDAR SLAM [3], and
the appearance-based approach, which is commonly applied
in visual SLAM. To our knowledge, we are the first to use
intensity images to enhance the learned descriptors of 3-D
segments. We are also not aware of any work that researched
learning description of segments visible in images. Most
papers tackle the problem of describing points and their local
surrounding or the problem of global image descriptor com-
putation. Our solution falls in-between these two extremes,
learning to describe segments that occupy part of the image,
while also including the context in the description (Fig. 1).
The contribution of this paper is as follows 1:
• A method using intensity images to enhance segment

1Code available here: https://github.com/LRMPUT/segmap_
vis_views



descriptors (Section IV-A).
• A novel architecture and training methodology for

learning descriptors (Sections IV-B and IV-C).
• A procedure for attention analysis of the neural network

in a case where output is a descriptor for in-depth
analysis of our method (Section IV-D).

• Experimental verification of these methods (Section V).

II. RELATED WORK

In the field of LiDAR-based global localization, the use
of segments is not broadly explored. SegMatch, the prede-
cessor of SegMap, introduced incremental segment growing
and used hand-crafted features based on eigenvalues during
matching [9]. Tinchev et al. [10] modified SegMap to use
different descriptors learned by a lightweight network with
X-Conv operations.

A significantly different approach to global localization
using LiDAR measurements was presented by Chen et
al. [11]. They used images of cylindrical projections in a
similar way to our solution, but estimated overlap and yaw
angle between a pair of views. Contrary to our segment
descriptor, they use a global descriptor of the whole image
as an input to regression branches. As this method outputs
only similarity measure and relative yaw, ICP registration
is needed to compute the 2-D pose. Handcrafted global
descriptors of LiDAR scans were used in LocNet [12], but
machine learning was applied to compare those descriptors.

Most of the work on describing appearance comes from
the computer vision community and focuses on camera
images. SuperPoint [13] is one of the recent examples of
learned detectors and descriptors. The description is learned
using warped images by minimizing hinge loss between
all pairs of pixels. On the other hand, in [14] descriptor
projections are learned using triplet loss with L2 distance
and hard negative mining. The authors of [14] also show
that including the context in a form of descriptors of larger
portions of the image around the keypoint is beneficial for
matching. However, they provide only limited experiments
with whole images to describe the context. When it comes
to range data, PointNetVLAD [4] was the first DNN-based
method producing a discriminative global descriptor for
the localization task cast as large scale 3-D point cloud
retrieval. Using a similar approach to global localization
with 3-D point clouds, PCAN [15] introduced an attention
mechanism that predicts significance of each point using its
local geometrical context, but not the visual information.

The concept of using intensity information in global
localization was explored only in a few studies. Synthesized
intensity images compared favorably in [7] to regular camera
images for DNN-based place recognition under varying
weather conditions. If handcrafted features are employed,
as in [16], where histograms of intensity were used, the
geometric information is not embedded in the descriptors
and used only for hypothesis verification. Histograms were
also used by Guo et al. [17] in descriptors called ISHOT,
which combined the SHOT descriptors and histograms of
intensity differences around the keypoints. When only local

Fig. 2. An overview of the localization pipeline in SegMap with marked
modified modules (bolded, white rectangles) and unmodified modules (gray
rectangles).

displacement is estimated, it is possible to exhaustively
search the space of possible solutions. L3Net [18] exploits
cost volume spanning (x,y,yaw) space and directly mini-
mizes the displacement error during training. However, the
description is done by detecting keypoints and describing
local patches using coordinates and intensity values by a
simple multi-layer perceptron.

III. LOCALIZATION FRAMEWORK

We demonstrate our novel approach to the context-aware
description of 3-D segments extending the open-source,
modular SegMap framework [5] for mapping and global
localization. Our solution inherits from SegMap the pro-
cessing pipeline of the segment’s geometry (clustering into
segments) and the general structure of the global map. In
the framework, we plug-in the new procedure of learning
the descriptors, together with a modified deep neural network
(DNN) architecture, and a new segment matching procedure,
which better exploits the enhanced descriptors (Fig. 2).

The processing starts with an acquisition of a new LiDAR
scan. The scan is then matched to the previous one to esti-
mate a sensor’s displacement. The displacement is integrated
with the previous pose estimate and produces odometry, but
is also used to compensate the sensor motion by transforming
all points to the common frame of reference [2]. The local
map of segments is obtained using the SegMap clustering
procedures (incremental Euclidean segmenter) and the odom-
etry estimates. In comparison to the original SegMap, we
also store synthesized intensity and range images in the local
map. Next, segments in the local map are described, which
is the main focus of this paper. The sensor pose estimate
with respect to the target map is computed by finding match
candidates for each segment’s descriptor in the local map.
The candidates are being found using kNN search in the
descriptor space among the descriptors of segments from
the target map. From all match candidates, the best subset is
selected through consistency clustering and the final pose is
computed using this subset. As in SegMap, the target map
can be either loaded from the disk or built along the trajectory
by accumulating local map segments with their descriptors
using current pose estimates.



IV. DESCRIPTION OF SEGMENTS
Segments in the proposed solution are described using

only LiDAR data, however, they owe their descriptiveness
to the use of range readouts along with intensity data. A
local voxel grid representation of the segment is built from
the range data, like in SegMap, whereas the intensity data is
converted to an image that provides a camera-like view of a
segment. An intensity image can be synthesized by directly
exploiting the arrangement of measurement directions, as in
the case of Ouster LiDAR, or by a projection of the acquired
point cloud onto a cylinder surrounding the sensor if the
arrangement of the used readouts is not grid-like (e.g. from
a Velodyne sensor).

A. Visual input from a LiDAR

To describe the segment, an intensity image with the
largest area of the projected segment is selected from avail-
able visual views and fed to the DNN along with the voxel
grid representation of the segment. Special care has to be
taken to ensure that binary masks, denoting positions of
segments in images, are aligned with objects in those images.
It is not feasible to track the origin of every point in a
point cloud representing a segment, because of multiple
filtering operations and the associated high computational
and memory requirements. Thus, we decided to compute
masks by projecting point clouds onto images. The simplest
approach would be to project points onto a cylinder around
the scanner as follows:

r = argmin
r′

|αr′ − α|, c = round

(
β

2π
· 1024

)
, (1)

where (r, c) are resultant pixel coordinates, r′ iterate over Li-
DAR’s scanning rings, α is an inclination angle of the point,
β is an azimuth angle of the point, and αr′ is an inclination
angle for the ring r′. However, a mask computed this way
would be inaccurate, because measurements of pixels were
not taken at the same time like in a global shutter camera.
Moreover, the time it takes a LiDAR to do a full scan is
considerably longer than in a regular rolling shutter camera.
When this fact is ignored and points are projected onto the
image surface using only one pose of the LiDAR, masks can
be misaligned by a large margin, depending on a velocity
(Fig. 3). We deal with this problem by keeping directions of
rays coming out from the LiDAR, transformed to a common
frame of reference by using displacement estimated by the
odometry procedure. Then, during projection, for every point
p, we choose the pixel (i, j) with the closest direction nij

of the scanning ray. To speed up computations, we search
only in a vicinity of the pixel (r, c) that would be selected
by the simple projection:

(i∗, j∗) = argmin
r−rm≤i<r+rm
c−cm≤j<c+cm

1− arccos
nij · p
|p| , (2)

where (i∗, j∗) are pixel coordinates of the pixel with the
closest direction, rm = 16 and cm = 32 are margins in
which we search, set experimentally to values that let always
find the globally optimal pixel in the training dataset. We also

Fig. 3. Exemplary mask misalignment caused by ignoring motion com-
pensation of LiDAR scans.

Fig. 4. Visual comparison of intensity images quality from Velodyne HDL-
64E (top) and Ouster OS1-64 (bottom) showing that using intensity data
from the KITTI dataset might not bring significant benefits.

check if the distance to the point is consistent with the range
measurement to account for possible occlusions stemming
from the motion compensation. The final mask is an image
with pixels equal to 0 where no points were projected and 1
otherwise.

Laser scans from the KITTI [19] dataset required some ad-
ditional processing, as in this case only motion compensated
point clouds are available. Thus, we perform angular bilinear
interpolation to form an intensity image from measurements
in directions not forming a regular grid. For every direction
on the regular grid, we select 4 nearest neighbors that fall
into bins spanning from the current direction on the grid to
the nearest directions on the grid. Every neighbor is selected
from a different quadrant of the image plane around the
point. Then, a horizontal angular interpolation is performed
on the pair of upper and the pair of lower points separately
to compute two points with the same horizontal angle as
the points on the grid. Finally, a vertical interpolation is
done to compute range and intensity for the target direction.
Unfortunately, the longer laser wavelength in HDL-64E,
the lack of raw measurements, and necessary interpolations
resulted in a degraded quality of the intensity images from
KITTI (Fig. 4) that might be hindering their use to produce
visual descriptors.

B. DNN architecture

The architecture of the DNN used to produce segment
descriptors is depicted in Fig. 5. It consists of two branches
that are merged down-stream the computations: a geometry
branch processing voxels that is the same as in SegMap,
and a proposed visual branch processing intensity images.
An input to the visual branch is composed of three layers:
intensity image, range image, and segment mask concate-
nated into a single 3 channel tensor. The intensity image is
normalized to have mean value 0 and standard deviation 1
across the whole training dataset, range image is normalized
to have mean value 0 for all pixels belonging to the segment
and standard deviation equal to 1, and mask values are 1 for
pixels belonging to the segments and 0 otherwise. The mask



Fig. 5. DNN architecture that combines visual (LiDAR intensity) and
geometrical information to produce a segment descriptor. Two convolutional
branches are merged using a fully connected layer.

tells the DNN what it should describe and range information
gives additional hints about the boundaries of objects. By
feeding the whole image instead of only a segment part,
we enable the DNN to leverage the context of the segment,
because its neighborhood is visible. Typically to image pro-
cessing DNNs, convolutions compress the information into
higher-level features. Finally, outputs from both branches are
concatenated and the descriptor of 64×1 size is computed
after a fully connected layer.

C. Learning

The same as in [5], we cast the description task as
a classification problem, where each segment represents a
different class. Due to a large number of classes comparing
to the number of training examples, the DNN produced
useful descriptors without overfitting to the specific features
of the classes. We augmented training intensity images by
exploiting their circular nature and randomly rotating the
image around the vertical axis. To maximize the number
of distinct training examples, each segment observation was
assigned an intensity image with the same timestamp during
training. Whereas during testing, we always selected the
view where the segment was the most visible so far, i.e.
the mask was the largest among already collected scans. In
both, training and testing, we reject images whose mask area
is smaller than 50 pixels.

For DNN’s parameter optimization we used Adam opti-
mizer, batch size of 8, learning rate 0.0001, and trained for
256 epochs, selecting a model with the highest validation
accuracy.

D. Attention analysis

There is a number of papers describing algorithms for
DNN attention analysis for the classification problem [20],
but the authors were unable to find a method that is suitable
when the network’s output is a descriptor. For the classi-
fication problem, ScoreCam [20] is a viable solution that
does not exhibit problems with visually noisy results as the
gradient-based methods [21] and is relatively easy to imple-
ment. ScoreCam computes attention heatmaps by analyzing
the last layer of the DNN that has spatial dimensions (layer
l, c.f. Fig. 5), where the information is compressed the most,

but the spatial structure is conserved. For each channel in this
layer, it calculates its importance by evaluating a score for
the target class c. The weight of the k-th channel is a softmax
output for the target class computed by doing a forward pass
with a masked input image, thus the higher the probability
of the target class, the higher the weight of the channel:

wl
k = f(X ◦M l

k)[c], (3)

where [c] is a result for the target class c, ◦ is the element-
wise product, f(·) denotes the forward pass, and X is the
input image. The mask M l

k is calculated by upsampling
activations in this channel to the size of the network’s input
and normalizing them:

M l
k =

up(Al
k)−min

(
up(Al

k)
)

max
(
up(Al

k)
)
−min

(
up(Al

k)
) , (4)

where Al
k denotes the k-th activation map for the layer

l and up(·) is the operator of upsampling. This way the
mask highlights image parts that were important for the
activations in this channel while suppressing other parts.
The final heatmap H l is produced by multiplying channel
activations with corresponding weights, upsampling to the
size of the input, summing, removing negative values, and
normalizing:

H̃ l = max

(∑

k

wl
k · up(Al

k), 0

)
,

H l =
H̃ l −min

(
H̃ l
)

max
(
H̃ l
)
−min

(
H̃ l
) (5)

With descriptors as output of the DNN the problem stems
from the lack of a target class. To deal with this problem,
we decided to weight channels on the basis of similarity to
the descriptor computed using non-masked input. This way
we measure how much the considered channel contributes to
the descriptor and the smaller the difference the bigger the
weight. Denoting d = f(X) the descriptor for unmodified
input, we compute the weights as:

wl
k =

a

|f(X ◦M l
k)− d| , (6)

where a normalizes weights to sum up to 1.

V. PERFORMANCE ANALYSIS

We tested our solution using two datasets with different
types of environments and sensors. The first one is MulRan
[22] recorded in a lower density urban area near Daejeon in
Korea with Ouster OS1-64 LiDAR, and the second one is
KITTI [19] recorded in a residential area near Karlsruhe in
Germany with Velodyne HDL-64E. In both cases, we used
two sequences for training purposes, namely DCC01 and
KAIST01 for MulRan, and 05 and 06 for KITTI. We wanted
to compare different types of sensors, hence our choice was
MulRan that used Ouster sensor that operates in a different
IR wavelength than most of the other scanners, and KITTI
to enable comparison with SegMap and SegMatch.



Fig. 6. Analysis of the descriptiveness of the proposed solution comparing
to geometrical descriptors and eigen-based features on MulRan DCC03
(top), MulRan KAIST02 (middle), and KITTI 00 (bottom).

We evaluated the performance of the proposed solution
using complete sequences from both datasets that were
not used during training. For MulRan it were DCC03 and
KAIST02 that have multiple loops and no large ground truth
pose gaps (which appear in e.g. DCC02). For KITTI it was
the 00 sequence, that is long enough, has multiple loops, and
the ground truth trajectory is accurate (as opposed to e.g.
08). It gave us 5376 (52589 views), 5289 (54991 views),
and 2659 (32073 views) testing segments, respectively, for
DCC03, KAIST02, and KITTI 00. Segments from the target
map are retrieved for matching using nearest neighbors in
the space of descriptors. Thus, to evaluate the performance
of our descriptors, we used the same measure as used in [5],
[9], calculating how many nearest neighbors are necessary
to retrieve a positive match, i.e. another observation of
the same segment, excluding observations from the same
sequence of observations. We call this value segment’s rank
and investigate it as a function of segment’s completeness,
i.e. ratio of the size of a point cloud representing segment at
a given time instance to the size after all observations were
merged. Segment completeness changes naturally when the
vehicle moves in the environment and new measurements are
incorporated into the segment representation. Additionally,
we compare our results to hand-crafted features based on
the eigendecomposition of point clouds, used in SegMatch
(denoted as eigen). Except for SegMatch and the baseline
SegMap, we were unable to directly compare with other
systems, either because they are not segment-based (e.g.

Fig. 7. Errors of relative positions (translational errors) computed for the
recognized loop closures along the DCC03 (top) and KAIST02 (bottom)
trajectories. Loop closures are uniformly distributed along the entire trajec-
tories for both methods but maximum errors are smaller for our.

Fig. 8. Histograms of errors in the estimates position (translational errors)
computed for the recognized loop closures along the DCC03 (top) and
KAIST02 (bottom) trajectories. Darker blue color denotes the overlapping
bars of both methods. It is clearly visible that our method produces more
loop closures of high position accuracy.

[4], [11], [17]), or there is no open source code available,
as in [10]. Figure 6 depicts results for different stages of
segment completeness for the DCC03, KAIST02, and KITTI
00 sequence. They indicate that descriptors with visual
views outperform their purely geometric counterparts in all
intervals. It is worth noting that from 80% of completeness,
more than half of the descriptors have a positive match as
the first nearest neighbor. This fact is especially important
because, during on-line operation, usually complete or almost
complete segments are used. As expected, the lowest gain
is observed for the KITTI dataset containing scans from
Velodyne HDL-64E which provides intensity images of
considerably worse quality than those from Ouster OS1-64.

To show the application potential of the new descrip-
tors, we analyzed the number and quality of loop closures
produced using them. In most cases, including even one
incorrectly recognized loop closure in SLAM optimization



TABLE I
RESULTS OF LOOP CLOSURES. NUMBERS IN RED INDICATE

INCORRECTLY DETECTED LOOP CLOSURES THAT
ARE UNACCEPTABLE IN SLAM.

seq. descriptor #corr. #incorr. error [m]

MulRan
DCC03

w/o vv (SegMap), 25 NN 1405 3 0.36
with vv (our), 25 NN 1330 135 4.97
w/o vv (SegMap), 1 NN 764 0 0.27
with vv (our), 1 NN 1076 0 0.27

MulRan
KAIST02

w/o vv (SegMap), 25 NN 2081 141 14.69
with vv (our), 25 NN 1906 163 15.65
w/o vv (SegMap), 1 NN 1402 0 0.33
with vv (our), 1 NN 1620 0 0.23

KITTI
00

w/o vv (SegMap), 25 NN 423 0 0.75
with vv (our), 25 NN 469 0 0.75
w/o vv (SegMap), 1 NN 256 0 0.69
with vv (our), 1 NN 205 0 0.67

Fig. 9. Segment attention score as a function of performance of correct
segment retrieval. The better the rank, the less attention is placed on the
segment itself and the more on its context.

has a strong negative impact on the estimated trajectory
[1]. Therefore, place recognition systems should avoid those,
even at a cost of fewer correctly recognized places. During
initial experiments, with 25 nearest neighbors fetched for
every segment in the local map (denoted 25 NN), it turned
out that both solutions, without and with visual views,
produced such incorrect recognitions. However, we observed
that in most cases it is sufficient to get just the first nearest
neighbor for our descriptor. Inspired by Lowe’s criterion on
matching SIFT descriptors [23], we proposed to accept only
match candidates which are the first nearest neighbor and
for which the distance of descriptors multiplied by 1.2 is
smaller than the distance to the second nearest neighbor
(denoted 1 NN). Using this criterion we eliminated incorrect
recognitions while preserving a high number of correct ones.
Plots of translational errors in time are presented in Fig. 7,
while a histogram of these errors is shown in Fig. 8. The
mean position errors and numbers of recognized locations
for all considered sequences are gathered in Tab. I. For this
analysis we assumed that recognitions with a translational
error greater than 5 m are incorrect. The time plots of
translational error qualitatively show that loop closures for
our version are approximately uniformly distributed along
the entire trajectories and are not focused in one part. They
also depict that maximum errors are smaller for our version.
The histograms show that for the MulRan sequences our
method yields a higher number of loop closures that are
very accurate, which is beneficial to SLAM. The quantitative

results demonstrate also that for SLAM applications the 25
NN version is not suitable because of the incorrect recogni-
tions. For the 1 NN version and Ouster OS-64 (MulRan)
our solution yields better results in terms of the number
of correct recognitions while being better or comparable in
terms of the mean position error. The results for Velodyne
HDL-64E (KITTI) are inconclusive, which we attribute to
the considerably lower quality of the synthesized intensity
images.

In terms of inference time, our solution is slightly faster
than the original one (143 ms vs 155 ms on average using
GTX 1080 Ti) thanks to a smaller number of described
segments due to rejection of segments with a too small mask.
The most time-consuming operation is the insertion of new
visual views to the local map that includes finding the best
visual view for every segment and takes 313 ms on average.

We use the attention analysis mechanism to demonstrate
how important it is to take into consideration the visual
context surrounding the segment on the image. To show this
effect quantitatively, we compute every segment’s attention
score as a ratio of the mean attention of pixels belonging to
the mask and its nearest neighborhood in the intensity image,
to the mean attention for all other pixels. Figure 9 plots the
attention score for 10 bins of segments, sorted according to
their rank (the same rank as used during the performance
analysis, c.f. Fig. 6). There is a trend showing that the better
the rank, the less attention is placed on the segment itself
and the more on its context. Figure 10 visualizes attention
heatmaps for two segments from the top 10% ranks and
thus being correctly associated (top rows), and two others
from the bottom 10% ranks that were mismatched (bottom
rows). There is a visible shift of attention in the DNN
from the segment to the surrounding context for the correct
associations, whereas in the incorrectly associated examples
the DNN focused on particular objects.

VI. CONCLUSIONS

We presented research aimed at improving loop closing
based on the concept of geometric segments, making it
possible to consider the visual context that surrounds these
segments. This context gives the segment descriptors much
more descriptive power. While there are many objects of
similar shapes in real-world outdoor scenes (e.g. cars), a
combination of the segment’s geometry, its texture, and other
textures in the neighborhood is intuitively much more unique.
We verified this conjecture in two ways: (i) by demonstrating
quantitatively on the MulRan and KITTI datasets that our
new descriptors are more robust in matching than the purely
geometric ones from SegMap, (ii) by showing through DNN
attention analysis that the visual context indeed matters
when learning the descriptors. Moreover, we demonstrated
the processing pipeline that exploits the intensity readouts
of a modern LiDAR in a way similar to passive camera
images. The new DNN architecture combines geometric and
intensity data at the feature level, producing compact de-
scriptors. Having SLAM applications in mind and exploiting
better descriptive power of our solution, we proposed a



Fig. 10. Examples of first nearest neighbors retrieved from the target map as query seqment views (left), attention heatmaps for query segments (middle),
and attention heatmaps for matched segments (right). Two first examples depict correctly matched segments (circled in green) from top 10% ranks, whereas
two last depict incorrectly matched ones (circled in red) with correct segments being distant in the descriptor space from bottom 10% ranks.

different method for selecting potential segment matches
that eliminates incorrect loop closure detections that could
deteriorate pose and map estimates. The presented results are
considerably better for Ouster OS1-64 due to good quality
intensity images and could be further improved using the
latest technology LiDAR with 128 beams [8] and ambient
images instead of the intensity images. This possibility will
be investigated in our future work.
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ABSTRACT This paper introduces PlaneLoc2 - a novel indoor global localization system designed to
harness the potential of stereo cameras. A need for robust global localization that does not produce incorrect
results (false positives) is present in almost every life-long autonomy task. We show that planar segments
extracted from stereo vision data by a neural network enable such robust localization. Planar segments are
easier to discriminate than keypoint features and provide easy-to-use geometric constraints. We propose an
architecture that exploits a single deep neural network (DNN) to detect planar segments, produce appearance
descriptors, and estimate segment geometry. Moreover, we introduce a novel view-based segment map and
a novel pose retrieval procedure that considers the uncertainty of features to efficiently use the geometric
constraints provided by them. We also show that the new learned descriptor provides better discrimination
than the hand-crafted one. Finally, we present experimental results that show that our solution outperforms
other state-of-the-art global localization methods and does not produce incorrect agent poses. For both test
scenes it recognizes at least 15% more poses than the second best method without incorrect recognitions.

INDEX TERMS Simultaneous localization and mapping, Artificial neural networks, Stereo image
processing

I. INTRODUCTION

ACCURACY of modern simultaneous localization and
mapping (SLAM) systems over the last years has im-

proved significantly, yet they are still not applicable to many
real-world tasks. The main reason is that to work for a
prolonged time these systems have to be able to recover from
failures and have to correct localization drift that inevitably
accumulates over time. When no external source of position-
ing is available, e.g. in indoor environments where there is
no Global Positioning System (GPS) signal, global localiza-
tion becomes essential. Global localization is a problem of
localizing an agent with respect to a known map without
knowledge of its previous poses [1]. In the case of metric
global localization, the pose (translation and rotation) is ex-
pressed in a frame of reference of the map using appropriate
representation, e.g. translation vector and rotation matrix.
Metric global localization is a vital component of solutions
to problems such as recovery after loosing pose tracking
due to occlusion or other external factors, or loop closing
when a robot arrives at a previously visited scene after
traversing a long loop and drift has to be rectified. In order

to compute the pose in this situation, it is necessary to match
a selected type of features or objects between a local view
and the global map. The more discriminative the features
or objects, the better, because it is easier to avoid incorrect
associations. However, a nontrivial problem is to reliably
and repeatedly detect such objects and to exploit geometric
constraints provided by their associations. One possibility is
to use planar segments that are common in indoor environ-
ments. They are not so easily detected as keypoint features
and geometric constraints are more complex than point-to-
point constraints, nonetheless, they are more discriminative
and there are usually fewer of them, which reduces the
number of possible association combinations. Therefore, to
build a global localization system that will benefit from
planar segments, it is necessary to develop proper detection
and pose retrieval algorithms. The detection of planar seg-
ments is usually done using RGB-D sensors because of the
availability of depth information that helps to segment the
scene and enables geometry estimation, i.e. plane equations
supporting segments. Unfortunately, RGB-D sensors have
limited effective range, and other sensors providing depth
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information, such as LiDARs (Light Detection and Ranging),
are expensive. An interesting alternative is a passive stereo
camera that also facilitates unambiguous geometry recovery,
but has a longer effective range than RGB-D sensors and is
cheaper than LiDARs. However, to harness the full potential
of stereo cameras, special care has to be taken because stereo
estimated depth is not as accurate as the one from RGB-D
sensors or LiDARs. Whereas multiple papers discuss planar
segment detection without explicit depth information [2],
localization using planar segments [3], and some systems
allow localization using stereo sensors [4], no significant
prior work exists that combines those topics to propose a
robust global localization system. This paper closes this gap
by introducing the PlaneLoc2 (Sec. III), depicted in Fig. 1.
The goal of the presented research is to develop a system that
delivers a metric pose of the agent with respect to a known
map, using a passive stereo camera, and exploiting planar
segments as reference objects. The contribution of the paper
can be summarized as follows1:

• Extending Stereo Plane R-CNN planar segment detec-
tion network with a module to extract the geometry
and uncertainty of geometry of planar segments. This
enables application of this network architecture to the
real-world problem of global localization (Sec. IV-A).

• Developing a planar segment appearance description
method that is embedded in the segment detection net-
work. The enhanced descriptor significantly limits the
number of potential matches considered during local-
ization (Sec. IV-B).

• Proposing a novel view-based map and a novel pose
retrieval method that better suit the characteristic of
passive stereo cameras (Sec. V).
The rest of the article is structured as follows. In Sec. II
we survey other papers and compare them with our

approach. Sec. III is dedicated to the overview of the global
localization pipeline. In Sec. IV we describe the planar seg-
ment extraction mechanism, while the view-based approach
to global localization is presented in Sec. V. The proposed
methods are extensively evaluated and compared to other
state-of-the-art systems in Sec. VI. Finally, conclusions are
drawn in Sec. VII.

This work builds on results from our previous articles. A
planar segment detection DNN that enables accurate geom-
etry retrieval was introduced in [5]. We use this network
in the PlaneLoc2, but add a segment geometry extraction
mechanism that can be used in global localization. The
extracted information include the uncertainty that is a vital
part of the description of geometry. The segment appearance
description learning is inspired by our previous successful
loop closing method [6], where descriptors of general (not
necessarily planar) segments were computed from LiDAR
data. The general idea of inference by building a probability
density function (PDF) describing agent pose is borrowed

1Implementation and dataset are available at https://github.com/
LRMPUT/plane_loc_2

from the PlaneLoc system that uses RGB-D data [7]. How-
ever, a completely new mapping approach and pose retrieval
procedure are introduced in this article to handle a stereo
sensor.

II. RELATED WORK
In this section we describe other papers related with our
work. The description is divided into three subsections con-
cerning different aspects of global localization: sensors, fea-
tures, and methods in general.

A. SENSORS
Rapid development of RGB-D sensors that followed the
introduction of Kinect, brought a variety of sensors that
use different measurement techniques, such as structured
light, time of flight (ToF), and active stereo. However, all
those solutions have a limited effective range of 4-6 m [8],
even Kinect v2 that is especially vulnerable to reflective
surfaces [8]. Therefore, modern RGB-D sensors often resort
to passive stereo for larger distances, which increases the
effective range [9]. The limited range poses problems for
many real-world applications and makes a stereo camera the
preferable sensor. The applications include, but are not lim-
ited to, tracking human motion [10], SLAM [11], and scene
reconstruction [12]. Moreover, depth information is some-
times used to simulate a view-based stereo measurement to
achieve better results [4]. Also, when significant scene sizes
are considered, stereo is the only viable option [13] with
monocular cameras struggling with scale ambiguity [14].
Aware of those results in related areas, we resort to a passive
stereo camera to increase the effective range of perception of
planar segments with respect to our earlier PlaneLoc system
from [7].

B. FEATURES IN GLOBAL LOCALIZATION
One of the key aspects of global localization is a choice
of features to be matched. Algorithms like DBoW2 [15],
used in ORB-SLAM3, resort to classical, non-learned key-
point features, such as BRIEF (Binary Robust Independent
Elementary Features) or ORB (ORiented FAST and Rotated
BRIEF). A more recent approach is to use a trained keypoint
detector and descriptor, as in [16] where finding dense pixel-
wise correspondences between two images is enabled by
a pyramid of coarse-to-fine features. Learned features are
oftentimes combined with learned matching methods, such as
SuperPoint detector and descriptor [17] and SuperGlue [18]
matcher that uses a graph neural network to aggregate global
context. A more localization-oriented feature learning was
proposed in [19], where supervision at the level of pose
was applied to train a multiscale feature generator. However,
the pose estimation is left to a principled algorithm and
the method requires a coarse initialization of pose, therefore
being not suitable for global localization. In our work, we
adopt a different approach and instead of resorting to a
complex description and matching methods, we use planar
segments that are easier to describe and match.
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FIGURE 1. PlaneLoc2 retrieves candidate views using appearance descriptors and builds a PDF of pose using all potential matches. The final pose is a maximum
of the PDF, verified by the fail-safe checks.

Planar segments are not as commonly used as reference
objects, compared to keypoint features, mainly because diffi-
culties with their detection, and with exploiting the geomet-
ric constraints they provide. Nonetheless, there are SLAM
systems that use planar segments, such as the one presented
in [20], where planar segments enabled loop closures in a
LiDAR-based system. LiDAR measurements facilitates ac-
curate estimation of planar segments’ geometry, therefore the
solution cannot be directly applied to a camera-based system,
such as ours. In camera-based SLAM, planar segments were
used in [3], [21], however, planar constraints were used
only during incremental localization and loop closing was
based on keypoint features. Contrarily, PlaneLoc2 uses pla-
nar segments to recover global pose, which is a part of loop
closing procedure. A demonstration of global registration of
camera pose with planar segments was presented in [22],
but no quantitative localization results were provided. Global
localization was also considered in [23], where graphs of
incidence of planar segments were used to compare their sets.
However, the method was tested only in a small environment,
where objects were close to a sensor and their geometry could
be accurately estimated using RGB-D data. In opposition, in
this paper, we quantitatively evaluate the proposed solution
in a workshop-sized environment to enable a fair comparison
with other systems.

C. GLOBAL LOCALIZATION METHODS

Most of the global localization methods use associations
between keypoint features to recover a pose. Loop closing
and relocalization mechanisms in ORB-SLAM3 [4], based
on DBoW2 [15], use sparse ORB features and hierarchical
tree to quickly retrieve candidate images to match against.
The pose is computed by point-to-point correspondences
and later verified by tracking a local map. A solution using
learned descriptors is presented in [24], where candidate im-
ages are found using NetVLAD [25] descriptor, followed by
dense matching and pose verification using view synthesis.
Unfortunately, view synthesis requires the database images
to contain dense depth maps, which can be troublesome to
obtain. A conceptually similar approach was described by
Sarlin et. al [26], where localization is done in two steps:
global candidate images retrieval, followed by local feature
matching. Our solution follows a different strategy than
those algorithms, matching directly objects of reference and
including context description in the appearance descriptor
of those objects. A data-driven approach could alleviate the
need to choose a specific strategy and combine benefits of
both solution. However, despite the enormous capabilities
of DNNs, they have been applied mainly to feature gen-
eration and incremental localization [27], whereas global
pose retrieval is done using principled algorithms, as in the
aforementioned papers.

Uncertainty in global localization is not easy to capture
and has been discussed only in a few articles. In [28] a place
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recognition method was proposed that uses Bayesian filtering
with simple motion and sensor models. The model is used in
prediction and resampling steps of a particle filter, but the
computed place gives only a coarse pose. Another example
of Bayesian localization is presented in [29], where authors
integrated LiDAR and camera measurements and proposed
an efficient inference method with a decomposition of the
global map into local places. Those two methods maintain
a probability distribution of poses and constrain transitions
between locations using a motion model. Such an approach
differs from the one presented in this article, because we
assume that visual odometry in a short horizon is precise
enough to neglect its uncertainty and represent the pose
distribution using kernels.

III. GLOBAL LOCALIZATION USING PLANAR
SEGMENTS
The RGB-D based PlaneLoc, despite achieving good results
in terms of precision and recall, had a few issues that were
identified during the research and hindered further develop-
ment:

• Ignoring planar segments further than 4 m due to a lim-
ited effective range of RGB-D sensors. During global
localization, using only the part of the image that is
close to the sensor significantly limits the context and
limits the number of geometrical constraints.

• Using poorly discriminating appearance descriptors
based on color histograms. They were dependent on
illumination and did not include context, therefore their
comparison produced many spurious potential matches.

• Using pose retrieval optimization based on infinite
planes. It did not include information about the bound-
aries of planar segments and produced implausible so-
lutions that had to be additionally verified.

In the new approach, PlaneLoc2, the above-mentioned issues
were addressed to improve robustness and recall. Nonethe-
less, the inference procedure is based on the previous ver-
sion [7] in which all plausible pose hypotheses are generated
and a PDF representing knowledge about the pose is built.
In the PDF the maximum is sought and additional asserts
are performed to ensure that the returned pose is correct.
The same idea is applied here, although most of the other
components had to be redesigned to benefit from a stereo
sensor.

The processing pipeline (see Fig. 2) starts with planar seg-
ments detection and description using a DNN. To maximize
computation sharing during this stage, we use a single DNN
that extracts all information necessary for further process-
ing, including segments’ 3-D geometry. The geometry and
visual odometry are used to match segments from the current
frame to those present in the local map. Information from
the current frame is then used to either update segments
in the local map or to add new ones, depending on the
matching results. Both maps, the local and the global one, do
not merge segments explicitly to get a single representation
but rather store information about views of the segments.

FIGURE 2. Processing pipeline of PlaneLoc2.

After updating the local map, a localization procedure is
performed, that associates segments between the local and
the global map and builds the PDF. The procedure starts with
the retrieval of candidate global map views using appearance
descriptors. As a result of using deep learned descriptors that
provide good discrimination, only 2 candidate views have to
be retrieved to get a high probability of including a correct
match. Using retrieved views, all plausible pose hypotheses
are generated by examining triplets of matched segments
and every hypothesis is inserted into the 6-D pose PDF as
a kernel:

p(q) =
1

Z
p̃(q) =

1

Z

∑

a

waKa(q), (1)

where q is a 6 element pose vector (a logarithm of the SE(3)
transformation matrix), Z is a normalizing factor, Ka is a
kernel function for hypothesis a, and wa is a weight of the
kernel a. The weights are computed as follows:

wa =
∑

b

αb, (2)

where b ranges over all local segment views used in the
hypothesis a, and αb is an area of the segment view b. A
novel procedure to retrieve a pose hypothesis based on a
set of matches is used to exploit view-based representation
and provide as many geometric constraints as possible. The
pose retrieval procedure is critical during the pose hypothesis
generation and the final pose computation. When the PDF
maximum is found and the final pose q∗ is computed, three
fail-safe checks are performed to ensure that the pose is
correct:

• p̃(q∗) > τp - the value of the unnormalized PDF p̃(q∗)
for the final pose q∗ has to be above a threshold τp to
assert that enough positive evidence was collected.

• min
(

αl
m

αl
t
,
αg

m

αg
t

)
> τr - the ratio of the area of segment

views that were matched αm to the total area of visible
segment views αt has to be above a threshold τr for,
both, the local map (denoted by a superscript l) and the
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global map (denoted by a superscript g) to verify that
there is no significant amount of negative evidence.

• |M| > τd - the number of distinct matched pairs of
segments has to be above a threshold to make sure that
the positive evidence is diverse enough.

Our system has three main threads that can be executed
concurrently. The first one is responsible for detecting planar
segments and creating views – its processing takes 557 ms
per frame on average on RTX 3090 GPU. The second one
builds and manages the local map, using approximately
11 ms of i5-8250U CPU time for each frame. The last thread
is a pose inference thread that returns results every 2883 ms
on average using CPU only. The execution time allows to
update the local map with a frequency of approximately 2 Hz,
which is enough for global localization, since consecutive
frames usually do not contain significant amount of new
information. Although the local map can be updated with a
frequency of 2 Hz, the agent pose cannot be retrieved after
each update due to the longer processing time of the inference
thread. Nonetheless, in the considered scenarios, information
about the global pose yielded every 3 s is enough to recover
from loosing pose tracking or to correct the drift.

IV. PLANAR SEGMENTS EXTRACTION
As mentioned in Sec. I, reliable and repeatable object detec-
tion is essential if they are to be used during localization.
Drawing from development in the object detection field,
where DNNs achieve the best results, outperforming classical
methods by a large margin, we also use DNN to detect
reference objects in the form of planar segments. The DNN,
introduced in our recent work [5] (see Fig. 3), simultaneously
produces image masks of individual planar segments, their
appearance descriptors used to preliminarily match segments
between the local map and the global map, and retrieves the
3-D geometry of the segments. It was trained on a photo-
realistic synthetic SceneNet Stereo dataset containing
approximately 35k images from 200 different scenes. The
training was started from weights pretrained on the real-
world Coco and ScanNet datasets, same as in [5]. We
trained the network for 10 epochs using Adam optimizer
with a learning rate equal to 10−5 and weight decay equal
to 10−4. Training examples were augmented using random
color and sharpness manipulation, Gaussian noise, and ran-
dom cropping. Despite using only a synthetic dataset for the
final training, the network performs well on real-world data,
as evaluated in Sec. VI.

A. DETECTION
To exploit more information about the scene by including
also distant segments, we use a stereo camera instead of
an RGB-D sensor. However, stereo estimated depth is not
accurate enough to reliably segment an image into planar
segments and to fit supporting 3-D planes for those segments.
Nonetheless, a pair of stereo images is still a valuable source
of information regarding the geometry of the scene and
can be used without explicit depth reconstruction. In the

FIGURE 3. An overview of DNN used to detect and describe planar
segments. Gray blocks and connections were not modified.

PlaneLoc2 a DNN is used to segment image into planar
segments and to estimate segments’ supporting planes. The
Stereo Plane R-CNN architecture detailed in [5] uses camera-
agnostic geometry representation to provide robustness to
camera parameters change and to enhance the results. To use
this network for localization purposes, an export mechanism
had to be added that handles the depth uncertainty. Besides
a plane equation and a hull denoting the boundary of the
segment, we also store a mean value and a covariance matrix
of 3-D points forming this segment. The points are calculated
using the estimated depth and the uncertainty of their estima-
tion is extracted from the disparity estimation branch of the
geometry module of the DNN. In this branch, a cost volume
is created that holds the probability distribution over disparity
values for each pixel. It is straightforward to compute the
standard deviation of disparity σd from this distribution:

σd =

√∑

d

p(d)(d− d), (3)

where p(d) is a probability that d is a disparity for this pixel,
and d is an expected value of the disparity. Then, a standard
deviation of depth σz can be calculated using a camera model
as follows:

σz = σd
z

fxb
, (4)

where z is a depth value, fx is a focal length for X axis of
the camera, and b is a baseline of the stereo setup. Finally,
a covariance of 3-D point xi in a camera frame of reference
can be approximated as:

Si =



0.052

0.052

σ2
z


 . (5)

A small, constant value of uncertainty of 0.05 m was used
for the X and Y axes because uncertainty in those directions
can be neglected compared to uncertainty in the Z axis. The
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uncertainties of individual points are aggregated to obtain a
covariance matrix of the whole point cloud as follows:

S =
∑

i

Si + xix
T
i − µµT , (6)

where µ is a centroid of the point cloud. This uncertainty is
necessary to accommodate for inaccurate geometry estima-
tion during the association check and the pose retrieval.

B. DESCRIPTION
The DNN also helped resolve another issue of the previous
version of PlaneLoc system, namely poorly discriminating
appearance descriptors. We added additional layers in a
classification head (location of this classification head in the
entire structure of the DNN is presented in Fig. 3) of the
DNN that produce descriptors as presented in Fig. 4. Features
that are used to compute class probabilities and bounding
box refinements are processed by a fully connected layer
to output a descriptor. However, the most troublesome part
of training a DNN that computes descriptors is the way of
supervision. Inspired by [6], we also formulate this problem
as a classification task. During training, every instance of a
planar segment in the training dataset is a separate class and
all observations of this segment should be classified as this
class. To increase the robustness of the descriptor, a dropout
layer is added between the descriptor and fully connected and
softmax layers that output segment instance probabilities.
The segment instance probabilities are used to compute a
cross entropy loss by comparing with target annotations. Cor-
respondences between observations and instances of planar
segments that serve as the target annotations are computed
using 3-D mesh models, eliminating the need for tedious
manual labeling. Such a modification adds little overhead to
the Stereo Plane R-CNN model from [5], while producing
discriminative descriptors.

V. VIEW-BASED APPROACH TO GLOBAL
LOCALIZATION
Distant planar segments, even if not useful to constrain how
far the sensor is from the segment because of problems with
accurate depth estimation, still provide good orientation con-
straints. To exploit those constraints, we proposed a novel,
view-based map and a pose retrieval procedure that takes into
consideration the uncertainty of depth estimation. Moreover,
the new pose retrieval procedure treats planar segments as
spatially bounded, providing more constraints as opposed to
the previous approach that treated them as infinite planes.

A. PLANAR SEGMENT MAP
The new map structure, instead of explicitly merging dif-
ferent observations of the same planar segment to produce
a single representation in the form of a point cloud, stores
information about separate views of segments. The structure
of the map is depicted in Fig. 5, showing the following
information is stored for each view:

FIGURE 4. A modified classification head from Stereo Plane R-CNN that
produces descriptors. Gray blocks and connections were not modified.
Location of this classification head in the entire structure of the DNN is
presented in Fig. 3.

FIGURE 5. The map in PlaneLoc2 contains planar segments, whereas
segments store information about their views.

• Plane equation (π) - estimated by the plane parameters
branch of the geometry module.

• Point cloud - 3-D points constituting the segment. Points
are reprojected using the stereo estimated depth from the
disparity branch of the DNN. To limit storage require-
ments, they are downsampled using a voxel grid filter
with a raster of 0.05 m.

• Centroid and covariance matrix (µ,S) - computed from
the point cloud.

• Pose - a visual odometry pose from which the segment
was observed.

• Appearance descriptor - produced by the DNN and used
to retrieve global map view candidates.

By avoiding merging, we circumvent the problem of, usually
computationally costly, information merging and uncertainty
propagation from different views. When a new frame is pro-
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cessed, a depth buffer is built to check which segments from
the local map can be visible. During the buffer construction,
for every segment we select a view with the observation pose
Tv (expressed as a SE(3) transformation matrix) closest to
the current pose Tc, according to the following metric, that
is a weighted sum of translational and rotational differences:

d (Tc,Tv) = dt

(
(Tv)

−1
T1

)
+wrdr

(
(Tv)

−1
T1

)
, (7)

where wr is a weight of the rotational difference, dt(·) is
a function returning translation of the transformation, and
dr(·) is a function returning rotation of the transformation.
The weight wr = 5 is set to make an error of approximately
5◦ equal to an error of 0.5 m. The new views are matched
against the potentially visible segments by a geometry test
that employs the same error function as the pose retrieval
procedure:

g (Pc,N (µv,Sv)) =
√

ec,v (I,0) < τg, (8)

where Pc is a set of points representing the currently consid-
ered new view, N (µv,Sv) is a distribution representing the
local map view, ec,v (I,0) is the error function defined in (9)
for identity transformation, and τg is a threshold. Depending
on the results of this test, views are either added to existing
segments or create new ones. Additionally, we store an end-
of-life (EOL) counter for every segment. It is initialized with
a value of 4 and increased by 2 whenever a new view is added
and decreased by 1 whenever the segment is potentially
visible but no new view was added. Segments with EOL
higher than 8 are treated as mature and their counter is not
decreased anymore. When EOL drops to 0, the segment is
considered an invalid observation and is removed from the
map.

The local map has a limited time horizon of 2 seconds.
Such a horizon prevents accumulation of the drift from the
visual odometry, yet includes a broader context of a scene
than a single frame. As a result of the view-based approach,
older information can be easily removed by dropping infor-
mation about outdated views.

B. POSE RETRIEVAL
The aim of pose retrieval is to compute a pose of the sensor
with respect to the global map, given a set of matches
between views of planar segments in the local map and ones
in the global map. The novel pose retrieval used in this
work does so by minimizing an error of fitting virtual points
of the first planar segment to a distribution describing the
second planar segment. Such formulation allows exploiting
uncertainty of depth estimation while also providing a system
of linear equations that can be quickly solved. Consider a
planar segment from the local map (denoted by a superscript
l) and a planar segment from the global map (denoted by
a superscript g) described by their centroids µ, covariance
matrices S, and plane equations π. To assess how N trans-
formed points Rxl

i+t forming the local segment distribution

fit the global segment distribution N (µg,Sg), one can use a
squared Mahalanobis distance:

el,g (R, t) =

=
1

N

∑

i

(Rxl
i + t− µg)T (Sg)−1(Rxl

i + t− µg)

=
1

N

∑

i

(Rxl
i + t− µg)T (VgΛg(Vg)T )−1

(Rxl
i + t− µg)

=
1

N

∑

i

(Rxl
i + t− µg)T (VgΛg

s(Λ
g
s)

T (Vg)T )

(Rxl
i + t− µg)

=
1

N

∑

i

∑

k

(
(Rxl

i + t− µg)Tvg
k

1√
λg
k

)2

, (9)

where VgΛg(Vg)T is an eigen decomposition of the covari-
ance matrix Sg , Λg

s is a matrix with inverses of square roots
of eigenvalues 1√

λg
k

on the diagonal, and vg
k are columns of

the matrix Vg and eigenvectors of the covariance matrix Sg .
To minimize el,g (R, t), a set of linear equations can be build
in the form:

(Rxl
i + t− µg)Tvg

k

1√
λg
k

= 0, (10)

and then solved using SVD-based least squares algorithm.
Unfortunately, this gives 3N equations when using all points
from the local segment distribution. Hence, instead of all
points, we use virtual points that subsume the distribution:

xl
±k = µl ±K

√
λk

l
vl
k, (11)

where K is a number of dimensions used. We use 4 virtual
points that correspond to two principal directions (K = 2)
of the distribution N (µl,Sl) projected onto plane πl. Those
points lay on the plane and are in a distance of two standard
deviations from the centroid. Using only points on the plane
from the local segment distribution, instead of using 6 points
that would represent the distribution before the projection, is
of utmost importance to conserve the planar nature of those
constraints. If all 6 points were used, and the uncertainty of
estimation would be high in a direction of a normal vector
of the local segment (i.e. due to poor depth estimation), the
fitting error would be high if the global distribution was
mainly planar (see Fig. 6). This high fitting error could cause
minimization to favor undesired rotations. Moreover, using
only 4 points further reduce the number of equations by
exploiting the planarity of the segments. Additionally, the
centroid and the covariance matrix are computed using stereo
estimated depth and give a less accurate description of the
geometry than the plane equation from the specialized branch
of the DNN. Hence, by projecting distribution on the plane,
the accuracy is increased. However, centroids and covariance
matrices are still used because they are the only source of
uncertainty measures.
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FIGURE 6. Schematic illustration of fitting error of local planar segment (blue)
to global planar segment (orange) using 2-D section. Lengths of vg

λg vectors
correspond to a unit of error. The error is denoted using a dashed line. Using
virtual points perpendicular to the plane xl

−3 and xl
+3 could yield high errors

and undesired behavior during optimization (see text).

After solving a system of 36 equations (3 pairs of matched
segments, 3 dimensions, 4 virtual points) in the form of
Eq. (10), we get values of the matrix R and the vector t.
Unfortunately, there are no constraints on the orthonormality
of the values in R, so it might not be a valid rotation matrix.
To obtain a proper rotation matrix, we perform orthonormal-
ization using the SVD decomposition:

R′ = UVT , (12)

where UΣVT = R is the SVD decomposition. To refine
the transformation, a Gauss Newton optimization in the Lie
algebra is performed by minimizing a sum of squares of the
following residuals:

ri,k = (R exp(ω)xl
i + t− µg)Tvg

k

1√
λg
k

, (13)

where ω is a rotation increment. The Jacobians of the resid-
uals are as follows:

∂ri,k
∂t

= (vg
k)

T 1√
λg
k

(14)

∂ri,k
∂ω

∣∣∣∣
ω=0

= (vg
k)

T 1√
λg
k

R
[
xl
i

]
× , (15)

where
[
xl
i

]
× is skew symmetric matrix formed from ele-

ments of xl
i. We can assume that ω is close to 0 because

it is an increment. By empirical examination, the number of
iterations was set to a constant value of 5. In a vast majority
of cases, further iterations do not alter the transformation,
whereas using a constant value bounds the execution time.
The result is a transformation (R, t) that stems from the
geometric constraints imposed by a set of matched planar
segments and is used later to build the PDF of the agent pose.
The same procedure is also used to compute the final pose,
after the maximum of the PDF was found and all matches
were established.

VI. EXPERIMENTAL VERIFICATION
We use a real-world TERRINet dataset2 to evaluate the
proposed solution. The dataset contains trajectories from 3

2This dataset was collected during the author’s visit to LAAS-CNRS in
Touluse, within the TERRINet project funded by EU H2020 under GA
No.730994

different scenes with reference poses from Qualisys motion
capture system. We recorded stereo images along with Velo-
dyne VLP-16 LiDAR scans that were later used to generate
ground truth depth maps for every image. The ground truth
depth maps enabled the computation of correspondences
between planar segments detected in different image frames.

A. DESCRIPTION
The aim of the first experiment is to show the effectiveness of
our new learned descriptors. We compare them with descrip-
tors based on color histograms used in the previous version
of PlaneLoc. For every detected planar segment we compute
its rank, i.e. the number of nearest neighbors necessary to
fetch from the database of all descriptors to include a correct
match. We exclude segments from the same trajectory, as
images containing them could be very similar to the image of
the query segment. To give more insight on the characteristic
of descriptors, we present the rank as a function of the size
of detected segments. We divided segments based on the
square root of their area in pixels, denoted as A, into 6 bins
(see Fig. 7). It is clearly visible that the learned descriptors
outperform the histogram-based ones by a large margin for
all sizes. It is also worth noting that from A equal to 100,
the first neighbor is almost always the correct one (values on
the box plot further than 1.5 inter-quartile range from the box
were treated as outliers and removed).
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FIGURE 7. Statistics on ranks as a function of the square root of segment
size A. Values on the box plot further than 1.5 inter-quartile range from the
box were treated as outliers and removed.

B. LOCALIZATION
The second experiment compares the proposed solution with
other state-of-the-art global localization systems. As avoid-
ing an incorrect loop closure or relocalization is of utmost im-
portance to the precision of most SLAM systems, we report
a percentage of correct and incorrect localization acts (called
recognitions hereinafter) and their precision. We compare the
pose computed by a considered method with the reference
pose and compute the translational and the rotational error.
The threshold for assuming a recognition correct is 0.5 m and
10◦ as an error within such bounds usually enables resuming
tracking in SLAM systems [7]. If a method returns no result,
we do not compute the errors and treat such outcome as an
unknown pose. For each scene, we use one trajectory to build
a map and a different one to evaluate localization with a
known map. The map is built using the reference poses for
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all tested solutions to exclude the factor of map precision.
We tested the following solutions:

• OS3/r - relocalization mechanism from ORB-SLAM3.
The system was forced to relocalize every frame and
pose after local map tracking was evaluated if the re-
localization was successful. Localization is performed
every frame.

• OS3/m - map merging mechanism from ORB-SLAM3.
A new map was being build for the test trajectory and a
transformation between the current map and the prebuilt
map was evaluated if a merge was successful. Localiza-
tion is performed every time a keyframe is inserted into
the map.

• NV+SP - hierarchical localization [26] with Super-
Glue [18] and NetVLAD [25] was evaluated with a
global map constructed using COLMAP software3. Lo-
calization is performed every frame.

• PL2 (ours) - the solution presented in this paper. The
local map is updated every 15 frames because consecu-
tive frames are similar to each other and do not provide
diverse views, therefore localization is performed every
15 frames.

Setting proper values of parameters is a troublesome task,
especially in complex systems. To facilitate this task in the
PlaneLoc2, we follow a data-driven paradigm and use the
first scene to perform statistical analysis and compute the
values of parameters:

• τd - a maximum distance between descriptors that is
considered during candidate segment views retrieval. It
is set to include 90% of all correct matches.

• τsvd,t and τsvd,r - a minimum value of a singular value
for translational and rotational part Jacobians in the
gradient descent optimization of the pose to assume that
the pose is constrained in all dimensions. It is set to
include 90% of all correct triplets.

• τe - a maximum value of residual error to consider a
fitting of planar segments as correct during the pose
retrieval. It is set to include 75% of all correct triplets.
Value of 75% was used instead of 90% to limit the
number of considered triplets and to reduce the com-
putational burden.

• τp, τr, and τd - thresholds that are used during the final
safe-checks. They are set to maximize the number of
correct matches, while keeping the number of incor-
rect matches equal to 0. Multiplied by a factor of 1.2,
inspired by the Lowe’s ratio test [30], to add a safety
margin.

• τg - threshold used to determine whether two segment
observations should be merged (see Eq. (8)) in a map.
Empirically set to a value of 2 that prevents most of the
incorrect data associations.

To enable a fair comparison, for ORB-SLAM3 we used
the parameter setting designed by the authors and used in
the EuRoC indoor experiments [4]. Likewise, for NV+SP we

3https://colmap.github.io

TABLE 1. Results of global localization on TERRINet dataset. Cases with
incorrect recognitions are colored red. The best correct recognitions rates for
cases without incorrect recognitions are emboldened.

scene measure method
OS3/r OS3/m NV+SP PL2

02

correct [%] 58.1 40.3 95.0 73.8
incorrect [%] 0.0 0.0 5.0 0.0
unknown [%] 41.9 59.6 0.0 26.2
mean error lin. [m] 0.08 0.09 0.10 0.09
mean error ang. [◦] 0.7 0.7 1.9 1.1
max. error lin. [m] 0.27 0.17 18.35 0.37
max error ang. [◦] 5.3 1.7 156.3 3.2

03

correct [%] 49.4 18.2 94.3 47.9
incorrect [%] 0.2 0.0 5.7 0.0
unknown [%] 50.4 81.8 0.0 52.1
mean error lin. [m] 0.06 0.04 0.20 0.10
mean error ang. [◦] 1.5 0.7 2.9 1.1
max. error lin. [m] 0.81 0.09 12.88 0.38
max error ang. [◦] 10.5 1.2 174.8 3.2

used parameters set for the InLoc dataset [26] that is similar
in characteristic to the TERRINet dataset.

Quantitative results are gathered in Tab. 1, while visual-
ization of results for scene 02 are presented in Fig. 8. Both
ORB-SLAM3 mechanisms, relocalization and map merging,
recognize a lower percentage of poses than our solution.
An exception is scene 02, where relocalization recognized
slightly more poses, but also yielded incorrect ones. The
NV+SP recognized a higher percentage of poses but also
produced many incorrect ones, some of which were distant
more than 18 m from the reference pose. Such behavior can
be attributed to a lack of fail-safe checks that inevitably reject
some of the correct recognitions, but also prevent incorrect
ones. Thus, our system recognized the highest percentage of
poses among cases where no incorrect results were produced.
Moreover, our system did not produce any incorrect recogni-
tions in all test cases.

The accuracy of all tested methods is similar, with mean
error values varying slightly on different scenes. Maximum
errors depend mainly on incorrect recognitions and are the
lowest for the ORB-SLAM3 map merging mechanism, while
being below 0.4 m and 3.5◦ for the PlaneLoc2.

VII. CONCLUSION
In this article, we present the PlaneLoc2 global localization
method that utilizes a passive stereo camera to detect planar
segments and compute a PDF of the 6-D pose. The method
uses a DNN that jointly detects planar segments, describes
their appearance, and estimates their geometry. The detected
segments are used to build view-based local and global maps,
that are easily manageable and store information about the
uncertainty of geometry of planar segments. The uncertainty
is exploited in a novel pose retrieval procedure that is de-
signed with stereo sensors in mind. In the experimental
section, we show that the new learned appearance descrip-
tor outperforms the classic, based on color histograms one.
We also tested the global localization performance of our
system and show that it achieves the best percentage of
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FIGURE 8. Visualization of results with reference trajectory (magenta line), ORB-SLAM3 relocalization poses (red points), ORB-SLAM3 map merge poses (green
points), and PlaneLoc2 poses (blue points). Lines of corresponding colors connect reference poses with computed poses. Points in the point cloud are colored
according to their height above the ground. Results for NV+SP were omitted for clarity.

recognized poses, when cases without incorrect recognitions
are considered (15.7% more poses in the first scene than the
second best solution and 29.7% more poses in the second
scene). Moreover, the PlaneLoc2 did not produce incorrect
recognitions in all cases, which is of pivotal importance in
navigation and SLAM systems, proving its suitability as a
global localization system.

The most important changes, with respect to the previous
version of PlaneLoc, that helped achieve good results include
the new appearance descriptor. Results in Sec. VI-A suggest
that it significantly limits the number of incorrect poten-
tial matches. Additionally, considering geometric constraints
from distant segments enabled correct pose retrieval in higher
percentage of situations. The new pose retrieval procedure
that accommodates the spatial boundaries of planar segments
further increases the number of geometric constraints avail-
able. All those factors facilitate a high correct recognition rate
without incorrect recognitions.

As a part of the future work, we plan to expand the system
with other types of geometric features, such as edges. Edges
could provide additional constraints that are unused in this
version of the system.
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Chapter 3

Conclusions

3.1 Summary

This thesis presents a research on global localization methods that are suitable for indoor envi-
ronments and use planar segments as objects of reference. The author proposed novel methods
for solving tasks in the processing pipeline of a global localization system that enabled out-
performing the existing state-of-the-art systems. The novel methods are incorporated in the
PlaneLoc2 – a complete global localization system that is the main contribution of this work.
Innovations and improvements in particular areas are summarized in the following subsections.

3.1.1 Planar segment representation

This dissertation considers multiple ways of representing the geometry of planar segments. The
first one is a representation using infinite planes that support the segment. Infinite planes are
not spatially bounded, as opposed to segments themselves, therefore they do not reflect all prop-
erties of segments. Nonetheless, they provide straightforward means to constrain the pose of
the agent using current observations of planar segments and observations of planar segments
stored in a global map. This work evaluates two representations of infinite planes in the con-
text of pose optimization [Wietrzykowski 2016]. The first one is a 𝑆𝐸(3) transformation with a
properly designed covariance matrix that delivers information about non-constrained directions.
The second one is a quaternion-based minimal representation that encodes all parameters of the
plane. Experiments suggest that the minimal representation performs better when constraints
are weak, but otherwise it performs similarly. However, further research revealed that the rep-
resentation using infinite planes is not stable, i.e. the values can change significantly when 3-D
points move due to noise, especially when the frame of reference is far from the observed seg-
ment [Wietrzykowski and Skrzypczyński 2019]. To mitigate this issue, a new metric of distance
between planar segments is proposed in [Wietrzykowski and Skrzypczyński 2019] (see Eq. (5) in
that article). The metric is based on point-to-plane distance and utilizes a covariance matrix and
a centroid vector of the point cloud forming the segment. The covariance matrix and the centroid
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vector are efficiently updated when new observations are available, making it computationally
feasible. Unfortunately, this metric is not suitable for global pose retrieval, because minimization
equations are fourth degree polynomials and cannot be easily solved. Therefore, a new metric is
proposed in [Wietrzykowski 2022] (see Eq. (9) in that article) that avoids this problem by using
virtual points. The virtual points subsume the distribution represented in the previous metric
by a covariance matrix and a centroid vector, making it possible to form quadratic equations.
Moreover, this metric accommodates the uncertainty of depth measurements and spatial bounds,
making it possible to exploit more constraints. It is used in the final version of the global local-
ization system [Wietrzykowski 2022] to recover the pose and to assess whether two observations
are observations of the same planar segment.

3.1.2 Planar segment detection

Methods of planar segment detection vary depending on the sensor used, and this thesis describes
methods suitable for two different sensors. Earlier experiments employed an RGB-D sensor
because of the readily available depth measurements that enable accurate geometry estimation.
To increase the field of view during localization, a number of consecutive RGB-D frames are fused
together using the ElasticFusion [Whelan et al. 2015] in [Wietrzykowski and Skrzypczyński 2017].
The result is an unorganized point cloud representing the current local view. To extract planar
segments from such a point cloud, a purely geometric method based on supervoxel clustering and
flood fill algorithm is proposed. However, this approach is dependent on an external system, is
slow, and ignores the cues contained in images. Hence, a new plane detection method is presented
in [Wietrzykowski and Skrzypczyński 2019] that detects segments in an organized point cloud
built from a single RGB-D frame. In this way, the incidence relations of an organized point
cloud can be exploited to speed up the computations and image cues can be used to enhance
the segmentation. To maintain a broader context, planar segments detected in a number of
frames are merged to build a local map. Despite providing valuable information about depth,
RGB-D sensors have a limited effective range. Therefore, a stereo camera is proposed to detect
planar segments in [Wietrzykowski and Belter 2022]. Because stereo-estimated depth is not
accurate enough to use the aforementioned methods to detect planar segments, a DNN-based
solution is introduced. The solution detects planar segments in the image using a module based
on the Plane R-CNN [Liu et al. 2019] and recovers the geometry of planar segments using a
novel geometry module. As a result of modifying the segmentation procedure used to label
the training examples to better suit the DNN architecture, the detection results are improved
compared to the baseline solution. Moreover, geometry reconstruction of the detected planar
segments is enhanced by introduction of a geometry module that builds a cost volume from a pair
of stereo images and estimates the normal vectors using a camera-agnostic representation. The
camera-agnostic representation facilitates training and improves robustness to camera parameter
changes. This solution is used in the PlaneLoc2 [Wietrzykowski 2022] system that concludes this
research.
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3.1.3 Map building and map management

Two versions of map building and map management methods are presented in this work. The
first one is introduced in [Wietrzykowski and Skrzypczyński 2019] and designed to work with
planar segments detected using an RGB-D sensor. When newly detected segments are processed,
they are either added as new segments, merged with the existing segments, or placed in a
delayed merge queue. The delayed merge queue prevents the incorrect merging of two or more
existing segments when a newly detected segment is matched to more than one segment. When
enough evidence is available, delayed merges are executed. The merging itself creates a single
representation of a segment by fusing the point clouds of the merged segments, updating the
covariance matrix and the centroid vector, updating the plane equation, and recomputing the
hull. Additionally, a mechanism for removing incorrect observations using an end-of-life counter
is introduced that keeps the number of planar segments in the map at a reasonable level. This
mechanism creates a depth buffer for every new frame to check which segments should be visible.
When there are multiple times a segment should be visible but no new observations of this
segment are available, it is removed from the map. Unfortunately, the PlaneLoc2 uses a passive
stereo camera instead of an RGB-D sensor, therefore a new map building method is presented
in [Wietrzykowski 2022]. Point clouds from stereo estimated depth are less accurate than those
from an RGB-D sensor and explicit merging would cause quick degeneration. Hence, a view-based
map is introduced that stores information about different views of planar segments, instead of
explicitly merging their representations. Additionally, the view-based map preserves uncertainty
estimates that are otherwise lost in the merging process. It is worth noting that the uncertainty
estimates are essential for the new pose retrieval algorithm in the PlaneLoc2. These view-based
map building and map management methods are incorporated in the final version of the global
localization system [Wietrzykowski 2022].

3.1.4 Appearance descriptor

This thesis also makes an effort to research the appearance descriptors that are used to find
candidate matches from the global map of planar segments. The PlaneLoc [Wietrzykowski and
Skrzypczyński 2019] uses simple appearance descriptors based on color histograms. The descrip-
tor is a normalized and concatenated histogram of H and S color components from the HSV space.
It reduces significantly the number of potential match candidates, but is susceptible to changing
lighting conditions and does not include information about surrounding of the segment. There-
fore, a new, learned descriptor is presented in [Wietrzykowski 2022] that leverages the potential
of DNNs. By a proper modification of the DNN used to detect planar segments [Wietrzykowski
and Belter 2022], a descriptor is produced with a little overhead during the detection phase. The
new descriptor is compared with the histogram-based one, and the experimental results show it
is significantly more discriminative. For planar segments bigger than 10000 pixels, the nearest
neighbor in the descriptor space is almost always a correct match. As a result, it is enough to
consider only two match candidates during global localization in the PlaneLoc2 [Wietrzykowski
2022] when these descriptors are used, which reduces the computational burden.
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3.1.5 Pose retrieval

Pose retrieval is a vital part of a global localization system. It computes the pose of the agent
given a set of observations matched between the local view and the global map. Two different
pose retrieval algorithms are described in this thesis. An algorithm exploiting the equations of
planes supporting planar segments is introduced in [Wietrzykowski and Skrzypczyński 2017]. It
is a two-phase algorithm, where orientation is computed in the first phase using normal vectors,
and translation is computed in the second phase assuming a fixed rotation. If all matches are
correct and the pose is constrained in all dimensions, the algorithm produces accurate results.
However, in the presence of noise, when plane equations are not accurately estimated, it may
produce implausible solutions due to the assumption that planes are infinite. The assumption
about infinite planes also leads to rejection of constraints stemming from boundaries of planar
segments. These issues are addressed in [Wietrzykowski 2022], where a new pose retrieval method
is introduced. The new method fits the virtual points representing the distribution of points of
planar segments from the global map to the distribution of planar segments from the local
map. After the initial phase of solving a system of linear equations, an orthonormalization is
performed, followed by a gradient descent optimization to refine the pose. This method is also
capable of accommodating the uncertainty of depth estimation, making it suitable for global
localization using a passive stereo camera. It significantly contributes to the performance of
the PlaneLoc2 [Wietrzykowski 2022] that is the final version of the global localization solution
presented in this thesis.

3.1.6 Inference

This dissertation presents a novel pose inference method introduced in [Wietrzykowski and
Skrzypczyński 2017]. As a result of using planar segments as reference objects, it is possible
to consider all plausible minimal sets of matches. The final pose is the one supported by a
weighted majority of Gaussian kernels representing the pose solutions stemming from minimal
sets of matches. All kernels form a 6-D PDF describing the belief about the agent’s whereabouts.
Thanks to considering all plausible hypotheses, this inference method avoids the problems with
stopping criteria occurring in RANSAC. Moreover, having a PDF incorporating all cues, it is
possible to detect whether two distinct locations have high probability and reject such incon-
clusive results to avoid recognizing an incorrect pose [Wietrzykowski and Skrzypczyński 2017].
The same inference algorithm is used in the PlaneLoc2 [Wietrzykowski 2022], modified to exploit
planar segments detected using a passive stereo camera.

3.1.7 Datasets

Three datasets have been developed during the research presented in this thesis that enable
experimental verification of the solutions and facilitate training of the DNN. The datasets are
made publicly available to benefit the community and to enable reproduction of the presented
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results1. The PUT RGB-D/Workshop is a real-world dataset collected in a workshop that includes
RGB-D frames, AHRS measurements, and reference pose information from the Optitrack motion
capture system. It is used in [Wietrzykowski and Skrzypczyński 2017, 2019] to evaluate the pose
recognition performance. Another real-world dataset is the TERRINet dataset that presents a
larger workshop environment with three different wall and furniture settings. It contains 16k
images from a passive stereo camera, AHRS measurements, scans from Velodyne VLP-16 LiDAR,
and reference poses from the Qualisys motion capture system. Using the reference poses and the
LiDAR scans, ground truth depth maps are generated for every image. This dataset is used to
evaluate the geometry reconstruction performance of Stereo Plane R-CNN [Wietrzykowski and
Belter 2022] and the pose recognition performance of the PlaneLoc2 [Wietrzykowski 2022]. The
last one is the synthetic SceneNet Stereo dataset generated using modified SceneNet RGB-

D framework [McCormac et al. 2017]. The dataset includes stereo camera images, reference depth
maps, reference normal vector maps, and reference pose information. Being the outcome of a
rendering process, the reference information is accurate and complete. As a result, this synthetic
dataset is used to train the DNN in [Wietrzykowski and Belter 2022; Wietrzykowski 2022]. It also
enabled evaluating the detection performance and the robustness to camera parameter changes
of the Stereo Plane R-CNN.

3.2 Impact

The thesis of this dissertation is stated in Ch. 1 and is restated here for convenience of the reader:
Local, partial, and uncertain cues from planar segment features allow to build a probability density
function describing the global metric pose of an agent in a man-made environment. Auxiliary
theses are as follows:

• By considering many small sets of local geometric features in kernel density estimation it
is possible to build a function with the maximum corresponding to the global pose of an
agent.

• Observations of planar segments in man-made environments enable to determine the pose
of an agent with six degrees of freedom with respect to a predefined map of planar segments.

• Deep neural network facilitates detection and description of planar segments using a passive
stereo camera.

The research presented in this dissertation is concluded by the PlaneLoc2 system [Wietrzykowski
2022] that is experimentally shown to be capable of building a PDF describing the global metric
pose of an agent in a man-made environment. The system uses small sets of planar segments
matched between the local map and the global map, that can be viewed as local, partial, and
uncertain cues. They are local, because they occupy only a fragment of the scene. They are
also partial, because not all available segments are matched. And finally, they are uncertain,
because geometry estimation is subject to uncertainty, which proves the main thesis. The PDF

1Implementation of PlaneLoc2 and datasets are available at https://github.com/LRMPUT/plane_loc_2 and
http://lrm.put.poznan.pl/rgbdw/

https://github.com/LRMPUT/plane_loc_2
http://lrm.put.poznan.pl/rgbdw/
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is constructed using kernel density estimation and searched to find a maximum that becomes a
candidate for the 6-D pose of an agent, expressed with respect to a predefined map of planar
segments. If the candidate pose passes fail-safe checks, it is assumed to be the true pose of an
agent. The experiments showed that the PlaneLoc2 has a high recognition rate and does not
return incorrect poses, which proves the first and the second auxiliary thesis. Moreover, planar
segments are detected using a novel DNN that suits the characteristic of passive stereo cameras
and achieves good detection and geometry reconstruction performance, which proves the third
auxiliary thesis.

The global localization system presented here can be used in multiple scenarios. The scenarios
include, but are not limited to, medical care assistant robots, shopping mall customer service
robots, industrial facility inspection robots, and indoor mapping gear. In all life-long autonomy
scenarios the global localization ability is essential to solve loop closures and the kidnapped
robot problem [Thrun et al. 2005]. The PlaneLoc2 can be integrated with the existing SLAM
and navigation solutions to provide global 6-D pose that facilitates these tasks.

3.3 Future work

The presented solution can be extended and enhanced in many ways. The author plans on
investigating the possibility of exploiting other types of geometric features, such as edges. Edges
can add valuable pose constraints that are unavailable when using planar segments only. Another
interesting direction of research is the use of sets of matches that do not fully constrain the pose.
An example could be when an agent is in a long corridor without doors and there are no features
that constrain the pose along the corridor. As a result, a PDF in these cases could also be built
and partial global localization could be performed. Also partial information about orientation
from an AHRS sensor could be a valuable extension to the system. The AHRS information
can be incorporated in the PDF and additionally constrain the pose. It can be useful when the
orientation is weakly constrained by planar segments or when there are two similar locations
that differ in orientation.
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