
FACULTY OF COMPUTING AND TELECOMMUNICATIONS

Institute of Computing Science

Doctoral Dissertation

AUTOMATING COMPETENCY QUESTIONS HANDLING IN

ONTOLOGY DEVELOPMENT PROCESSES

Dawid Wiśniewski

Supervisor

Agnieszka Ławrynowicz, Ph.D., Dr. Habil.

Supporting Supervisor

Jędrzej Potoniec, Ph.D.

POZNAŃ 2022

Abstract

Ontologies are widely used to describe a given domain of interest in terms of formally specified

concepts and relationships between them. They help solve tasks such as question answering,

information integration, information extraction, or text disambiguation. Nowadays, engineers

frequently model them using Web Ontology Language (OWL) – a language based on description

logics, which allows inferring new knowledge that is implicitly defined in a given ontology. This

ability makes them powerful tools that mimic human-like reasoning. However, it makes ontologies

hard to construct.

People struggle with constructing ontologies. As the domains they represent are frequently

big, involving hundreds or thousands of concepts and relationships, it becomes crucial to help

engineers assess the completeness of the modeled knowledge. Moreover, the inferring abilities

make it possible that the logical consequences of the constructed ontology will be incorrect, and

engineers often find it hard to predict these consequences by themselves. For these reasons, it is

beneficial to provide engineers with ways of controlling the quality of the models they build.

Many ontology engineering methodologies use the notion of competency questions (CQs) to

refer to questions stated in natural language that a complete and correct ontology should be com-

petent to answer correctly. Competency questions serve as a source of vocabulary that engineers

should represent in an ontology. Later, during actual development, engineers formalize them us-

ing an appropriate query language (e.g., SPARQL-OWL) to check the quality of their ontology.

They observe which questions cannot be answered or return wrong answers to see which parts of

ontology they should improve.

As the CQs handling has been mainly a manual process so far, in this dissertation, we address

the problems of automating competency questions handling in ontology development processes.

We propose two areas of automatization. The first one relates to vocabulary extraction that aims

to provide a list of concepts and relationships an ontology should define as classes, instances, and

properties. We describe two methods providing automatic suggestions for terms to be modeled

extracted from a set of CQs. The first method is based on a machine learning model, and the

second one is based on handcrafted rules expressed using sequences of POS tags. We show that

the rule-based approach works better and generalizes to requirements stated as statements.

The second area of automatization refers to the automatic translation of CQs into SPARQL-

OWL. In this dissertation, we motivate the need for SPARQL-OWL and show why popularly used

SPARQL is insufficient. Then, we propose a method that recommends SPARQL-OWL queries

for CQs based on the knowledge modeled in an ontology. Finally, we show how this tool can be

integrated with an existing test-driven development ontology engineering approach. We evaluate

the method and show that it works on unseen datasets.

We decided to build the translator in a data-driven approach. We provide a pipeline-based

method, motivated by the analysis of pairs of CQs translated into SPARQL-OWL queries. As no

such dataset was available before our work, we collected a set of 234 CQs stated for five different

I

II

ontologies and constructed queries manually for 131 of them. In this dissertation, we analyze the

dataset and search for regularities among the collected questions and queries.

However, the dataset we collected is rather small and does not cover many possible forms of

CQs and queries. For this reason, we provide a method for generating pairs of CQ patterns and

SPARQL-OWL templates automatically based on a set of axiom patterns. We use frequent axiom

patterns extracted from BioPortal to construct a synthetic dataset of almost 78,000 CQ patterns

mapped to 575 query templates. Since the dataset is based on frequently recurring axioms, it is

expected to cover the most popular modeling decisions. The pairs of patterns and templates can

be filled with IRIs and labels to create large sets of CQs and SPARQL-OWL queries.

We hope that the datasets and methods introduced in this dissertation will make the usage of

CQs more prevalent since the datasets we propose may guide authors on how to formulate CQs,

and the introduced tools may ease the ontology development.

Streszczenie

Niniejsza rozprawa dotyczy problemów automatyzacji obsługi pytań kompetencyjnych w procesach

wytwarzania ontologii. Ontologie są szeroko stosowane do opisu zadanej dziedziny w formie zbioru

formalnie określonych pojęć i relacji między nimi. Pomagają one rozwiązywać zadania, wśród

których wyróżnić można: automatyczne odpowiadanie na pytania, integrację informacji, ekstrakcję

informacji czy ujednoznacznianie tekstu. Obecnie inżynierowie najczęściej tworzą je przy użyciu

języka Web Ontology Language (OWL), który bazuje na logikach deskrypcyjnych. Wykorzys-

tanie języków modelowania bazujących na logice formalnej pozwala na zastosowanie mechanizmów

wnioskowania, dzięki którym istnieje możliwość odkrycia nowej, niejawnie zdefiniowanej w danej

ontologii, wiedzy. Ta zdolność czyni z ontologii potężne narzędzia, które naśladują ludzki sposób

rozumowania.

Wytwarzanie ontologii stanowi wyzwanie dla inżynierów. Dziedziny, które są przez nich opisy-

wane, nierzadko są obszerne i obejmują setki lub tysiące klas i relacji wymagających sformalizowa-

nia. Z tego powodu, kluczowym wydaje się być wsparcie inżynierów w procesie identyfikacji bytów

do zamodelowania i pomoc w ocenie kompletności formalizowanego słownictwa.

Co więcej, zdolność ontologii do wykorzystania mechanizmów wnioskowania powoduje, że

bardzo istotną kwestią staje się zapewnienie, aby logiczne konsekwencje skonstruowanej ontologii

były poprawne. Z tego powodu ważnym aspektem staje się zapewnienie inżynierom sposobów kon-

trolowania jakości budowanej reprezentacji, ponieważ często mają oni trudności z przewidywaniem

logicznych konsekwencji modelowanej wiedzy.

Wiele metodyk z obszaru inżynierii ontologii wykorzystuje pojęcie pytań kompetencyjnych,

które formułowane są w języku naturalnym i na które kompletna i poprawna ontologia powinna

być w stanie poprawnie odpowiedzieć. Pytania kompetencyjne służą jako źródło słownictwa, które

inżynierowie powinni zamodelować w ontologii. Podczas właściwego modelowania, inżynierowie

formalizują pytania kompetencyjne przy użyciu odpowiedniego języka zapytań (np. SPARQL-

OWL), aby zweryfikować jakość ontologii. Poprzez obserwację, na które z pytań nie można

udzielić odpowiedzi z uwagi na niekompletne słownictwo bądź na które pytania ontologia zwraca

niepoprawne odpowiedzi, inżynierowie dowiadują się, które obszary modelowanej wiedzy wymagają

poprawy.

Dotychczas obsługa pytań kompetencyjnych była głównie procesem manualnym, dlatego w

niniejszej rozprawie zaproponowano dwa obszary automatyzacji ich wykorzystania. Pierwszy z

nich stanowi zadanie wykorzystania pytań kompetencyjnych jako źródła słownictwa, które powinno

zostać zamodelowane w ontologii. Przedstawiono dwie zautomatyzowane metody dostarczające

sugestie klas, instancji i właściwości do zamodelowania na podstawie zadanego zestawu pytań

kompetencyjnych. Pierwsza z metod oparta jest na uczeniu maszynowym i stanowi nadzorowany

model warunkowych pól losowych. Druga z nich oparta jest na ręcznie przygotowanych regułach

wyrażonych w formie sekwencji znaczników części mowy. W niniejszej pracy porównano oba pode-

jścia i pokazano przewagę systemu regułowego, który generuje wyniki wyższej jakości i uogólnia

III

IV

się również do scenariusza wykrywania słownictwa ze zdań oznajmujących.

Drugi z obszarów automatyzacji obejmuje proces formalizowania pytań kompetencyjnych do

postaci języka zapytań SPARQL-OWL. W niniejszej rozprawie przedstawiono potrzebę wykorzys-

tania języka SPARQL-OWL, a następnie zaproponowano metodę, która rekomenduje formy za-

pytań SPARQL-OWL dla zestawu pytań kompetencyjnych przy udziale wytwarzanej ontologii.

Przedstawiono również sposób integracji tej metody z istniejącym podejściem do rozwijania on-

tologii wykorzystującym testy. W rozprawie tej przeprowadzono analizę jakości narzędzia imple-

mentującego metodę na niewidzianym wcześniej zestawie pytań kompetencyjnych i ontologii.

Zaproponowana metoda translacji pytań kompetencyjnych do formy zapytań SPARQL-OWL

skonstruowana jest na podstawie wniosków zebranych podczas analizy zbioru przykładów pytań

kompetencyjncyh sformalizowanych w postaci zapytań SPARQL-OWL. Ponieważ nie istniał doty-

chczas żaden zbiór danych zawierający tego typu translacje, w ramach rozprawy zebrano zbiór 234

pytań kompetencyjnych zdefiniowanych dla pięciu ontologii i ręcznie przygotowano zapytania dla

131 pytań. W rozprawie przeanalizowano właściwości tego zbioru i zidentyfikowano regularności

wśród pytań, zapytań i relacji pomiędzy obiema formami. Regularności te pozwoliły opracować

metodę rekomendującą zapytania dla zadanych pytań.

Ponieważ zebrany zbiór danych cechował się niewielkimi rozmiarami i nie zawierał reprezentacji

wielu możliwych form pytań kompetencyjnych i zapytań, w niniejszej pracy zaproponowano również

metodę automatycznego generowania par wzorców pytań kompetencyjnych i szablonów SPARQL-

OWL ze zbioru wzorców aksjomatów. Wykorzystano częste wzorce aksjomatów wyodrębnione

z serwisu BioPortal, aby skonstruować syntetyczny zbiór danych składający się z niespełna 78

tysięcy wzorców pytań kompetencyjnych w relacji do 575 szablonów zapytań. Ponieważ wzorce

aksjomatów reprezentują częste formy wykorzystywane do budowania aksjomatów, efekt działania

metody pokrywa najpopularniejsze decyzje dotyczące zarówno sposobów modelowania wiedzy jak

i formy pytań.

Żywimy nadzieję, że badania przeprowadzone w tej rozprawie sprawią, że wykorzystanie pytań

kompetencyjnych będzie bardziej rozpowszechnione, gdyż zebrane zbiory danych mogą pomóc

autorom ontologii w formułowaniu pytań kompetencyjnych i ich wykorzystaniu, a proponowane

narzędzia mogą pomóc w zwiększeniu produktywności inżynierów wytwarzania ontologii.

Podziękowania

Niniejsza rozprawa nie mogłaby powstać bez ogromu pomocy bliskich mi osób. Chciałbym w

tym miejscu serdecznie podziękować moim promotorom: dr hab. inż. Agnieszce Ławrynowicz,

prof. PP i dr. inż. Jędrzejowi Potońcowi za niezliczone ilości godzin wspólnie spędzonych nad

planowaniem, motywowaniem, doradzaniem i weryfikowaniem postępów. Dzięki waszej życzliwości

nauczyłem się, że warto walczyć do samego końca, nawet jeśli cel wydaje się nieosiągalny.

Chciałbym również podziękować rodzicom, Eli i Andrzejowi, za życzliwość i zrozumienie pod-

czas przygotowywania niniejszej pracy.

Specjalne podziękowania kieruję także ku żonie – Sandrze, za miłość, wyrozumiałość, wsparcie

i obecność przy mnie w każdym momencie, a także moim dzieciom: Kornelce, za ciągłe przypom-

inanie o tym, jak ciekawy jest świat i Piotrusiowi, za uśmiech i radość czerpaną z codzienności.

Sandrze, Kornelii i Piotrowi

Gieni, w 100 rocznicę urodzin

V

Contents

Abstract I

Streszczenie III

Podziękowania V

1 Introduction 1

1.1 Historical context . 1

1.2 Motivation . 1

1.3 Aim and scope of the dissertation . 3

1.4 Organization of the dissertation . 4

1.5 Author’s publications . 4

1.5.1 Papers related to the dissertation . 4

1.5.2 Other papers coauthored by the author . 6

1.6 Research grants participation . 6

2 Selected aspects of Semantic Web 7

2.1 RDF: Resource Description Framework . 7

2.1.1 RDF graphs . 7

2.1.2 RDF serialization formats . 8

2.2 RDFS: RDF Schema . 10

2.3 OWL: Web Ontology Language . 11

2.4 Ontology verbalization . 14

2.5 Querying RDF with SPARQL . 14

2.6 The need for SPARQL-OWL . 17

3 Selected aspects of machine learning 19

3.1 The idea of machine learning . 19

3.2 Supervised learning . 19

3.2.1 Optimization methods . 20

3.2.2 Loss functions . 21

3.2.3 Regularization . 22

3.3 Neural networks . 22

3.3.1 Neuron . 22

3.3.2 Feedforward neural networks . 23

3.3.3 Recurrent neural networks . 24

3.3.4 Attention-based neural networks . 26

3.4 Structured prediction problems . 26

VI

VII

3.5 Encoding labels in sequences . 27

3.6 Evaluating machine learning models . 28

4 Selected aspects of natural language processing 30

4.1 Tokenization . 30

4.2 Part-of-speech tagging . 32

4.3 Dependency parsing . 32

4.4 Regular expressions . 34

4.5 Distributional semantics and word embeddings . 35

5 Related work 37

5.1 Ontology engineering methodologies . 37

5.2 Collections of CQs and their analyses . 39

5.3 Ontology modeling styles . 40

5.4 Entity linking . 40

5.5 Question generation . 41

5.6 Translating text to structured queries . 42

6 CQ2SPARQLOWL: a dataset of CQs translated into SPARQL-OWL queries 43

6.1 Dataset collection process . 43

6.2 CQs analysis . 46

6.2.1 Lengths of CQs . 46

6.2.2 Words at the beginnings of CQs . 47

6.2.3 Materialized vs dematerialized CQs . 48

6.3 CQ patterns analysis . 49

6.3.1 Domain-dependent and domain-independent tokens 49

6.3.2 Domain-independent CQ patterns . 50

6.3.3 Domain-independent higher-level CQ patterns 51

6.4 SPARQL-OWL queries analysis . 54

6.4.1 Query forms used in CQ2SPARQLOWL 54

6.4.2 Solution modifiers . 55

6.4.3 Basic graph patterns . 55

6.5 SPARQL-OWL query signatures . 59

6.6 Relationship between CQs and SPARQL-OWL queries 61

6.7 Relationship between CQ patterns and query signatures 64

6.8 Summary . 66

7 Automatic glossary of terms extraction 67

7.1 Materials . 67

7.1.1 Training set . 68

7.1.2 Evaluation set . 70

7.2 Machine learning-based tagger . 71

7.3 ReqTagger: a rule-based tagger . 73

7.3.1 Rule-based extractor . 73

7.3.2 Overlap resolver . 75

7.3.3 Phrase rejector . 75

7.4 Evaluation . 77

7.5 Discussion . 78

VIII

7.5.1 Methods comparison . 79

7.5.2 Error Analysis . 80

7.6 Summary . 81

8 BigCQ: a synthetic dataset of CQ patterns formalized into SPARQL-OWL

templates 83

8.1 Materials . 84

8.1.1 Modeling patterns shared among ontological axioms 84

Frequent axiom patterns . 84

Axiom shapes . 86

8.1.2 ACE verbalizer . 87

8.1.3 Requirements collections . 87

8.2 Analysis of axiom shapes and their verbalizations 87

8.2.1 Axiom shape verbalization groups . 87

8.2.2 Mapping between fragments of axiom shapes and fragments of their verbal-

izations . 88

8.3 Method of translating axiom shapes into CQ patterns and query templates 90

8.3.1 Motivation . 90

8.3.2 Step 1: Query templates generation . 91

8.3.3 Step 2: CQ patterns generation . 93

8.3.4 Step 3: Linking CQ patterns to SPARQL-OWL templates 95

8.4 BigCQ: a dataset of CQ patterns mapped to SPARQL-OWL templates 95

8.5 Coverage of BigCQ measured on existing datasets 96

8.6 Summary . 98

8.6.1 Filling BigCQ with domain-related vocabulary 99

8.6.2 Potential applications of BigCQ . 99

8.6.3 Examples of CQ patterns and SPARQL-OWL query templates 99

9 SeeQuery: a recommender of SPARQL-OWL queries for CQs 101

9.1 Materials . 101

9.1.1 CQs translated into SPARQL-OWL . 101

9.1.2 Evaluation set . 102

9.2 Method description . 103

9.2.1 Step 1: Vocabulary detection . 103

9.2.2 Step 2: CQ pattern candidate extraction . 106

9.2.3 Step 3: Closest known CQ pattern selection 106

9.2.4 Step 4: SPARQL-OWL template(s) selection 107

9.2.5 Step 5: Phrase linking . 108

9.2.6 Step 6: Query (queries) filling . 110

9.3 Evaluation . 110

9.3.1 Evaluation procedure . 110

9.3.2 Error analysis . 111

9.4 Discussion . 112

9.5 Summary . 113

10 Presuppositions and Test-Driven Development of ontologies 114

10.1 Presuppositions among CQs . 114

IX

10.2 Ontology testing using presuppositions . 115

10.3 Integration of presupposition tests into TDD . 116

10.4 Conclusions . 117

11 Summary 119

11.1 Answers to the research questions . 119

11.2 Conclusions . 120

11.3 Future work . 121

Bibliography 122

Appendices 137

A Algorithms used to group and analyze CQ2SPARQLOWL 137

A.1 Extraction of a CQ pattern candidate from a given CQ 137

A.2 Extraction of a SPARQL-OWL signature from a given SPARQL-OWL query . . . 139

B CQ patterns in CQ2SPARQLOWL 142

B.1 CQ patterns . 142

B.2 Higher-level CQ patterns . 144

C Phrases rejected by ReqTagger 147

C.1 Entities . 147

C.2 Relations . 148

D Verbalized axiom shapes used in BigCQ 149

E Presupposition tests for query templates 158

F BigCQ synonym sets 161

G CQ templates used to construct BigCQ 162

G.1 SPO + Subsumption . 162

G.2 SS + Subsumption . 163

G.3 SPO + Equivalence . 165

G.4 SS + Equivalence . 166

List of Figures 168

List of Tables 170

Index 172

X

Table 1: Table of symbols

Symbol Meaning Page

{·} Set 19

‖ · ‖ Norm 36

| · | Absolute value 22

× Cartesian product 8

Σ Sum 27

Π Product 27

∇ Gradient 20

H Hessian 20

∂ Partial derivative 20

∅ Empty set 109

⊆ Subset 34

argmax Argument of the maxima 109

log(·) Logarithm 21

exp(·) Exponential 27

cos(·) Cosine 36

Jaccard(·) Jaccard similarity 107

∈ Set membership 8

7→ Mapping 60

∀ Universal quantifier 70

∃ Existential quantifier 109

∩ Intersection of sets 107

∪ Union of sets 107

IRDF Set of all IRIs in RDF graph 8

LRDF Set of all literals in RDF graph 8

BRDF Set of all blank nodes in RDF graph 8

TRDF Set of all terms in RDF graph 8

VRDF Set of query variables 14

GRDF RDF graph 8

L Entity labels set 68

ph Competency Question placeholder 68

m(·) Mapping function 70

CE Class expression 88

LHS Left-hand side 88

RHS Right-hand side 88

V ERB Main verb 88

O Ontology 68

cq Competency Question 68

D Dataset 19

Ddocs Documents 31

x Feature vector 19

y Object label 19

ŷ Prediction 19

w Parameters vector 20

XI

h Hidden state vector 25

U,V,W Parameters matrices 25

h(·) Hypothesis 20

g(·) Activation function 25

`(·) Loss function 20

J(·) Cost function 20

d Document (sequence of tokens) 31

d Vector representation of document d 31

t Token 31

V Vocabulary 31

η Learning rate 20

yn Vector of gradient changes 21

sn Vector of parameter changes 21

ρn Product of gradient and parameter changes 21

λ Regularization weight 22

fk(·) CRF k-th feature function 27

P Precision 29

R Recall 29

F1, Fβ Harmonic averages of precision and recall 29

β Precision-Recall trade-off score in Fβ 29

a,b Real-valued vectors 36

A,B Sets 107

QRE Finite set of states 34

ΣRE Alphabet 34

δRE Transition function 34

q0RE Initial state q0RE ∈ QRE 34

FRE Accept states set FRE ⊆ QRE 34

l Entity label 68

cl Entity label in context 110

S SPARQL-OWL query signature 60

SQ SPARQL-OWL query signature created from the query Q 60

$PPx{NUM}$ SPARQL-OWL query placeholder 64

e Ontological entity 109

Lnthing Set of normalized class and individual labels 108

Lnprop Set of normalized object and data property labels 108

lhs(·) Function returning left-hand sides of assertions 109

rhs(·) Function returning right-hand sides of assertions 109

p Phrase extracted using ReqTagger 108

p Phrase vector of p 108

γ SeeQuery‘s threshold parameter 108

prop Property 108

C,D Classes 108

i Individual 109

CT Set of triples each representing subject, property, and object 109

domain(·) Domain of a given property 108

range(·) Range of a given property 108

XII

super(·) Superclasses 108

τ(prop) Set of pairs of classes seen with prop 109

θ SeeQuery trade-off parameter 109

embedding(·) Function generating phrase vectors from text 109

label(·) Function extracting ontology labels for given IRI 109

translate(·) Function extracting possible translations for argument 108

Q SPARQL-OWL query 115

PQ Presupposition query 115

PQ+ Positive presupposition query 115

PQ− Negative presupposition query 115

µ(·) Function returning query answer 115

XIII

Table 2: Table of abbreviations and proper names

Abbreviation/Proper name Explanation

ACE Attempto Controlled English
AI Artificial intelligence
AWO African Wildlife Ontology
BERT Bidirectional Encoder Representations from Transformers
BigCQ Dataset of CQ patterns formalized into SPARQL-OWL templates
CE Class expression
CORAL Dataset of ontological requirements
CQ Competency question
CQ2SPARQLOWL Dataset of CQs translated into SPARQL-OWL queries
CRFs Conditional Random Fields
CWA Closed-world assumption
Dem@Care Dementia Ambient Care Ontology
DFA Deterministic finite automaton
EC Entity chunk
FSA Finite-state automaton
IRI Internationalized Resource Identifier
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
LHS Left-hand side
ML Machine learning
NFA Nondeterministic finite automaton
NLP Natural language processing
NLTK Natural Language Toolkit (https://www.nltk.org)
ODP Ontology Design Pattern
OntoDT Ontology of Datatypes
OWA Open-world assumption
OWL Web Ontology Language
PC Predicate chunk
Pizza Pizza Ontology
POS Part of speech
RDF Resource Description Framework
RDFS Resource Description Framework Schema
ReqTagger Tagger for automatic glossary of terms suggestions extraction
RHS Right-hand side
SeeQuery Automatic method for translating CQs into SPARQL-OWL
spaCy Library for Natural Language Processing (https://spacy.io)
SPARQL SPARQL Protocol and RDF Query Language
SPARQL-OWL SPARQL with OWL Direct Semantics Entailment Regime
SPO Subject-Predicate-Object
SS Subclass-Superclass
Stuff Stuff Ontology
SWO Software Ontology
TDD Test-Driven Development
TrhOnt Ontology assisting rehabilitation processes
UNA Unique name assumption
W3C World Wide Web Consortium

https://www.nltk.org
https://spacy.io

Chapter 1

Introduction

1.1 Historical context

The term ontology is known to humankind since the early 17th century. It was first used in

Latin texts of two German philosophers: Jacob Lorhard, who in his work entitled Ogdoas Scholas-

tica [103] used the word ontology as a synonym to metaphysics – the study of being introduced

by Aristotle almost 2500 years ago [5], and Rudolphus Goclenius, who in Lexicon philosophicum,

quo tanquam clave philosophiae fores aperiuntur [62] defined ontology as the philosophy of being.

During the subsequent centuries, philosophers tried to answer questions like What does exist?,

How do things relate to each other? to understand reality better.

In the 1950s, these problems came into focus again due to the influential publications of Willard

Van Orman Quine [139], who discussed the criterion of ontological commitment and made the

famous statement that To be is to be the value of a bound variable.

Soon after the works of Quine, in 1956, Dartmouth Summer Research Project on Artificial

Intelligence gave rise to the field of Artificial Intelligence (AI), which focuses on giving machines the

ability to perform tasks associated with intelligent beings [122]. One of the paradigms proposed to

solve problems of AI is the use of formal logic to represent knowledge so that logical conclusions can

be drawn automatically. This kind of approach is named logic-based AI, with John McCarthy being

its most famous advocate. His computer program called Advice Taker [111] used commonsense

and deduced the consequences of already known facts. McCarthy believed that intelligent systems

that are based on logic should use ontology to list things that exist [112].

During the subsequent decades, the knowledge engineering field emerged, and the term ontology

became widespread in AI [163]. In 1993, Thomas Gruber attempted to formalize the definition

of ontology tailored to the field of AI [64] as a formal specification of conceptualization. In 2001,

the idea of the Semantic Web was coined by Sir Tim Berners-Lee [14]. The Semantic Web, an

extension of the World Wide Web, focuses on modeling content meaningful to computers. Here,

the notion of ontology is one of the key concepts as domain-related ontologies define concepts and

relations that can be understood, shared, and processed automatically by computers. Ontologies

are also adapted to problems of data integration from multiple sources or question answering,

among others.

1.2 Motivation

Nowadays, ontologies are often expressed in the Web Ontology Language (OWL), which can be

used to define knowledge with the use of capabilities given by Description Logics [7]. Most types

of Description Logics are decidable fragments of the First-Order Logic.

1

1.2. Motivation 2

However, it is not easy to construct ontologies as they often need to cover large domains with

thousands of concepts interlinked with multiple relations between them. Moreover, the logic-based

representation language enables the ability to reason, but at the same time, engineers have to

ensure that the logical consequences of the knowledge modeled are foreseen to make sure the

entailed knowledge is correct [145].

For these reasons, many ontology development methodologies provide tools and processes that

help to control and supervise ontology development. Among them, a popular approach is to use

so-called competency questions (CQs) [175] – a set of questions stated in natural language that

a complete ontology should be able to answer correctly. A sample CQ defined for the software

ontology may be Which software can export data to CSV files?. As CQs define the scope of knowledge

a given ontology should represent, domain experts use them as requirements, and state them

upfront before starting the process of ontology construction.

With a comprehensive set of CQs, we can achieve two goals:

• Define the vocabulary to be modeled – The ontology has to represent all concepts and

relations mentioned in each CQ to be able to answer them. For example, to answer the

following question Which software can export data to CSV files?, the ontology must include

the notion of software, CSV files and know what it means to export. Using CQs, we

can track how much of the required vocabulary is already modeled and what is still to be

added. Some of the ontology development methodologies expect engineers to build a glossary

of terms that list all vocabulary to be modeled in the ontology.

• Control the completeness and correctness of the ontology – With a predefined list of CQs,

during ontology development, engineers can formalize each CQ in an appropriate query

language (e.g., SPARQL-OWL [89]) to check if the ontology can provide the expected answers

that may be listed together with the CQs. If the ontology provides a right answer to each of

the CQs, one can assume it is complete (as it models the required vocabulary) and correct

(as the knowledge and its logical consequences lead to correct answers).

The second goal is similar to the use of unit tests in software engineering. There, a set of unit

tests is provided upfront, and during software development, those tests are run periodically to

control the quality of the software. With a comprehensive set of tests, engineers may assume that

the software is correct and complete if all tests pass.

Nowadays, competency questions are handled manually. It is especially problematic in the

context of the second goal since:

• Engineers, apart from the ontology modeling language and the modeled domain, have to be

proficient in the semantics of the query language.

• Engineers have to find classes and properties related to phrases stated in the CQ to retrieve

their unique identifiers called IRIs that are used to construct queries. This task is time-

consuming, especially in the context of large ontologies.

In addition, considering the glossary of terms construction mentioned in the first goal, it may not

be interesting for engineers to iterate over CQs and extract domain-related phrases manually.

We expect that automated CQs handling will make ontology development easier and quicker.

We hope that with appropriate methods helping to use CQs, more engineers will use them in their

work.

1.3. Aim and scope of the dissertation 3

1.3 Aim and scope of the dissertation

In this dissertation, we focus on the automatization of competency question handling in the context

of ontology development. In particular, we would like to understand:

• How do engineers construct CQs and how phrases in CQs relate to labels of entities modeled

in the ontology,

• How grammatical constructs used in CQs relate to forms of SPARQL-OWL queries,

• If it is possible to extract candidates to be included in the glossary of terms automatically,

based only on the forms of CQs,

• If CQs and their SPARQL-OWL formalizations can be generated automatically to build

synthetic datasets of translation examples,

• If it is possible to translate CQs into SPARQL-OWL queries automatically,

• If automatic translators of CQs into SPARQL-OWL queries can be integrated with Test-

Driven Development of ontologies.

Based on the list presented above, we define the following research questions to be addressed

in this dissertation:

• RQ1 – Are there recurring patterns among CQs, SPARQL-OWL queries, and between CQs

and SPARQL-OWL queries?

• RQ2 – How to automate the glossary of terms extraction?

• RQ3 – How to construct pairs of CQs and SPARQL-OWL queries automatically based on

ontology axioms?

• RQ4 – How to construct SPARQL-OWL query recommendations from CQs automatically?

• RQ5 – How to integrate the automatic translation of CQs into SPARQL-OWL with Test-

Driven Development of ontologies?

The main contributions provided in this dissertation are:

1. The dataset of CQs translated into SPARQL-OWL queries and its analysis introduced in

Chapter 6. This contribution relates to RQ1 and is publicly available on GitHub1.

2. Two automatic glossary of terms extractors introduced in Chapter 7. This contribution

relates to RQ2. Both extractors are available online2,3.

3. The automatic method for recommending translations of ontology competency questions

into SPARQL-OWL described in Chapter 9. This contribution relates to RQ4 and its

implementation is publicly available on GitHub4.

4. The method of generating synthetic pairs of CQs and SPARQL-OWL queries described in

Chapter 8. This contribution relates to RQ3. We made the implementation of the method

and a dataset created with it publicly available on Github5.

1https://github.com/CQ2SPARQLOWL/Dataset
2https://github.com/dwisniewski/CRFBasedGlossaryOfTermsExtraction
3https://github.com/reqtagger/ReqTagger
4https://github.com/dwisniewski/SeeQuery
5https://github.com/dwisniewski/BigCQ

https://github.com/CQ2SPARQLOWL/Dataset
https://github.com/dwisniewski/CRFBasedGlossaryOfTermsExtraction
https://github.com/reqtagger/ReqTagger
https://github.com/dwisniewski/SeeQuery
https://github.com/dwisniewski/BigCQ

1.4. Organization of the dissertation 4

5. The integration of the automatic translator into Test-Driven Development (TDD) of ontolo-

gies introduced in Chapter 10. This contribution relates to RQ5.

We listed the answers to all research questions in Chapter 11.

1.4 Organization of the dissertation

The dissertation is structured as follows: In Chapters 2, 3, and 4, we introduce some basic con-

cepts related to Semantic Web, machine learning, and Natural Language Processing, respectively.

Chapter 2 presents the need to choose SPARQL-OWL as a formalization of competency questions.

In Chapter 5, we discuss related works. In Chapter 6, we introduce and analyze the dataset of

real-world CQs translated into SPARQL-OWL. Chapter 7 discusses the automatization of the glos-

sary of terms extraction from textual requirements. In Chapter 8, we introduce a large synthetic

dataset of CQs formalized as SPARQL-OWL. We introduce SeeQuery, an automatic recom-

mender of SPARQL-OWL queries from CQs in Chapter 9 and show how it can be integrated with

test-driven development of ontologies in Chapter 10. Finally, we summarize the dissertation and

discuss the future work in Chapter 11.

1.5 Author’s publications

In this section, we list all the author’s publications. The following list of symbols is used to describe

papers:

• (J) or (C) – indicates whether a paper was published in a Journal or Conference, respectively.

• GS – citation number according to Google Scholar, visited on the 16th of December 2021.

• SCOPUS – citation number according to Scopus, visited on the 16th of December 2021.

• MEiN – the number of points assigned by the Polish Ministry of Education and Science as

of 2021.

• CORE – The conference rank assigned by the Computing Research and Education Associa-

tion of Australasia.

• IF5 – the 5-year impact factor calculated according to Journal Citations Report (JCR).

1.5.1 Papers related to the dissertation

[P1] Automatic translation of competency questions into SPARQL-OWL queries, Dawid Wiśniewski,

In: Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018,

Lyon, France, April 23-27, 2018, pages 855–859. ACM, 2018.

(C), CORE: A*, GS: 4, SCOPUS: 2, MEiN: conference: 200, publication: unknown

[P2] Analysis of Ontology Competency Questions and their formalizations in SPARQL-OWL,

Dawid Wiśniewski, Jędrzej Potoniec, Agnieszka Ławrynowicz, C. Maria Keet, Journal of Web

Semantics 59, 100534, 2019

(J), IF5: 3.524, GS: 23, SCOPUS: 16, MEiN: 100

1.5. Author’s publications 5

[P3] Dataset of ontology competency questions to SPARQL-OWL queries translations, Jędrzej Po-

toniec, Dawid Wiśniewski, Agnieszka Ławrynowicz, C. Maria Keet, Data in Brief 29, 105098,

2020

(J), IF5: -, GS: 11, SCOPUS: 7, MEiN: 40

[P4] A tagger for glossary of terms extraction from ontology competency questions, Dawid Wiśniewski,

Agnieszka Ławrynowicz, The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019

Satellite Events, Portoroz, Slovenia, June 2-6, 2019, Revised Selected Papers, volume 11762 of

LNCS, pages 181–185. Springer, 2019

(C), CORE: A, GS: 5, SCOPUS: 4, MEiN: conference: 140, publication: unknown

[P5] ReqTagger: A rule-based tagger for automatic glossary of terms extraction from ontology

requirements, Dawid Wiśniewski, Jędrzej Potoniec, Agnieszka Ławrynowicz

(J) Accepted for publication in Foundations of Computing and Decision Sciences, IF5: -,

MEiN: 40

[P6] SeeQuery: An Automatic Method for Recommending Translations of Ontology CQs into

SPARQL-OWL, Dawid Wiśniewski, Jędrzej Potoniec, Agnieszka Ławrynowicz, In Proceedings

of the 30th ACM International Conference on Information & Knowledge Management,

CIKM ’21, pages 2119–2128, New York, NY, USA, 2021. Association for Computing Machinery

(C), CORE: A, GS: -, SCOPUS: -, MEiN: 140

[P7] Incorporating Presuppositions of Competency Questions into Test-Driven Development of On-

tologies, Jędrzej Potoniec, Dawid Wiśniewski, Agnieszka Ławrynowicz, SEKE 2021: Proceedings

of the 33rd International Conference on Software Engineering and Knowledge Engi-

neering, 437-440, 2021

(C), CORE: B, GS: -, SCOPUS: -, MEiN: 70

[P8] BigCQ: Generating a Synthetic Set of Competency Questions Formalized into SPARQL-OWL,

Dawid Wiśniewski, Jędrzej Potoniec, Agnieszka Ławrynowicz, AAAI 2022, accepted for publica-

tion

(C), CORE: A*, GS: -, SCOPUS: -, MEiN: conference: 200, publication: possibly 200

The relation between these publications and the chapters introduced in this dissertation is as

follows:

• Section 2.6 introduces the ideas stated in [P1],

• Chapter 6 summarizes the content of [P2] and [P3],

• Chapter 7 provides methods presented in [P4] and [P5],

• Chapter 8 relates to the dataset presented in [P8],

• Chapter 9 relates to [P6],

• Chapter 10 introduces concepts defined in [P7].

1.6. Research grants participation 6

1.5.2 Other papers coauthored by the author

Apart from the publications related to this dissertation, the author coauthored the following peer-

reviewed papers:

[P9] Contract Discovery: Dataset and a Few-shot Semantic Retrieval Challenge with Competitive

Baselines, Łukasz Borchmann, Dawid Wisniewski, Andrzej Gretkowski, Izabela Kosmala, Dawid

Jurkiewicz, Łukasz Szałkiewicz, Gabriela Pałka, Karol Kaczmarek, Agnieszka Kaliska, Filip Gral-

iński, Findings of the Association for Computational Linguistics: EMNLP 2020, Online

Event, 16-20 November 2020, 4254-4268.

(C), CORE: A, GS: 3, SCOPUS: -, MEiN: 140

[P10] RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation, Michał Bień,

Michał Gilski, Martyna Maciejewska, Wojciech Taisner, Dawid Wiśniewski, Agnieszka Ławrynow-

icz, Proceedings of the 13th International Conference on Natural Language Generation,

INLG 2020, Dublin, Ireland, December 15-18, 2020, 22-28.

(C), CORE: B, GS: 3, SCOPUS: -, MEiN: 70

The papers with unknown number of MEiN points are published in companion volumes, the

role of which is not specified by the MEiN yet.

• Publication [P1] was presented during the Ph.D. symposium organized during the Web Con-

ference and published in the companion volume of the conference proceedings.

• Publication [P4] was presented as a poster. It was published in a Satellite Events proceedings

volume.

• Publication [P8] will be published as a poster/student abstract at a conference early 2022.

1.6 Research grants participation

This dissertation is the result of research carried out in the following grants in which the author

has participated:

• Grant No 2014/13/D/ST6/02076 (ARISTOTELES: Metodologia i algorytmy automatycznej

aktualizacji ontologii w scenariuszach zadaniowych) funded by the Polish National Science

Center. Principal Investigator: Agnieszka Ławrynowicz, Ph.D. Dr. Habil.

• Applied Research Programme under the EEA and Norway Grants 2014-2021. Project reg-

istration number: NOR/SGS/TAISTI/0323/2020 (TAISTI: Development of a Technology

based on Artificial Intelligence for inferring SubsTitutable recipe Ingredients). Principal

Investigator: Agnieszka Ławrynowicz, Ph.D. Dr. Habil.

Chapter 2

Selected aspects of Semantic Web

As the size of the World Wide Web keeps increasing rapidly, it is a tempting idea to make machines

able to understand and share the knowledge presented on websites. Sir Tim Berners-Lee, the in-

ventor of the World Wide Web, was aware of this quest since the early days of that technology.

He was the first person to coin the term Semantic Web [14] to refer to an extension of the Web,

which focuses on the data itself rather than its presentation and the possibilities to process that

data by computers. The ultimate goal of the Semantic Web is to automatically share knowledge

between websites and make it possible to reason about data so that humans and computers can

cooperate better [159]. For this reason, many technologies were created to help represent, inte-

grate, share, and reason about data. The most important are: Resource Description Framework

(RDF) [116], Resource Description Framework Schema (RDFS) [22], Web Ontology Language

(OWL) [6], reasoners [110], and RDF stores [3] that can be queried with query languages such as

SPARQL Protocol And RDF Query Language (SPARQL) [158].

2.1 RDF: Resource Description Framework

In this section, we introduce a graph-based model for representing resources. First, we describe

its building blocks and provide a formal definition of an RDF graph. Then, we discuss the most

popular RDF graph serialization options.

2.1.1 RDF graphs

Resource Description Framework (RDF) is a graph data model used to represent information about

resources on the Web [116]. RDF models information in the form of triples, each consisting of a

subject, a predicate, and an object, with the use of the following building blocks:

• IRIs – Internationalized Resource Identifiers (IRIs) [43] are sequences of characters that

uniquely identify resources. An example of an IRI is https://www.google.com/search.

• Literal values – Literals are used to represent data values, such as strings or integers.

These are pairs (or triples if there is an optional language tag introduced, as described

below) representing a given value as a string (lexical form) and a datatype IRI provid-

ing an interpretation of the value (e.g., integer, float, string, date). An example literal

"1"^^<http://www.w3.org/2001/XMLSchema#int> states that the value 1 represents an in-

teger.

7

2.1. RDF: Resource Description Framework 8

If a literal describes a value of the http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

datatype, one can introduce an optional language tag to specify in which language is the

string expressed.

• Blank nodes – A blank node represents the existence of a resource without assigning it a

particular IRI. They are used, e.g., to introduce complex structures, such as addresses. Each

address can be represented as an unnamed resource that is described by a set of attributes:

the postal code, the city name, the street name, and the street number.

Let IRDF , LRDF , and BRDF denote all IRIs, literals, and blank nodes in the RDF graph GRDF ,

respectively. Then, we use TRDF = IRDF ∪BRDF ∪ LRDF to denote RDF terms.

The RDF graph GRDF is defined as a set of triples: (subject, predicate, object) ∈ (IRDF ∪BRDF)×
IRDF × TRDF . Hereafter, we refer to the set of IRIs introduced in GRDF as the vocabulary of

GRDF .

In Figure 2.1, we present a simple RDF graph consisting of three triples. Subjects and objects of

these triples are represented with ovals, while predicates with directed arcs, pointing from subjects

to objects. The grey oval represents a blank node and is used to tell that Mark works at some

unnamed startup that is located in Poznan.

http://example.org/Mark

http://example.org/worksAt

http://example.org/Startup

http://example.org/Poznanhttp://example.org/companyType

http://example.org/locatedIn

Figure 2.1: An RDF graph representation of the sentence: Mark works at a startup
that is located in Poznan.

2.1.2 RDF serialization formats

RDF graphs are abstract objects that have to be serialized to be processed by machines or humans.

There are several serialization formats, out of which the following are the most popular:

N-Triples N-Triples is a plaintext-based format where triples are serialized as whitespace-separated

strings. Each triple ends with a dot (.) and is followed by a newline [157].

In N-Triples, we enclose IRIs with angle brackets. Serializations of blank nodes start with :,

followed by a blank node identifier. Literal values use the quotation mark (") to wrap lexical

forms. They may introduce an optional datatype IRI enclosed with angle brackets and prefixed

with the ^^ sequence. If no datatype is specified, a language tag starting with the @ charac-

ter may be introduced after the lexical form. If there is no datatype and no language tag, the

http://www.w3.org/2001/XMLSchema#string datatype is assumed. The N-Triples serialization

of the RDF graph presented in Figure 2.1 can be defined as follows:

<http://example.org/Mark> <http://example.org/worksAt> _:company .

_:company <http://example.org/companyType> <http://example.org/Startup> .

_:company <http://example.org/locatedIn> <http://example.org/Poznan> .

2.1. RDF: Resource Description Framework 9

RDF/XML RDF/XML is an XML-based serialization format [58]. Here, an XML document

is used to store triples in an XML tree. It was the first serialization format for RDF and was

recommended by World Wide Web Consortium (W3C). The RDF/XML serialization of the RDF

graph presented in Figure 2.1 is defined as follows:

<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ns0="http://example.org/">

<rdf:Description rdf:about="http://example.org/Mark">

<ns0:worksAt>

<rdf:Description>

<ns0:companyType rdf:resource="http://example.org/Startup"/>

<ns0:locatedIn rdf:resource="http://example.org/Poznan"/>

</rdf:Description>

</ns0:worksAt>

</rdf:Description>

</rdf:RDF>

RDF/XML uses the ?xml element to start the document.

As IRIs defined in a single ontology frequently share their beginnings, the notion of a namespace

is introduced to shorten IRIs occurring in element and attribute names [93]. The xmlns attribute

of the rdf:RDF element defines a list of namespaces that consists of pairs of namespace names

and IRI beginnings separated by = signs. In the analyzed example, the namespace ns0 shortens

property IRIs (e.g., http://example.org/worksAt) by using the namespace name followed by a

colon instead of the full IRI beginning (e.g., ns0:worksAt). We refer to the abbreviated form as

a qualified name, with a prefix preceding the colon and a local name following it.

Each graph node, visualized in Figure 2.1 as an oval, is represented in RDF/XML as an

rdf:Description element that, in the case of non-blank nodes, contains an rdf:about attribute

specifying the IRI assigned to the graph node.

Predicates are represented as nested elements of their subjects and can be identified by their

qualified names. If the predicate object is not used as a subject of another triple, it can be

defined in the predicate element using an rdf:resource attribute. Otherwise, the object is an

rdf:Description element nested in the predicate element.

Turtle Turtle is a compact, human-readable textual format [26]. It is an extension of N-Triples

so that the N-Triples serializations of RDF graphs are valid Turtle documents. However, Turtle

provides a syntax to simplify N-Triples notation. The Turtle serialization of the RDF graph

presented in Figure 2.1 is as follows:

@prefix ns0: <http://example.org/> .

ns0:Mark ns0:worksAt [

ns0:companyType ns0:Startup ;

ns0:locatedIn ns0:Poznan

] .

2.2. RDFS: RDF Schema 10

The Turtle representation of the analyzed RDF graph starts with a prefix definition that

introduces a namespace named ns0. The prefixes in Turtle work in the same way as in RDF/XML

format, allowing to shorten IRIs. The first triple relates Mark with a blank node via the worksAt

predicate. Both Mark and worksAt are represented using their qualified names. The blank node

that serves as an object in this triple is represented with square brackets. Inside the square

brackets, the blank node works as an implicit subject of the first triple so that only the predicate

ns0:companyType and the object ns0:Startup are explicitly stated. Then, the colon sign informs

that the same subject should be reused in the subsequent triple. In consequence, the second triple

uses the same blank node as a subject, and only the predicate ns0:locatedIn and the object

ns0:Poznan are explicitly stated.

In this dissertation, we use Turtle as our syntax of choice to represent all RDF graphs.

2.2 RDFS: RDF Schema

RDF Schema is a semantic extension of RDF providing data-modeling vocabulary [22] that we can

use to describe:

Classes and Taxonomies RDFS introduces the notion of a class that allows to group multiple

resources. Classes can further form hierarchies called taxonomies.

In RDFS, we introduce a class with rdfs:Class and define instances of classes with rdf:type.

The following pair of triples:

example:C rdf:type rdfs:Class .

example:i rdf:type example:C .

states that example:C is a class, an instance of which is example:i.

The hierarchy of classes can be introduced using the rdfs:subClassOf predicate. This pred-

icate says that every instance of a class stated in the subject is also an instance of a class stated

in the object. For example:

example:Human rdfs:subClassOf example:Mammal .

states that every human is a mammal.

Properties Properties are binary predicates that relate subjects to objects [22]. Similar to

classes, they may be organized into hierarchies with the use of the rdfs:subPropertyOf predicate.

Moreover, properties may introduce typing of their subjects and objects using rdfs:domain and

rdfs:range, respectively.

Human-readable resource descriptions Resources are frequently identified with IRIs that are

hard to be processed by humans (e.g., http://xyz.io/1324 to refer to the class representing dogs).

To address this problem, RDFS provides a vocabulary that can be used to annotate resources with

additional context. With the use of rdfs:label and rdfs:comment one can introduce a human-

readable label for the resource and additional comments (e.g., usage examples), respectively.

2.3. OWL: Web Ontology Language 11

Ability to entail new facts With the vocabulary provided by RDFS, we can infer new facts

from the knowledge modeled in an RDF graph. Let us consider the following graph:

example:Human rdf:type rdfs:Class .

example:Mammal rdf:type rdfs:Class .

example:Human rdfs:subClassOf example:Mammal .

example:Mark rdf:type example:Human .

Even if it is not explicitly stated, we can infer that Mark is a Mammal because Mark is an instance

of the class Human, and Human is a subclass of Mammal. As a result, a new inferred fact:

example:Mark rdf:type example:Mammal .

can be added to the graph.

2.3 OWL: Web Ontology Language

The Web Ontology Language (OWL) is a language proposed to represent ontologies for the Seman-

tic Web [130] that is recognized as a standard by W3C [182]. The OWL language was introduced

in 2004 and extended in 2009 in its second version named OWL 2.

Ontologies in OWL can be represented as RDF graphs. Similar to RDFS, OWL introduces a

vocabulary adding special meaning to graphs. RDFS is intended to define the structure of data

in terms of hierarchies of classes and properties, while OWL describes the semantic relationships

between entities. OWL allows using class expressions to build new, complex classes from existing

classes and property expressions [182] (e.g., a class expression can introduce the notion of a final-

year student working as a programmer in at least two companies).

The building blocks provided by OWL can be grouped into 3 categories [119]:

• Entities – classes, properties, and individuals that refer to objects and relationships in the

domain of interest. Similar to RDFS, classes represent groups of individuals, and properties

represent binary predicates.

• Axioms – statements asserted to be true in a given domain the ontology describes [119].

• Expressions – complex descriptions formed using entities.

The OWL vocabulary provides various constructs. The following list provides a subset of some

popular constructs used to define class axioms:

• owl:disjointWith can be used to state that given classes cannot have common instances.

• owl:equivalentClasses can be used to state that given classes are equivalent to each other.

The following list describes a subset of some popular constructs used to define class expressions:

• owl:unionOf can be used to declare new classes as unions of existing ones.

• Cardinality restrictions are useful to restrict the number of things referenced (e.g., to tell

that every Ph.D. student has at least one supervisor). The OWL language provides var-

ious forms of cardinality-related constructs: owl:minCardinality, owl:maxCardinality,

owl:cardinality, owl:minQualifiedCardinality, etc.

2.3. OWL: Web Ontology Language 12

• owl:someValuesFrom and owl:allValuesFrom that helps restrict the classes of property

values. For example, owl:someValuesFrom can be used to state that each mammal eats

(some) fruits and owl:allValuesFrom can be used to state that each mammal eats only

fruits.

OWL, which serves as a next layer over RDF and RDFS reusing their functionalities, can

be serialized with RDF serialization formats. On top of that, it can also be serialized using

OWL/XML, an XML-based format tailored to OWL [120], as well as with alternative formats

that simplify the human understanding of the ontology. Two of the most popular are:

• Manchester Syntax [75] – providing a concise representation friendly for non-logicians. For

example, the following snippet:

Class: PhDStudent

EquivalentTo: Person and (writes some DoctoralDissertation)

states that there is equivalence between the notion of PhDStudent and a person who writes

a DoctoralDissertation.

• Functional-style Syntax – another human-friendly representation that closely follows the

structural specification of OWL [119]. For example, the following snippet in Functional-style

Syntax:

EquivalentClasses(

:PhDStudent

ObjectIntersectionOf(

:Person

ObjectSomeValueFrom(:writes

:DoctoralDissertation)

)

)

represents the same axiom as analyzed in the context of the Manchester Syntax.

The possibilities given by OWL are at the cost of complexity of reasoning and decidability [130].

For this reason, in the first version of OWL, 3 sublanguages that are tailored to specific needs are

provided:

• OWL Full – provides all primitives defined in OWL and allows an ontology to augment the

meaning of either OWL or RDF vocabulary. For example, in OWL Full, we can define a class

as its own instance. However, because of its expressive power, OWL Full is undecidable.

• OWL DL – provides all primitives defined in OWL, but it introduces several restrictions

(e.g., a class cannot be declared as an instance of another class). OWL DL is named after its

correspondence with description logics [7]. Because of the restrictions introduced, all entail-

ments of the ontology are guaranteed to be computed, and we are sure that the computations

will finish in finite time [182].

• OWL Lite – supports limited primitives of OWL. For example, the cardinality restrictions

are limited to values 0 and 1. This language suits users who need to compute a classification

hierarchy. The OWL Lite is the easiest to handle and support by tools [182].

2.3. OWL: Web Ontology Language 13

OWL DL is the syntactic extension of OWL Lite. OWL Full is the syntactic extension of OWL

DL and OWL Lite [182].

OWL 2 removes OWL Lite and introduces further 3 sublanguages called profiles:

• OWL 2 EL – especially useful in the context of ontologies with large numbers of classes

and properties. OWL 2 EL assesses ontology consistency, class expression satisfiability,

class expression subsumption, and instance checking in polynomial time with respect to the

ontology size [76].

• OWL 2 QL – especially useful in the context of datasets with large sets of individuals, where

query answering is the most important task [76].

• OWL 2 RL – especially useful in the context of applications that may trade language ex-

pressivity for efficiency. Reasoning systems based on OWL 2 RL can be implemented using

rule-based engines [76].

Ontologies in the context of the open-world assumption Closed-world assumption (CWA)

is a way of thinking that assumes complete information provided in the system [146]. It is frequently

employed in databases. Under CWA, we state what is possible, and everything that is not stated is

regarded as impossible. Let us consider a database on the academic world presented in Table 2.1.

Table 2.1: An excerpt of some academic database.

Person Can be a supervisor?

Research Assistant No
Assistant Professor Yes
Associate Professor Yes
Full Professor Yes

Imagine the Table 2.1 is asked with the following question: Can a student be a supervisor?, the

system working under CWA returns false as there is no information on students in the table.

A different way of thinking is represented in the open-world assumption (OWA). Under OWA,

the lack of knowledge in the system does not imply its falsehood, as OWA assumes incomplete

knowledge [82]. In the context of our example from Table 2.1, an OWA-based system would answer

the same question with I do not know as there is nothing on students in Table 2.1. In particular,

there is nothing about the possibility of a student becoming a supervisor. There should be a

statement No student can be a supervisor represented in the system to generate false – the same

answer as under CWA.

Ontologies expressed in OWL use the open-world assumption so that in an empty ontology, we

assume everything to be possible. By adding new axioms, we constrain the ontology by defining

what is not possible.

Ontologies in the context of the unique name assumption The unique name assumption

(UNA) states that two entities assigned with different identifiers represent different things [147].

For example, under UNA, we assume that http://example.org/a and http://example.org/b

refer to different things because they use different IRIs.

However, in OWL ontologies, UNA does not hold. If an ontology states that Poland has exactly

one capital city and we model both http://example.org/Warsaw and http://example.org/test

2.4. Ontology verbalization 14

as capitals of Poland, the logical consequence of these portions of information will be that both

IRIs refer to the same thing.

In OWL, we can explicitly state that two entities are different with the use of owl:differentFrom.

We can also use owl:sameAs to explicitly state that the given entities represent the same thing.

2.4 Ontology verbalization

Understanding axioms formalized using logic-based languages such as OWL may be a challenge

for people that are not trained in logic. For this reason, the possibilities of expressing ontologies

using natural language are analyzed. Kaljurand [80] proposed to use a language called Attempto

Controlled English (ACE) to express the knowledge encoded in an ontology using a subset of

English. He showed that there is a mapping between ACE and OWL DL [81].

ACE is a Controlled Natural Language (CNL) representing a constrained natural language

that relates to first-order logic [55]. ACE supports, among others, expressions for conjunctions,

negation, existential and universal quantification, and numerical quantifiers. The admissible sen-

tence structures allowed by ACE [53] cover expressions such as noun phrase + verb + complements

+ adjuncts or there is/are + noun phrase. Sentences are built from content words (nouns, verbs,

adjectives, and adverbs) and predefined function words (e.g., determiners, pronouns, negation

words).

2.5 Querying RDF with SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a query language that can be used

to retrieve and modify data stored in RDF graphs on the Web or in an RDF store [158].

Let a Basic Graph Pattern (BGP) denote a set of triple patterns. Each triple pattern can be

defined as a triple: ∈ (TRDF ∪VRDF)× (IRDF ∪VRDF)× (TRDF ∪VRDF), where VRDF represents

the set of query variables.

BGPs are stated in SPARQL queries to construct a graph that is then matched in the queried

graph. If a query introduces variables, they are treated as wild cards. If a match is found, the

variables are bound to particular IRIs and may be presented to the user.

An example query:

PREFIX ex: <http://example.org>

SELECT ?x WHERE {

?x ex:prepares ex:dissertation .

?x ex:hasStatus ex:PhDStudent .

}

consists of:

• The namespace prefix – similar to @prefix in Turtle, prefixes defined using PREFIX are used

to make IRIs in the queries shorter.

• Query form, either SELECT, ASK, DESCRIBE or CONSTRUCT. In this case SELECT is chosen and

is followed by a single variable ?x, the bindings of which are presented to the user.

• The BGP that in this example consists of two triples:

?x <http://example.org/prepares> <http://example.org/dissertation> .

?x <http://example.org/hasStatus> <http://example.org/PhdStudent> .

2.5. Querying RDF with SPARQL 15

Here, in both triples, the predicates and the objects are represented with IRIs, and the

subjects are represented with the ?x variable.

Considering the analyzed query used in the context of the following graph:

@prefix ex: <http//example.org>

ex:DWisniewski ex:prepares ex:dissertation ;

ex:hasStatus ex:PhdStudent .

ex:JKowalski ex:prepares ex:masterThesis ;

ex:hasStatus ex:student .

, the BGP specified in the query matches once and binds the variable ?x to the IRI of ex:DWisniewski.

Entailment regimes The graph matching procedure processing only explicitly stated knowledge

may provide incomplete results as the implicit knowledge is not considered.

Let us consider the following graph:

ex:Cat rdf:type ex:Mammal .

ex:Dog rdf:type ex:Animal .

ex:Mammal rdfs:subClassOf ex:Animal .

ex:isEatenBy rdfs:range ex:Animal .

ex:Banana ex:isEatenBy ex:Monkey .

This graph is visualized in Figure 2.2. The explicitly stated terms are represented with solid

arcs and ovals. The implicit knowledge that can be inferred from this representation is presented

using dashed lines and ovals.

rdf:type
ex:Dog

rdf:type
ex:Cat

ex:isEatenBy
ex:Bananaex:Monkey

ex:Animal

ex:Mammal

rdfs:range

rdf:Property

rdfs:subClassOf
rdf:type

rdf:type
rdf:type

Figure 2.2: Visualization of a sample RDF graph. Solid ovals and lines represent
explicit knowledge. Dashed ovals and lines represent inferred knowledge.

Then, let us consider the following SPARQL queries:

(Q1): SELECT ?x WHERE { ?x rdf:type rdf:Property }

(Q2): SELECT ?x WHERE { ?x rdf:type ex:Animal }

2.5. Querying RDF with SPARQL 16

The first query searches for triples with rdf:type predicate and rdf:Property object and

returns their subjects. The second query searches for triples with the same predicate but ex:Animal

object and also returns their subjects.

In the analyzed graph, there is no explicitly introduced rdf:Property. For this reason, Q1

cannot match and returns an empty result. Considering Q2, since there is the triple: ex:Dog

rdf:type ex:Animal stated in the graph, ?x binds to ex:Dog so that the ex:Dog is returned by

the query.

However, these results are incomplete since, apart from the explicit knowledge, the graph also

models indirect knowledge.

Entailment regimes are used to compute query results in SPARQL beyond simple subgraph

matching. They use appropriate semantic interpretations of a given graph to entail new facts that

can be processed by the query to make use of the indirect knowledge [61].

The following entailment regimes are possible in the context of SPARQL 1.1: RDF entail-

ment, RDFS entailment, D-Entailment, OWL 2 RDF-Based Semantics entailment, OWL 2 Direct

Semantics entailment, and RIF-Simple entailment [61]. The most popular ones are:

• RDF Entailment Regime – RDF provides only a little of semantic interpretation. However,

we know that in each triple, the IRI stated in the predicate position represents a property.

For this reason, from the following triple: ex:Banana ex:isEatenBy ex:Monkey, we can

infer a new triple ex:isEatenBy rdf:type rdf:Property. Querying the graph using the

RDF Entailment Regime returns ex:isEatenBy as the answer binded to ?x in Q1.

• RDFS Entailment Regime – In this graph, there are two triples introducing RDFS-related vo-

cabulary: ex:Mammal rdfs:subClassOf ex:Animal and ex:isEatenBy rdfs:range ex:Animal.

With the use of the first one, we can conclude that because ex:Cat is a ex:Mammal it is

also an ex:Animal. Moreover, as esx:isEatenBy expects an ex:Animal in its range, from

ex:Banana ex:isEatenBy ex:Monkey, we can infer that ex:Monkey is an ex:Animal. The

use of RDFS vocabulary to entail new facts for querying is called the RDFS Entailment

Regime. Applying this kind of Entailment Regime, three resources can be bound to ?x in

Q2: Dog, Cat, and Monkey.

• OWL-related Entailment Regimes – Similar to RDF and RDFS, there are also entailment

regimes related to OWL 2 that allow capturing the logical consequences of ontologies. There

are two regimes to choose from:

– OWL 2 Direct Semantics Entailment Regime – is based on OWL 2 Direct Semantics

and maps the queried RDF graph as well as the BGP from the query to OWL structural

objects. These can be extended to allow for variables [89]. OWL 2 Direct Semantics sep-

arates individuals, properties, and classes defined in the ontology and interprets classes

and properties as sets and relations, respectively. Under OWL 2 Direct Semantics En-

tailment Regime variables can be used in place of names of individuals, literals, classes,

object properties, and datatype properties [125]. The queried graph must correspond

to an OWL 2 DL ontology.

– OWL 2 RDF-based Semantics Entailment Regime – is a straightforward extension of

the RDF and RDFS Entailment Regimes. It interprets a given RDF graph with the use

of RDFS semantics with OWL 2 constructs handling. This kind of entailment regime

assumes that queries are answered with respect to an OWL 2 RDF-Based datatype

map [155]. This kind of semantics can reflect all logical conclusions of the OWL 2

Direct Semantics [155].

2.6. The need for SPARQL-OWL 17

2.6 The need for SPARQL-OWL

SPARQL-OWL is SPARQL with OWL 2 Direct Semantics Entailment Regime [89]. It is a super-

set of SPARQL-DL [162] that is supported by a publicly available tool named OWL-BGP1 and

introduces strategies for good execution order and query rewriting to reduce the query execution

time [89]. This language can be especially useful to query ontologies providing no or almost no

individuals and large sets of terminological axioms, providing statements about how classes and

properties relate to each other. An example of such an ontology is the Software Ontology [106],

focused primarily on modeling software-related taxonomies and relations between classes.

The idea and example we describe here comes from the paper [185] presented during the Ph.D.

symposium track of The Web Conference 2018. Let us consider the following scenario:

An engineer is working on a knowledge base (KB) – a type of knowledge representation that focuses

mainly on individuals and uses an ontology as the schema. An excerpt of this knowledge base is

presented in Table 2.2.

Table 2.2: A sample knowledge base represented using Functional-style Syntax.

(a): An assertional part.
ex:Software(ex:Weka (machine learning))
ex:licence(ex:Weka (machine learning) ex:GNU General Public licence))
ex:Software(ex:The Witcher (video game))
(b): A terminological part.
SubClassOf (ex:Software, ex:EntityWithLicence)
SubClassOf (ex:EntityWithLicence, ObjectSomeValuesFrom (ex:licence, :Licence))

Knowledge bases are split into two components [60]:

• Assertional part (ABox) that provides assertions on individual objects (e.g., individual

DawidWisniewski is of type PhDStudent).

• Terminological part (TBox) that provides general assertions on classes and properties (e.g.,

classes Programmer and SoftwareDeveloper are equivalent, Software and Hardware are

disjoint, or the class Student subsumes PhDStudent).

The KB presented in Table 2.2 consists of three assertions in the assertional part that can be

interpreted in the following way:

• There is a piece of software called Weka.

• There is a piece of software called The Witcher.

• Weka is licensed under the GNU General Public licence.

Moreover, in the same table, there are two axioms providing terminological knowledge:

• The class Software is a subclass of EntityWithLicence.

• In general, EntityWithLicence has some licence assigned.

The engineer wants to use the knowledge base to answer the following CQ: Is it true that every

piece of software has a licence?. They could state the following SPARQL query:

1https://github.com/iliannakollia/owl-bgp

https://github.com/iliannakollia/owl-bgp

2.6. The need for SPARQL-OWL 18

ASK WHERE { ?x rdf:type ex:Software .

FILTER NOT EXISTS {?x ex:licence ?y} }

The query matches all pieces of software that are not related to any licence. If any match is found,

the query returns true, what can be interpreted as No, not every piece of software has a licence

assigned. This answer is returned by the query because in the assertional part of the KB, The

Witcher is not related to any licence. In this query, the NOT EXISTS filter utilizes the closed-world

assumption so that it expects complete information to be available in the KB.

It is easy to provide incomplete assertional knowledge that causes SPARQL queries to give

wrong answers. To prevent such a behavior, one should use the general knowledge stated in the

terminological part to form a query. The following SPARQL-OWL query:

ASK WHERE { ex:Software rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty ex:licence ;

owl:someValuesFrom ex:Licence] . }

works on the schema of the KB (terminological part) and operates using the open-world assump-

tion. As there are axioms relating ex:EntityWithLicence with :Licence via the existential

restriction on ex:licence property and stating that each instance of ex:Software is an instance

of ex:EntityWithLicence, the OWL 2 Direct Semantics Entailment Regime used by SPARQL-

OWL make it possible to generate true as the answer to the query, which can be interpreted as

Yes, in general, each piece of software has a licence assigned.

Chapter 3

Selected aspects of machine learning

3.1 The idea of machine learning

Machine learning (ML) is a term proposed by A. L. Samuel in 1959 to refer to a field of study

that gives computers the ability to learn without being explicitly programmed [154]. This kind of

approach makes computers learn from experience instead of providing the exact instructions to be

performed. There are three main branches of ML:

• Supervised learning – a computer learns a mapping function from the input features into

the output value [153] based on a set of examples. If the outputs to predict are continuous

values, the solved problem is called regression. If the outputs are discrete labels, the problem

is called classification.

• Unsupervised learning – a computer learns to detect patterns among data when no distin-

guished feature is provided (there is no output given as in the case of supervised learning).

• Reinforcement learning – a computer learns the strategy from reinforcements, which have

the form of rewards or punishments [153]. For example, when the algorithm is playing chess,

the final outcome – the information, whether the algorithm won or lost – is used to learn

which movements contributed to the result.

3.2 Supervised learning

In the supervised scenario, having a training set D = {(x(i), y(i))}ni=1, where n represents the

number of examples in D (i-th example is represented as a vector of features x(i) annotated with

a label y(i)), our goal is to find a function: ŷ(i) = h(x(i)), which discovers an underlying relation

between features and labels so that each generated prediction ŷ(i) should be equal or close to the

expected annotation y(i). The function h(·) is called hypothesis and it is expected to generalize so

that given examples that were not seen in D, it can still generate accurate outputs.

Hereafter, we use the term predictions to refer to the outputs generated with machine learning

models. The hypothesis h(·) generates predictions based on feature vectors which describe objects

in terms of numbers and nominal values and a collection of parameters which determine the

decisions. Parameters are selected in the process of model fitting (i.e., searching for the best

model) that is based on examples in D. We use the term model to refer to the artifact created in

the fitting process that provides predictions on the given data.

For example, considering a binary classification, where an object is described by a vector of

features x(i) and assigned with one of the two possible labels y(i) ∈ {0, 1}, we can use logistic

19

3.2. Supervised learning 20

regression defined as

ŷ(i) = h(x(i)) =
1

1 + e−wTx(i)
(3.1)

.

Figure 3.1: Sigmoid function.

Here, the dot product between the feature vector x(i) and parameters vector w is transformed

by the sigmoid function, which is visualized in Figure 3.1, to generate a single number with

its value between 0 and 1. The calculated output can be interpreted as the probability of the

object represented as x(i) being of category y = 1. It can be further compared to a chosen

threshold to transform probabilities into labels (e.g., if the probability ≥ 0.5 choose y = 1, else,

choose y = 0). The model parameters and the threshold value define a decision boundary – a

hyperplane that partitions the feature space into two regions, each related to one of the classes. To

classify a given object, we check on which side of the decision boundary it falls. To fit the model

(i.e., choose the best parameters w of h(·)) to the training data, we introduce a loss function

`(y, ŷ) measuring the difference between the model’s prediction ŷ and the expected output y.

The value of the loss function depends on the model’s parameters w. The cost function J(w) is

an aggregation of the values of the loss function over multiple examples, e.g., the average value

J(w) = 1
n

∑n
i=1 `(y

(i), ŷ(i)), and is minimized using the chosen optimization algorithm to find the

best parameters w.

3.2.1 Optimization methods

In the context of supervised learning, the most popular optimization approach is gradient de-

scent [121], which is an iterative method used to search for the local minimum of a given function.

Gradient descent iteratively updates all parameters, repeating the transformation given as

w(t+1) = w(t) − η∇J(w(t)) (3.2)

, where ∇J(w(t)) = ∂J
∂w(t) represents a gradient being a vector of partial derivatives, t represents

a given point in time, and η represents the learning rate, which is a scalar determining how big

should be the changes applied to the parameters.

Apart from gradient descent that utilizes first derivatives only, other optimization methods

may use second-order derivatives providing information on the curvature of a given function to

improve the convergence. For example, Newton’s Method [121] uses the inverse of a Hessian H,

which represents the matrix of the second derivatives of a given function to define its curvature.

The Hessian of a given cost function J and parameters w of length m is defined as: Hi,j = ∂2J
∂wi,∂wj

,

for each 0 < i, j ≤ m.

Then, the Hessian is used in the optimization procedure in the following way:

w(t+1) = w(t) − ηH−1∇J(w(t)) (3.3)

3.2. Supervised learning 21

Not only the cost of calculating the Hessian matrix is large, but the matrix itself requires

storing m2 values, which may also become a limitation since many modern approaches optimize

thousands or millions of parameters. For these reasons, attempts to reduce the complexity via an

approximation of the inverse Hessian have been made. The most popular attempts are Broyden-

Fletcher-Goldfarb-Shanno (BFGS) [23, 52, 63, 160], which reduces the time complexity of calcu-

lations and Limited-memory BFGS (L-BFGS) [99], which also approximates the Hessian matrix

using a small number of vectors.

L-BFGS works iteratively to construct the approximated Hessian based on previous updates.

Let:

• y(n) be a vector of gradient changes y(n) = ∇J(w(n+1)) − ∇J(w(n)) between the current

iteration n+ 1 and the previous one n.

• s(n) be a vector of parameter changes changes s(n) = w(n+1) − w(n) between the current

iteration n+ 1 and the previous one n.

• ρn = (y(n))T s(n).

Then, the H−1∇J(w(t)) product in the update equation w(t+1) = w(t) − ηH−1∇J(w(t)) can be

approximated using the procedure presented in Algorithm 1.

Input: Gradient ∇J(w(n+1)), the last m vectors s(i), y(i), and ρi
Output: s(n+1), which approximates H−1∇J(w(t))

1 q(m+1) = ∇J(w(n+1))
2 for i = m to 1 do
3 j = i + n - m
4 αi = ρj(s

(j))Tq(i+1)

5 q(i) = q(i+1) − αiy(j)

6 end
7 z(1) = −h−10 q(1)

8 for i = 1 to m do
9 j = i+ n−m
10 βi = ρj(y

(j))T z(i)

11 z(i+1) = z(i) + s(j)(−αi − βi)
12 end
13 s(n+1) = z(m+1)

Algorithm 1: L-BFGS optimization procedure [123]. Here, h0 represents the initial Hessian
approximation that is set to a scaled identity matrix.

3.2.2 Loss functions

Similar to optimization algorithms, there are many possible loss functions. Some of the most

popular are:

• mean squared error (L2 error) – `(y, ŷ) = (y−ŷ)2, a loss function commonly used in regression

problems.

• categorical cross-entropy – `(y, ŷ) = −
∑K
i=1 y

(i) log(ŷ(i)), where K represents the number

of classes, measures the dissimilarity between two probability distributions. It is frequently

applied to classification problems.

3.3. Neural networks 22

3.2.3 Regularization

Searching for the parameters that minimize the cost may lead to selecting a function that works

perfectly on the data seen during the training but badly on unseen ones. The model suffers from

overfitting when it overly fits the training data and misses the general trend the data represents. In

Figure 3.2, we visualize a sample regression problem, where based on a set of 4 training examples

(each marked with a cross shape ×), we search for a polynomial function that approximates the

data. The function visualized on the left side fits perfectly the training data but considering

an example that was not seen during training (marked with a rotated square), the prediction

differs from the expected value. In contrast, the function presented on the right side, even if it

gives less accurate predictions on the training data, generalizes better providing a prediction for

a new example that is closer to the expected value. This problem, called overfitting, is caused

by constructing a model that is too complex fitting to the noise that is frequently observed in

datasets. To prevent overfitting, we aim to produce less complex models that may introduce fewer

parameters (e.g., using a lower degree polynomial in the analyzed example) or that force the model

parameters to be small.

To generate simpler models, we can use regularization methods that penalize a given model

for being too complex. The most popular ones require adding a penalty score to the cost function

that prevents the model from choosing high values of parameters:

• L1 regularization – in the context of regression problems also called Lasso Regression (Least

Absolute Shrinkage and Selection Operator) [172], adds the λ
∑m
i=1 |wi| term to the cost

function. The λ parameter value steers the importance of the regularization, while m rep-

resents the total number of parameters in the model. The larger the parameters w get, the

larger
∑m
i=1 |wi| becomes. L1 regularization is useful in situations, where a subset of the most

important features should be selected since L1 zeros weights related to the least important

ones.

• L2 regularization – in the context of regression problems also called Ridge Regression [71],

adds the λ
∑m
i=1 w

2
i term to the cost function. It is analogous to the L1 regularization with

the only difference in calculating the squares of parameters instead of absolute values. L2

regularization is useful when we would like to shrink all weights rather than zero their values.

• Elastic Net – both L1 and L2 are frequently combined into a weighted sum called Elastic Net

regularization [200] λ1
∑m
i=1 |wi| + λ2

∑m
i=1 w

2
i . That combination overcomes limitations of

both approaches because Ridge Regression alone cannot eliminate irrelevant features, while

Lasso Regression alone has problems with handling correlated features.

3.3 Neural networks

In the quest to make machines able to learn from experience, a lot of effort was made to mimic the

behavior of the human brain. Since the work of McCulloch and Pitts from 1943 [113] introducing

a mathematical model simulating a single neuron, a multitude of approaches and architectures

incorporating neurons have been proposed to address machine learning tasks.

3.3.1 Neuron

The prediction process of a simple neuron consists of two phases – an aggregation of inputs followed

by application of an activation function. In that sense, logistic regression is a kind of neuron as it

3.3. Neural networks 23

Figure 3.2: Two hypotheses that are fit to the same training data (represented
with × shapes). The one presented on the left side overfits because it fits perfectly
the training data but generates a large error for an unseen example, visualized
using a rotated square. The function presented on the right side better captures
the general trend in data. Even though it provides less accurate predictions on the
training data, it generates a prediction closer to the expected value for a previously
unseen example.

aggregates inputs and parameters (also called weights) first and then transforms the aggregated

value using a nonlinear sigmoid function. A visualization of a neuron is presented in Figure 3.3.

Σ f(·)

Input 1

Input 2

Input n

weight 1

...

weight 2

weight n

output

Figure 3.3: A neuron model with n inputs assigned with a weight each. The dot
product between the weights and inputs processed by an activation function f(·) is
the output.

3.3.2 Feedforward neural networks

Early in the history of AI, scientists showed that a single neuron cannot solve problems in which

nonlinear decision boundaries are required to separate classes. Pappert and Minsky [117] pointed

that the XOR gate cannot be approximated by a single neuron as it is impossible to draw a single

line – which represents the decision boundary when objects are described by pairs of features –

that can separate XOR outputs set to 1 from those set to 0. In Figure 3.4, we analyze two logic

gates: OR and XOR. We present their truth tables that describe pairs of inputs (features) mapped

to outputs the gates return. We visualize the truth tables as graphs, where the horizontal and

vertical axes represent the first input value and the second input value, respectively. We use black

circles to visualize the outputs set to 1 and grey circles to visualize outputs set to zero. Only in

the case of OR, it is possible to partition the space with a line so that all black circles are on the

one side of the line (i.e., the decision boundary) and the grey circles are on the other.

However, if we decompose the XOR problem by transforming input features into a new feature

space, the problem may become linearly separable in this new feature space. In Figure 3.5, we

3.3. Neural networks 24

show that we can predict XOR outputs correctly if we introduce additional neurons and teach

them to predict the AND and OR gates outputs. The outputs of these neurons generate new

features that define each object using a pair of numbers representing the result of applying AND

and OR gates over its input. In that, transformed feature space, the problem of predicting XOR

output becomes linearly separable.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0 x

x

XOR

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1 x

x

OR

Input 1

Input 1

In
pu

t 2
In

pu
t 2

Figure 3.4: OR and XOR gates represented as their truth tables and visualizations
in their feature space. Black circles represent coordinates assigned with the outputs
set to 1. Grey circles represent coordinates assigned with the outputs set to 0. As
can be seen, it is possible to separate black and grey circles with a line (represented
as a dotted line) in the case of OR gate, but it is not possible for XOR.

A popular architecture using multiple neurons is a feedforward neural network. This approach

organizes neurons into a selected number of layers, where each layer consists of a chosen number

of neurons (different layers may contain different numbers of neurons).

All inputs of the feedforward network are processed by each neuron of the first layer indepen-

dently, transforming them into a new representation using aggregation and transformation with

a nonlinear activation function. The outputs of all neurons from the first layer become inputs

of the second layer and the process of aggregation, transformation, and passing to the next layer

is repeated until the last (output) layer of the network is reached. The output of the last layer

represents the model’s output.

Formally, a feedforward neural network can be defined as a sequence of transformations, where

j-th transformation consumes the output of the previous layer (or the network input in the case

of the first layer) and applies a nonlinear activation function gj (gj can be different for different

layers):

z(j) = gj(W
(j) · z(j−1)) (3.4)

W(j) represents the weights related to connections between j − 1-th and j-th layer. z(0) is the

feature vector describing the currently processed object represented as the feature vector x(i).

To train a network involving multiple layers, we use the backpropagation algorithm [150].

3.3.3 Recurrent neural networks

In the late 1980s, the concept of recurrent neural networks (RRNs) was proposed to handle se-

quential data [150]. A simple RNN cell contains a special layer of neurons called hidden state that

3.3. Neural networks 25

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

OR

Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

AND

I1 I2 Output
0 0 0
1 0 1
1 0 1
1 1 0

XOR

x

OR

AND

XOR

Input 1

Input 2

Output
I1

I2

I1

I2

Figure 3.5: AND and OR gates are linearly separable problems. If the input
values are processed by AND and OR gates and their outputs are fed to XOR gate,
the XOR problem also becomes linearly separable in this new feature space. If we
introduce two neurons, solving both AND and OR, and use their outputs as inputs
of an additional neuron, we can train a network that predicts XOR labels correctly.

models the representation of the whole sequence processed by the cell so far. The hidden state is

then used to compute outputs.

Assuming that U, W, and V are parameter matrices that are optimized during the learning,

an RNN cell can be defined as a sequence of two transformations:

1. calculating the hidden state based on its previous state and the current input h(t) = g1(U ·
x(t) + W · h(t−1)),

2. calculating the output o(t) = g2(V · h(t)).

Here, U represents the matrix of weights joining the input and the hidden layer, W represents the

matrix of weights joining the previous and the current hidden layer state, and V represents the

matrix of weights joining the hidden layer and the output layer. h(t) represents the hidden state

at the timestep t, and x(t) t-th input. g1(·) and g2(·) represent nonlinear activation functions (e.g.,

a hyperbolic tangent given as: tanh(z) = ez−e−z

ez+e−z . Hyperbolic tangent squashes a given argument

z to a number y, where −1 ≤ y ≤ 1). An RNN cell with 4 input values, the hidden state of size 2

and the output of size 2 used to process a sequence of 3 input values is presented in Figure 3.6.

As vanilla RNNs are hard to teach because they suffer from the vanishing gradient problem,

making them unable to handle long sequences [69], extensions of RNNs introducing more complex

cells were proposed. Long Short-Term Memory (LSTM) [70] and Gated Recurrent Unit (GRU) [28]

are the most popular choices.

Recurrent neural networks are often used to transform one sequence of elements into another,

possibly of a different length (e.g., in machine translation, summarization, question answering).

Here, one RNN cell, called the encoder, embeds the representation of a whole sequence into a vector

3.4. Structured prediction problems 26

Figure 3.6: An example RNN cell unfolded to 3 time steps. Red arrows represent
recurrent connections between the previous and the current hidden state. The input
layer does not introduce any activation function – the purpose of this layer is only
to broadcast each input to each neuron in the hidden layer.

stored in the last hidden state, and another RNN cell, called the decoder, produces a sequence of

outputs based on that state. We call such kind of processing as a sequence-to-sequence (Seq2Seq)

approach [170].

3.3.4 Attention-based neural networks

In recent years, the idea of attention [8] was introduced to Seq2Seq models. It allows the the

decoder to access all hidden states (instead of the last one only) generated by the encoder after

it processed a given input sequence. The encoder’s hidden states are then weighted according to

their importance and summed so that the decoder obtains more information from the relevant

inputs.

The notion of attention evolved, and further research proved that it could replace recurrent

connections so that each sequence element can be processed in parallel [177]. In the same paper,

introducing a model called Transformer, the authors proposed the notion of self-attention, a type

of attention relating different positions in a single sequence. With self-attention, the representation

of a given sequence element can be expressed as a mixture of representations of all elements in the

sequence.

3.4 Structured prediction problems

Structured prediction problems [9] relate to a class of machine learning problems, where given a

structured input, the task is to predict structured objects such as trees or sequences. Contrary

to classical approaches, here, the outputs are interdependent. Such a scenario is frequent in the

field of natural language processing, where there are numerous tasks, hereafter referred to as

sequence tagging tasks, that require tagging each element of a given sequence with labels that are

dependent on labels assigned to the surrounding elements (e.g., it is much more likely that the

successor of an adjective is a noun rather than a verb). A popular approach to solve structured

prediction problems is the algorithm named Conditional Random Fields (CRF) [91] – a type of

discriminative undirected probabilistic graphical model.

3.5. Encoding labels in sequences 27

Having a sequence of T objects described as feature vectors x(1), . . . ,x(T) and labels assigned

to each object y(1), . . . , y(T), our goal is to find a mapping from features to labels that can utilize

dependencies between labels. The most popular type of a CRF model is a linear-chain CRF, which

at a given moment, uses information about the label assigned to the current sequence element and

the previous one. Formally, a linear-chain CRF can be defined as:

p(y|x) =
1

Z(x)

T∏
t=1

exp{
K∑
k=1

wkfk(y(t), y(t−1),x(t))} (3.5)

, where the wk symbol represents a learnable weight associated with each of the K real-valued

functions fk(y(t), y(t−1),x(t)) called feature functions [171], which process:

• x(t) – features describing t-th sequence element

• y(t−1) – label of the previous sequence element, y(0) represents a special label representing

the beginning of the sequence.

• y(t) – label of the current sequence element

Z(x) represents a normalization function:

Z(x) =
∑
y′∈Y

T∏
t=1

exp{
K∑
k=1

wkfk(y′(t), y′(t−1),x(t))} (3.6)

, where
∑

y′∈Y represents the sum over all possible label sequences of length T .

In recent years, approaches combining recurrent neural networks with CRFs became popular as

they can outperform classical CRFs [78]. In these approaches, CRF is represented as an additional

layer that can learn the constraints inferred from the training set, e.g., that each entity encoded

in a sequence should start with a distinct tag.

3.5 Encoding labels in sequences

Frequently, one has to assign labels spanning over multiple elements in a sequence when solving

structured prediction problems. Hereafter, we refer to such spans as entities (e.g., mentions of

possibly multiword sequences, such as company names in blog posts split into words). In these

scenarios, an annotation scheme is required to mark the spans in training sets so that ML models

can handle and predict the occurrences of possibly multielement sequences of relevant information.

The most popular approach is to tag each sequence element (e.g., each word in the sentence)

with IOB [141] tags in the following way.

• O (outside) – is used to tag all elements outside of the sequences that form the entities to

be detected.

• B (beginning) – is used to tag the first elements of sequences that form entities to be detected.

• I (inside) – is used to tag all but the first elements of sequences that form entities to be

detected.

Sometimes variations of the IOB tag set are used:

• IO – use only two tags: I (inside) and O (outside). The lack of a distinct B (beginning) tag

makes this tag set unable to separate entities that are adjacent to each other.

• BIOES/BILOU – extensions of IOB introducing additional tags:

3.6. Evaluating machine learning models 28

– E (end) / L (last) – used to mark the last element of an entity to be detected

– S (single) / U (unit) – used to mark entities consisting of only single elements.

BIOES and BILOU are synonyms, as the interpretation of the added tags is the same in

both tag sets.

If more than one entity type needs to be detected by a single model (e.g., company names,

phone numbers and addresses), one can extend the selected tag set by introducing appropriate

postfixes identifying categories. A popular convention is to follow IO/IOB/BIOES/BILOU tags

with a dash and a short identifier of the category (e.g., B-COMPANY represents the first element

(word) in a company name and I-ADDRESS represents the continuation of a given address). As

the tag O is not related to any category, we do not add postfixes to it. An example of a sentence

tagged with IOB is presented in Figure 3.7.

Warsaw is the capital of the Republic of Poland .
B-CITY O O OI-CNTRY I-CNTRYI-CNTRYB-CNTRYOO

CITY COUNTRY

Figure 3.7: A sample sentence tagged with IOB tags. A single-token CITY and a
multi-token COUNTRY are marked.

3.6 Evaluating machine learning models

Models trained on a given dataset have to be evaluated to check how well they work on unseen

examples. To make the evaluation fair, the sets of examples used to train and evaluate the model

should be disjoint, and both should follow the same distribution.

The following two approaches are the most popular ones to train and evaluate models taught

in a supervised manner [17]:

• Hold-out – a given annotated dataset is split into two parts: a training set and a test set.

Then, engineers train the model on the training set only and use the test set to check to what

extent the predictions made by the model agree with the annotations. Frequently, another

subset – named validation set – is also extracted from the training set. Engineers use the

validation set to choose the hyper-parameters, which are parameters controlling the model’s

learning process. A popular scenario is to shuffle the dataset, use 60% of the examples as

the training set, 20% as the validation set, and the remaining 20% as the test set.

• Cross-validation – Splitting the data using hold-out limits the size of the training set and

leads to the arbitrary choice of the test and validation sets. To address these issues, one

can use cross-validation. First, we split the dataset into k equal in size, disjoint subsets.

Then, we iterate over each group, use the current one as the test set and the union of the

remaining ones as a training set, train, and evaluate the model. As a result, there are k

models produced tested against a different portion of the dataset each. Finally, we average

the test scores. This way, the test set is not chosen arbitrarily as the whole dataset is used

to calculate the evaluation scores. In each of the k steps, the procedure may be repeated to

extract a validation set from the training set.

3.6. Evaluating machine learning models 29

In supervised approaches, one can quantify the quality of a model on a dataset annotated with

labels, that is disjoint with the training set, be it a validation or test set. Below, we discuss the

most popular choices.

For regression, a popular choice is to calculate the mean squared error (MSE) [1]. Since the

examples in the test and validation sets are annotated with numbers (e.g., stock prices to be

predicted), the mean squared difference between the expected and generated values represents the

quality of the model. Ideally, such a difference would be equal to 0. Formally, the MSE is defined

as 1
n

∑n
i=1(y(i) − ŷ(i))2, where n is the number of examples, y(i) is the expected value of the i-th

test example and ŷ(i) is the prediction on i-th example made by the model.

For classification and sequence tagging, the quality may be calculated per each label type, by

counting the following cases:

• True positive (TP) – if the considered label is predicted by the model and is indeed expected

for a given example or sequence element.

• False positive (FP) – if the considered label is predicted by the model, but is not expected

for a given example or sequence element.

• False negative (FN) – if the considered label is expected for a given example or sequence

element but is not predicted by the model.

Then, we can define the following aggregations per each label:

• Precision (P) – defined as the number of true positives divided by the sum of true positives

and false positives P = TP
TP+FP . It shows what fraction of the model’s decisions to assign a

given class is correct.

• Recall (R) – defined as the number of true positives divided by the sum of true positives and

false negatives R = TP
TP+FN . It informs what fraction of a given class occurrences in the test

set is correctly identified.

• F1 score – the harmonic average of precision and recall, given by F1 = 2P ·R
P+R . It aggregates

precision and recall into a single number that can be used to rank different models.

The generalization of F1 is Fβ , given by Fβ = (1 + β2) P ·R
β2P+R , which allows to give higher

importance to precision or recall. For example, β = 2 weights recall higher, while β = 0.5 weights

precision higher.

If the classes are evenly distributed, one can calculate the accuracy, given as the number of

correct decisions made by a classifier divided by the number of all decisions. If the class distribution

is skewed, we prefer to use other measures, among which there are F1 or its generalization Fβ .

The precision, recall, and F1 can be averaged over all label types into a single number. Such

aggregates are called macro-precision, macro-recall, and macro-F1. Alternatively, one can calculate

the total TP, FP, and FN summed over each label type and generate a single: precision, recall,

and F1. These measures are called micro-precision, micro-recall, and micro-F1.

Chapter 4

Selected aspects of natural language

processing

In this chapter, we would like to introduce some aspects of natural language processing (NLP),

a subfield of AI, computer science and linguistics, focusing on how texts can be automatically

understood, analyzed, generated and translated by machines. NLP tries to address a multitude of

problems, among which there are:

• Automatic Speech Recognition – with the goal of providing textual transcription of spoken

language.

• Machine Translation – focusing on providing the best quality translations of texts expressed

in one language into another.

• Question Answering – with the goal of generating answers to questions stated in natural

language automatically.

• Text Classification – with the goal of assigning a given piece of text one or more predefined

labels.

• Named Entity Recognition – focusing on the identification and classification of important

sequences of words.

• Language modelling – focusing on constructing models able to predict a next word as a

continuation of a given sequence.

In this dissertation, we focus on concepts and approaches relevant to the dissertation only.

4.1 Tokenization

Each text itself is represented as a sequence of characters. Processing a piece of text as a sequence

of consecutive characters is hard to automate for several reasons:

• Texts (especially longer sequences of characters) tend to be unique.

• Humans think in terms of concepts and relations between them, and these are linked to

words, not the whole texts.

For these reasons, tokenization, the task of chopping texts up into pieces called tokens [107]

is applied to split documents into a list of meaningful elements: words, punctuation, numbers,

emoticons.

30

4.1. Tokenization 31

The most naive tokenization method is to split a given piece of text by spaces. Such an approach

can frequently detect words correctly, as most words are surrounded by spaces, but at the same

time it will fail in each case, where a word is followed by a punctuation instead of space (e.g., it!,

that?).

However, adding more advanced rules, as those separating punctuation from sequences of let-

ters, will not solve the problem completely. Sometimes, the decision whether a non-alphanumeric

character should separate two tokens or be a part of a single token depends on the context. Imagine

two examples with hyphens used (i) hi-fi (ii) New York-based.

In the first example, the whole hi-fi represents a device playing high-fidelity sound. Splitting it

into separate tokens hi and fi leads to a loss of meaning. However, considering the second example

of New York-based, we expect the tokenizer (the tool performing tokenization) to split the sequence

by hyphen to produce York and based separately.

Modern solutions, such as those implemented in popular NLP toolkits like: spaCy [74] and

NLTK [16] use predefined lists of rules to handle the most common problematic cases.

Tokenization is an important step when building various tools:

• In the information retrieval context – one can search if a given document contains a given

token. When a document is tokenized, it is easier to reject matches being substrings of

tokens.

• In the machine learning context – documents are frequently transformed into fixed-sized

vectors of numbers. A popular approach is to use bag-of-words representation, the basic

form of which can be built as follows:

1. Tokenize all documents di ∈ DDOCS .

2. Create the vocabulary V – a list of unique tokens collected from all tokenized documents

di ∈ DDOCS . V is often sorted by the number of occurrences of a given token, so the

most frequent ones are on the top of the list. Its main purpose is to map tokens to their

positions in V .

3. Use the vocabulary V of size n to transform the document di into a vector of numbers

di of size n. First, initialize di with zeros. Then, iterate over each token tj from di and

increment di at the position that is assigned to tj in V .

Such a representation may be useful to discover relations between the number of occurrences

of a given word and a category of a document (e.g., documents about sport may frequently

contain tokens like: goal, competition, match).

Sometimes, it is helpful to consider sequences of consecutive tokens instead of each token

separately. For example, the aforementioned bag-of-words representation in the context of machine

learning would work better if pairs of consecutive words are also considered – having observed that

the sequence of two words New York occurs in a given text is often a strong indicator that a given

text is about the U.S.A. However, considering only single tokens would introduce ambiguity, since

New is a frequent word that may occur in the majority of texts and York may be related to New

York in the U.S.A, but also the city of York in the United Kingdom. We call a sequence of n

consecutive tokens an n-gram.

Modern neural network-based approaches often provide pretrained models that can be used

without resource- and time-consuming training [38, 100]. These often require a fixed vocabulary

of tokens, mapping a given token into a number that is the same number as it was used during

model training. The vocabulary, on the one hand, should be big enough to cover as many words as

4.2. Part-of-speech tagging 32

possible, but on the other hand, should be small enough not to consume too much memory. From

these conflicting requirements, new methods of tokenization arise, splitting words into smaller

pieces, called subword units.

The most popular methods providing subword units are WordPiece [156] and Byte Pair En-

coding (BPE) [57]. Both start with an initial vocabulary of single characters, and then add new

entries that are frequent sequences of characters.

As a result, even if a pretrained model with a fixed vocabulary is used against a piece of text

with words that are not included in the vocabulary, the tokenizer splits such words into smaller

portions (subword units) that are present in the vocabulary.

4.2 Part-of-speech tagging

Part-of-speech (POS) tagging is the process of assigning each token its appropriate part of speech

information [108]. The tools performing POS-tagging – so-called POS-taggers – can use various

sets of parts-of-speech to tag tokens. For example, the popular NLP toolkit spaCy [74] provides

two tagsets to choose from:

• Universal POS-tags – a coarse-grained tagset used in Universal Dependencies project [35].

This project aims to provide a cross-linguistically consistent morphosyntactic annotation of

human language. Universal POS-tags define 17 distinct part-of-speech tags, among which

the NOUN tag represents a noun, ADJ an adjective, and VERB is used to tag verbs.

• OntoNotes (version 5) / Penn Treebank POS-tags – a fine-grained tagset coming from the

OntoNotes project, the goal of which is to annotate a large corpus containing various genres

of texts written in English, Arabic and Chinese with stuctural information [181]. This tag set

defines 53 tags, providing more detailed information than those from Universal Dependencies.

For example, OntoNotes POS-tags distinguish singular nouns (NN) from plural (NNS) and

verbs in various grammatical forms, such as its base form (VB), past tense (VBD), gerund or

present participle (VBG), past participle (VBN), 3rd person singular present (VBZ), and non-3rd

person singular present (VBP).

Figure 4.1 presents a sample sentence tagged using Universal and OntoNotes tagsets.

The main challenge of POS-tagging comes from the ambiguity of words – many of them rep-

resent different parts of speech depending on their usage context. For example, the word book, if

used to reference some printed work is a noun, but if it expresses the process of reserving accom-

modation, the same sequence of characters is used as a verb. However, even simple methods based

on an analysis of annotated examples assigning a given token the most frequent tag lead to over

90% of per-token accuracy [27].

Today, POS-tagging is performed using machine learning-based approaches, out of which Con-

ditional Random Fields (CRF)-based [91], bidirectional long short-term memory (LSTM) [19] or

bidirectional encoders from Transformers (BERT) [68] are the most popular ones.

4.3 Dependency parsing

Dependency parsing is the name of an NLP task of discovering the syntactic structure of a sen-

tence [90]. It analyzes the relations between words, linking them with binary asymmetric arcs and

assigning each relation a label representing its functional category.

Each relation points from a head token to a dependent one, where:

4.3. Dependency parsing 33

The big brown fox jumped over the fence .
DT JJ JJ NN VBD IN DT NN .

DET ADJ ADJ NOUN VERB ADP DET NOUN PUNCTUNIVERSAL

ONTONOTES

Figure 4.1: Part-of-speech tags assigned to each token using Universal and
OntoNotes tagsets. Here, DT and DET represent a determiner, JJ and ADJ repre-
sent an adjective, NOUN – a noun, NN – a noun, singular or mass, VERB – a verb, VBD
– a verb in past tense ”.” and PUNCT – a punctuation mark, IN – a preposition, and
ADP – an adposition.

• A head governs the phrase and determines its syntactic category (e.g., if the head of a phrase

is a noun, the whole phrase becomes a noun phrase) [201].

• A dependent token is modified by the head (e.g., it must agree with the head’s number or

gender).

Dependency parses are graphs that are [90]:

• Acyclic – The directed arcs do not form cycles.

• Connected – There is a path between every pair of nodes (tokens).

• Single-headed – There is only one incoming edge for every node (token) other than a distin-

guished ROOT node. The edge points from the head to the dependent.

Acyclic and connected graphs represent trees. For this reason, the result of dependency parsing

is frequently called a dependency parse tree, which has a distinguished ROOT node that is the

head of the entire sentence.

We call an arc that points from a head to its dependent projective if there exists a path pointing

from the head to every token that lies between the head and the dependent in a given sentence. If

all arcs in a dependency tree are projective, the tree itself is projective.

Frequently, an additional constraint is added on dependency parse trees to ensure their pro-

jectivity. It is caused by the fact that the annotated examples used to construct parsers, i.e.,

treebanks, contain only projective trees and many algorithms suffer from computational limita-

tions that force them to build projective trees [79].

A popular source of the label set is the Universal Dependencies project [35], which provides,

among others, labels representing the nominal subject (nsubj), object of a preposition (pobj),

passive auxiliary (auxpass), coordination (cc), or direct object (dobj).

The most popular dependency parsing implementations are ML-based. Some of them are a

second-order TreeCRF model [197], a self-attention-based joint syntax and semantics parser [199],

or a BERT-based model [180].

Figure 4.2 visualizes a dependency parse tree generated for a sample sentence.

The big brown fox jumped over the fence .

NSUBJ PREP

POBJ

DET

PUNCTDET

AMOD

AMOD

Figure 4.2: Dependency parse tree constructed for a sample sentence.

4.4. Regular expressions 34

4.4 Regular expressions

Regular expressions are sequences of characters used to specify the pattern to be matched in a given

piece of text. They originate from the work of Kleene on regular languages and finite automata [88].

Kleene proved the equivalence between regular expressions and finite state automata (FSA) –

abstract models of computation that can be defined as a 5-tuple: QRE ,ΣRE , δRE , q0RE , FRE , where:

• QRE – represents the (finite) set of states.

• ΣRE – represents the alphabet.

• δRE – represents the transition function QRE × ΣRE → QRE (QRE × ΣRE → PRE(QRE),

where PRE(·) is a powerset function in case of nondeterministic automata introduced further

in this section).

• q0RE – represents the initial state q0RE ∈ QRE .

• FRE – represents the accept states set FRE ⊆ QRE .

A regular expression consists of literals and meta-characters. For example, the abc+d? regex

matches a sequence consisting of letters ab followed by at least one occurrence of letter c with an

optional letter d afterwards. In this example, letters a, b, c and d are literals matching exactly the

letters they represent, while + and ? are meta-characters, the first of which expecting the letter c

to be repeated at least once and the second marking letter d as optional.

Regular expressions, when executed, are translated into one of two kinds of FSA so that the

automata are used to match patterns in text. These two kinds of FSA are:

• Deterministic Finite Automata (DFA) – FSA that require reading input for the transition

between states. Moreover, each transition in DFA is uniquely determined by an input and

the source state.

• Nondeterministic Finite Automata (NFA) – FSA that do not require reading an input for the

transition between states. It allows transitions to be nonuniquely determined by an input

and the source state [140]. Reading an input sequence, it is not determined in which of the

accepting states the processing will finish.

Figures 4.3 and 4.4 present the visualizations of DFA and NFA constructed from abc+d? regular

expression.

Considering the above, regular expressions can be interpreted as a human-readable shortcut

for defining finite state automata.

Figure 4.3: The abc+d? regex translated into DFA.

4.5. Distributional semantics and word embeddings 35

Figure 4.4: The abc+d? regex translated into NFA.

4.5 Distributional semantics and word embeddings

In 1950s, the research made by linguists Harris [66] and Firth [51] gave birth to so-called distribu-

tional semantics [21] – the field of study that defines the meaning of a word by the context they

appear in. According to Firth You shall know a word by the company it keeps [51].

This idea was adopted later in NLP. For example, in 2003, Bengio et al. [11] proposed a neural

network-based method of calculating distributed representations of words so that each word is

mapped into a real-valued vector representing its meaning. The vectors representing the meaning

of words are called word embeddings.

The major advantage of word embeddings is that they can be computed on a large dataset and

then the generated representations can be reused for various tasks. The following list provides the

most popular word embedding generation methods:

1. Word2Vec [115] – a model providing two neural architectures for cumputing embeddings.

These are

• Skipgram – in which the model learns to predict the words that surround a given word,

• Continuous Bag-of-Words (CBOW) – in which the model learns to predict a given word

based on words that surround it.

2. GloVe [131] – a model learning representations based on global co-occurences between words.

3. FastText [20] – a model based on CBOW that learns representations of character n-grams

instead of full words. The vector representation of a given word is generated by taking the

sum of vectors assigned to the n-grams the word contains.

However, all the listed methods map a given token into a fixed vector representation calculated on

some chosen dataset. It is a major drawback, as there are words that are highly context-dependent

(e.g., the word apple may refer to a fruit or a company, and all personal pronouns (I, she, it) cannot

be represented as meaningful vectors without taking into consideration the contexts in which they

were used). It would be beneficial to inject the context of the currently processed text to generate

embeddings that are aware of the context a given word is currently used.

This problem was the inspiration for new methods for generating context-aware word embed-

dings. ELMo [133] uses a bidirectional LSTM architecture to construct a vector representation of

each word. The bidirectional LSTM consists of two LSTM cells: one reading the text in the left-

to-right order, while the other in the right-to-left. When the ELMo processes a word, the LSTM

cells process their left and right contexts, and their hidden states are concatenated to produce a

context-aware representation. Universal Language Model Fine-tuning (ULMFiT) [77] is a similar

idea that incorporates special LSTM networks called AWD-LSTM [114] to generate contextual

embeddings. However, the authors focus on the application of transfer learning to their solution

so that the representation of the embeddings can be fine-tuned depending on the task to solve.

Shortly after the publication of ELMo and ULMFiT models, a new breakthrough arrived with

4.5. Distributional semantics and word embeddings 36

the BERT model [38], which is another neural model generating context-aware word embeddings.

BERT allowed establishing new state-of-the-art scores for most NLP tasks. BERT utilizes the

encoder as defined in the Transformer [177] model. The encoder is aware of both contexts at once

since it uses self-attention to express the meaning of each token as the combination of the meanings

of all the tokens in the processed sequence. In contrast, LSTM cells, even in bidirectional scenar-

ios, use only left or right context at once so that the left-to-right processing cell is unaware of the

context processed by the right-to-left processing cell. Moreover, BERT can be trained faster, as

it does not use recurrent connections, which slow down the training process of LSTM cells. The

BERT models are pretrained on two tasks:

• Masked language model (MLM) – representing a scenario in which some tokens in the text

are replaced with placeholders. The model learns to predict the masked tokens.

• Next sentence prediction (NSP) – representing a scenario in which having a pair of sen-

tences provided as an input, the model learns to decide whether the second sentence is the

continuation of the first one.

and made publicly available.

The publication of BERT started a new era of Transformer-based models generating context-

aware embeddings. A popular modification of BERT called RoBERTa [100] is its promising evo-

lution trained on the MLM task only. It is trained using 10 times more data than the original

BERT.

Each of the described methods allows for the calculation of the semantic similarity between

tokens. Having two embeddings representing the meaning of two tokens: a and b, we can use the

cosine similarity to calculate how similar the tokens are:

cos(a,b) =
a · b
‖a‖‖b‖

(4.1)

Frequently, a similarity between sequences of tokens needs to be calculated (e.g., phrases,

sentences, documents). In that case, a popular heuristic is to calculate word embeddings for each

sequence element and then average the embeddings to produce a single vector representing the

whole sequence. The similarity between the sequences can be then calculated as the similarity

between averaged vectors.

Chapter 5

Related work

5.1 Ontology engineering methodologies

In recent decades, multiple approaches focusing on structuring the ontology development process

have been proposed.

The first methodology can be traced to the Cyc project – a common sense knowledge base con-

structed by Lenat et al. [96]. The approach proposed by Lenat et al. considers creating an ontology

from scratch, applying the manual extraction of knowledge from books, articles, and journals as

an initial step. However, as an early methodology, it focused on general recommendations on how

to improve the quality of ontologies rather than an in-detail description of the steps to perform

and tools to use.

A more formalized approach and one of the first well-known methodologies is the one proposed

by Gruninger and Fox in the context of the TOVE ontology [65]. In this case, a set of motivating

scenarios is created to define informal competency questions. These are then used to formalize the

terminology and axioms that should be modeled using first-order logic and guide the evaluation of

ontology quality by measuring how many CQs the ontology answers correctly.

Uschold and King [176] split the ontology development into a sequence of steps to be performed.

These include identification of the ontology’s purpose, ontology capturing focused on concepts

and relations identification, ontology coding, evaluation, and documentation. The methodology

proposes to integrate existing ontologies when possible and use CQs to measure the quality of

ontologies.

Bernaras et al. [13] introduced the KACTUS approach. This methodology describes the idea of

ontology reuse and integration. KACTUS lists several processes to be performed: specification of

the application, preliminary design based on relevant top-level ontological categories, and ontology

refinement and structuring.

METHONTOLOGY introduced by Lopez et al. [50] defines a set of activities that the develop-

ment should follow. They are, namely: planning, specification, knowledge acquisition, conceptual-

ization, formalization, integration, implementation, evaluation, documentation, and maintenance

of the ontology. These steps are used in an evolving prototype scenario, allowing to come back to

previous activities when building the ontology. Engineers can use CQs for specification purposes.

These help to build the glossary of terms, one of the artifacts of the conceptualization activity.

Noy et al. proposed an interactive approach called Ontology Development 101 [124]. The

authors suggest that it is impossible to present a single solution for ontology building, so they

define a set of good practices instead. These include determining the domain and scope of the

ontology, identifying resources to reuse, listing terms, building taxonomies, defining properties and

37

5.1. Ontology engineering methodologies 38

property restrictions, and creating instances. Apart from the steps of the ontology engineering

process, a discussion on important dilemmas is presented. Noy et al. try to answer common

questions like: Should we represent our term as a class or an instance? What should be the scope

of the ontology? Should we create a new class?

Moreover, a set of general good practices is introduced (e.g., mark classes as disjoint when

possible, follow a coherent naming convention, avoid cycles in class hierarchies).

To determine the scope and domain of the ontology, the authors suggest preparing a list of

CQs, out of which nouns are often good candidates for classes or instances, and verbs are good

candidates for properties.

Suarez-Figueroa et al. [167] prepared the NeOn methodology consisting of 9 scenarios and pro-

viding life-cycle models, processes glossary, and methodological guidelines. Moreover, it describes

how to create ontologies collaboratively. In NeOn, ontology development consists of the follow-

ing steps: conceptualization, ontology requirements specification, ontology reuse, and ontology

evaluation. CQs are used in NeOn as part of the ontology requirements specification.

On-To-Knowledge proposed by Sure et al. [169] focuses on ontology development processes

and knowledge meta-processes. It starts with the feasibility study to identify problems and so-

lutions regarding the domain. Then, the kick-off step focuses on the preparation of the ontology

requirement specification document, providing, among others, the scope, CQs, usage scenarios,

and defining potential users. An ontology is constructed in the refinement phase and evaluated

in the evaluation phase. For evaluation, the ontology is used in the target application, and CQs

are used to check the quality of the knowledge modeled in the ontology. The maintenance and

evolution step is devoted to managing the organizational maintenance process and evolving the

ontology. On-To-Knowledge allows repeating refinement evaluation processes to check whether the

requirements defined in the kick-off phrase are fulfilled.

The test-driven development approach, well known in the domain of software engineering, was

presented in the context of ontologies by Vrandecic et al. [178], who justified the need for unit

testing in ontology development. Keet et al. [85]. proposed a test-driven development approach,

which provides a set of 42 kinds of tests to evaluate the knowledge modeled in an ontology. Those

tests verify both the TBox and ABox-level knowledge. This approach also uses the notion of CQs

as a possible input passed to a test.

Blomqvist et al. [18] proposed another test-based methodology for ontology development. In

that approach, tests are created from each of the requirements, and the requirements are formalized

to verify the answers.

Peroni [132] proposed an agile ontology development methodology called SAMOD, which uses

test cases, each consisting of a motivating scenario, a list of CQs related to the scenario, a glossary

of terms addressed by the scenario, a formal model encoded in the appropriate language (e.g.,

OWL2), a set of examples described in the motivating scenario, and a list of queries formalized

using a query language (e.g., SPARQL).

eXtreme Design (XD) is a test-driven ontology development methodology proposed by Suárez-

Figueroa et al. [36] later revisited by Presutti et al. [137]. In this approach, a set of CQs is

formalized as SPARQL queries, which serve as tests.

The problem of ontology testing was also analyzed by Fernández-Izquierdo et al. [48], who

proposed Themis – a tool for validating ontologies through requirements. Themis provides a

testing process, which is split into 3 phases: test design, test implementation, and test execution.

As can be seen, multiple attempts to provide ontology engineering methodologies are proposed.

Many of them use the notion of competency questions to outline the requirements an ontology

should meet. Moreover, some methodologies incorporate the idea of testing adopted from the

5.2. Collections of CQs and their analyses 39

software development field and use an appropriate formalization language (e.g., SPARQL) to verify

the content of the ontology.

5.2 Collections of CQs and their analyses

Fernández Izquierdo et al. [49] introduced CORAL, a corpus of ontological requirements anno-

tated with Lexico-Syntactic Patterns (LSPs). LSPs are requirement abstractions expressed using

regular expression-like syntax that were first provided by Daga et al. [32]. Fernández Izquierdo

et al. [49] extended the LSPs presented by Daga et al. and collected 834 CQs and statements

stated for 14 ontologies. In CORAL, all requirements are linked to one of the 29 predefined LSPs,

recommendations of OWL constructs that can be used to formalize knowledge, and appropriate

DL expressivity.

An example of a requirement in CORAL is: The devices can be classified into categories: Func-

tionRelated, EnergyRelated, and BuildingRelated which is related to the following LSP:

NP<superclass> be | CATV [PARA] [(NP<resource1>,)* and | or], NP<subclass>

, where NP, CATV, and PARA represent a noun phrase, verb of classification, and paralinguistic

symbol (e.g., a colon), respectively.

This kind of requirement is suggested to be encoded in OWL using classes and rdfs:subClassOf

keyword.

CORAL helps engineers guide their modeling decisions showing how general patterns in CQs

can be formalized in ontologies. However, the dataset is created manually and does not introduce

automation procedures.

Ren et al. [148] collected 145 CQs and transformed them into patterns by replacing ontology-

dependent parts with placeholders representing their modeling decisions. For example, the CQ:

What pizza has the lowest price? maps to the What [CE] has the [NM] [DP]? pattern. This pattern

indicates that pizza represents as a class expression (CE), price is a data property (DP), and the

word lowest represents a numeric modifier (NM). The patterns are then aggregated into archetypes

depending on the features list providing information on:

• Question type indicating if the CQ is a binary, counting, or list question,

• The presence of implicit elements,

• The polarity of the question, whether it is expressed in a positive or negative manner,

• Relation type, depending on whether the data or object property is used,

• Quantity and numeric modifiers,

• Domain-independent elements, representing time or place.

The patterns and archetypes are used to construct authoring tests, checking the ontology

quality in terms of satisfiability of class expressions and the presence of vocabulary. This dataset

is constructed manually and gives engineers guidance on how CQs can be tested. However, it does

not provide any automation procedure. Moreover, the CQ patterns introduced are entangled with

the knowledge representation so that the information, e.g., whether a given property is of data or

object type, is encoded in the pattern.

5.3. Ontology modeling styles 40

Suarez-Figueroa et al. [168] provided guidelines on how ontology requirements should be col-

lected to form the Ontology Requirements Specification Document. These guidelines define sev-

eral steps that aim to ensure the good quality of the collected requirements. These are purpose,

scope, ontology language, end-users, and intended uses identification, formalization of require-

ments, which are further grouped, validated, and prioritized.

Rao et al. [143] discussed knowledge elicitation techniques for deriving CQs. The authors

proposed three knowledge elicitation techniques called 20 questions, triad analysis, and card sort

that, used separately or jointly, can help gather knowledge from domain experts.

Bezerra et al. [15] constructed CQChecker, a tool that verifies CQs by deciding whether a

question is a binary decision problem or if it is asked over the assertional or terminological part of

the ontology and then answers the questions constructing a SPARQL query or using Pellet reasoner.

CQChecker introduces 14 patterns of CQs, e.g., Does 〈class〉 + 〈property〉 〈class〉?. However, the

technical details of how the queries are constructed and the procedure of pattern extraction are

not provided.

5.3 Ontology modeling styles

Knowledge can be modeled in OWL ontologies in various ways. For example, the notion of par-

enthood can be expressed as an object property between a parent and a child. Alternatively,

one can introduce a class named Parent and model all parents as its subclasses. For this reason,

Gangemi [59] introduced the notion of ontology design patterns (ODPs) as design choices that can

be used to address recurrent ontology design problems. They support ontology engineers showing

how knowledge should be modeled and make ontology integration easier, as the modeling choices

may be shared among multiple ontologies.

Espinoza-Arias et al. [45] analyzed the domain of smart cities to extract ODPs related to

that field. Their analysis of 15 ontologies and their requirements resulted in a list of 7 ODPs

representing, e.g., objects located in cities or public services.

Ławrynowicz et al. [92] used frequent tree-mining algorithms to extract potential ODPs from a

large set of axioms stated in 331 ontologies from BioPortal [183]. They showed that some patterns

are widespread as they have more than 300 000 occurrences and found relations between the

existing ODPs and those mined by them.

Mortensen et al. [118] encoded 68 ODPs using the Ontology PreProcessor Language (OPPL) [44]

to verify which of them are prevalent in BioPortal ontologies. Their analysis proved that 33% of

ontologies use at least one ODP.

Wang et al. [179] analyzed over 1300 ontologies to see what trends are shared among them and

how engineers represent knowledge in these.

5.4 Entity linking

The task of relating mentions in a piece of text to unique identifiers (e.g., IRIs in ontologies) is

called Entity linking (EL) [142]. Entity Linking aims to disambiguate mentions having multiple

meanings (e.g., Apple can represent a fruit or a company name). Moreover, it allows identifying

cases where different names represent the same thing (e.g., flu and influenza).

Classical approaches to EL frequently introduce sequences of processing steps to solve this kind

of task. Ling et al. [98] proposed a pipeline-based solution that consists of mention identification

using NER, dictionary-based entity candidate generation, probability estimation incorporating

entity types, coreference resolution, and coherence estimation.

5.5. Question generation 41

Modern solutions are frequently deep learning-based [25]. Wu et al. [190] proposed BLINK,

an EL solution linking mentions to Wikipedia entries. BLINK implements a two-stage BERT-

based [38] zero-shot linking algorithm. First, a bi-encoder embeds the context of a given mention

and an entity description into the embedding space. Then, a cross-encoder ranks candidates.

Yamada et al. [193] constructed LUKE, a state-of-the-art solution regarding the Named Entity

Recognition task. LUKE stands for language understanding with knowledge-based embeddings

and is found useful to solve the EL problem. This method incorporates a modification of BERT

called RoBERTa [100], which LUKE modifies by adding a new pretraining objective and incorpo-

rating an entity-aware self-attention mechanism.

Ravi et al. [144] proposed CHOLAN: a modular approach for neural entity linking on Wikipedia

and Wikidata. This solution is another pipeline-based one, consisting of two models based on the

Transformer [177] architecture. The first model finds entity mentions in the text, and then, for each

mention, the second one performs classification into a predefined list of candidate entities. The

second Transformer is enriched with context information providing the entity description collected

from Wikipedia and the local context of the mention.

Cao et al. [25] proposed GENRE, a generative entity retrieval model that uses a sequence-

to-sequence approach to generate entity names in an autoregressive way conditioned on the con-

text. This approach is built based on a pretrained Transformer-based architecture [177] named

BART [97], and further fine-tuned to generate entity names. GENRE can solve the EL task in

an end-to-end manner. Currently, it is the state-of-the-art solution on several benchmarks (e.g.,

AIDA-B [72, 25]).

5.5 Question generation

The problem of question generation (QG) based on an information source is an important field

of NLP. QG is applied to question answering or computer-aided education, among others [151,

196]. To solve that problem, researchers proposed various approaches including rule-based text

transformations and generative deep neural networks.

Fabbri et al. [47] proposed a template-based QG method that uses predefined sentence trans-

formations to build questions. Given an input text with tokens marked as the answer, the question

asking about the masked sequence is constructed. Depending on the type of the masked entity, an

appropriate wh-word is used in the generated question (e.g., who to ask for a person). Du et al. [40]

created a deep learning-based end-to-end approach that, instead of templates, uses LSTM [70] cells

and GloVe [131] embeddings to generate questions. Duan et al. [41] used convolutional neural net-

works [56, 94] and RNN cells to train a system on a large-scale set of questions related to answers.

They show that the questions generated with their method may serve as silver-standard datasets

in question answering tasks, increasing the quality of the produced solutions.

Alsubait [4] and Stasaski et al. [164] showed that it is possible to generate questions auto-

matically from ontologies. The formal knowledge modeled in ontologies may provide groups of

distractors (i.e., wrong answer candidates) in multichoice questions.

Lee et al. [95] proposed a model called Info-HCVAE to address the data scarcity problem

in question answering tasks. They use a hierarchical conditional variational autoencoder [87] to

produce pairs of questions and answers. They also propose an infoMax regularizer that maximizes

the mutual information between questions and answers to enforce consistency.

Xiao et al. [191] proposed ERNIE-GEN, an enhanced multi-flow pretraining and fine-tuning

framework for natural language generation. This method uses a deep neural network that incorpo-

rates infilling generation step that forces the model to focus more on the former words. Moreover,

5.6. Translating text to structured queries 42

ERNIE-GEN increases the robustness of the training process by replacing a portion of tokens in

the training data with random ones to add noise. Those novelties and the span-by-span gener-

ation scenario they propose make the model one of the best solutions in the context of question

generation or automatic text summarization.

The methods described in this section are mainly focused on generating a small number of

precise questions. However, in Chapter 8, we discuss a scenario in which it is beneficial to construct

a large and diverse set of query forms related to a given input.

5.6 Translating text to structured queries

The problem of transforming natural language into structured queries stated for knowledge graphs

and databases is the main focus of the knowledge-based question answering (KBQA) research

area [39]. Many groups compete in challenges or benchmarks such as Question Answering over

Linked Data (QALD) [30]. Most of the approaches apply pipeline-based methods that use semantic

parsing of questions expressed in natural language, mapping fragments of questions to entities in

KBs, and constructing formal representations that can be understood by knowledge bases.

Natural language processing approaches such as POS-tagging, dependency parse tree construc-

tion, or regular expressions are used to understand the question. To find the question type, Pow-

erAqua by Lopez et al. [101] uses regular expressions, TBSL by Unger et al. [173] uses POS-tags

and a set of heuristics to group tokens.

To find relations between the question and the KB, QAKiS by Cabrio et al. [24] uses a named

entity recognition model to identify phrases that should be linked with the KB. SINA by Shekarpour

et al. [161] and CASIA by He et al. [67] produce n-grams of tokens in a question to link them to

the entities available in the KB.

Various strategies are proposed to construct SPARQL queries. Approaches such as QAKiS by

Cabrio et al. [24], ISOFT by Park et al. [129], or PowerAqua by Lopez et al. [101] use simple tem-

plates to construct SPARQL queries from questions. Approaches such as FREyA by Damljanovic

et al. [33], DEANNA by Yahya et al. [192], or QAnswer by Ruseti et al. [152] propose to parse

questions and use relations between entities mentioned in each question to find entities in the KB.

These are then arranged into triples used to create SPARQL queries. Zemmouchi-Ghomari et

al. [195] proposed a CQ into SPARQL translation approach, which consists of question type iden-

tification, expected answer determination, entities extraction, entity type recognition, and query

construction. However, this approach requires manual extraction of entities and manual linking of

CQ phrases to ontological entities.

Templates are frequently constructed manually or semi-manually. However, some works focus

on generating them automatically. Cui et al. [31] provided a method that can learn templates

(e.g., How many people are there in $city?, where $city represents a placeholder).

Zheng et al. [198] proposed to incorporate an uncertain graph join task to find the best SPARQL

query match for a question stated in natural language.

Other examples of QA systems for RDF data are AskNow by Dubey et al. [42], ORAKEL by

Cimiano et al. [29], AquaLog by Lopez et al. [102], and Cube-QA by Hoeffner et al. [73].

An overview of approaches for question answering over knowledge bases is presented in [39].

The problem of question answering is related to the automatic translation of CQs into SPARQL-

OWL. However, the translator provided in this dissertation is devoted to supporting the ontology

engineering workflow. It is used to validate and verify the constructed ontology. In contrast to QA

methods, we do not assume that the answers are provided in the ontology, and we do not focus on

the assertional part of the ontology.

Chapter 6

CQ2SPARQLOWL: a dataset of CQs

translated into SPARQL-OWL queries

The goal of making the process of translating CQs into SPARQL-OWL queries automatic can

be reached if the relationship between these two formalizations is well explored. Knowledge of

how competency questions and their translations are constructed as well as how the presence of

specific phrases influences the choice of query language constructs can help to understand how

to generate queries from questions without human intervention. However, no existing dataset of

multiple ontologies providing CQs translated into SPARQL-OWL queries was available. To fill this

gap, in this chapter, we describe and analyze our own dataset named CQ2SPARQLOWL that

consists of five ontologies and their CQs translated into SPARQL-OWL queries. We published the

dataset as well as its analysis on Github1, and described CQ2SPARQLOWL in two peer-reviewed

journal papers [189, 135].

This chapter is structured as follows: In Section 6.1, we describe the process of collecting the

dataset. In Section 6.2, we analyze how CQs are constructed and propose domain-agnostic CQ

patterns in Section 6.3. In Section 6.4, we analyze queries and analyze their abstract, domain-

independent forms in Section 6.5. We discuss the relation between CQs and queries in Section 6.6.

In Section 6.7, we discuss the relation between CQ patterns and SPARQL-OWL query signatures.

In Section 6.8, we summarize the observations.

6.1 Dataset collection process

In this section, we provide a general overview of the dataset. We start with the description of the

origins of CQ2SPARQLOWL, focusing on how we collected ontologies and CQs as well as how

we generated SPARQL-OWL queries.

Ontologies and CQs The core of CQ2SPARQLOWL is a set of publicly available ontologies

describing diverse domains and created by various researchers. Although hundreds of ontologies

are available online2, only a few of them come with CQs involved in ontology development.

Moreover, even if CQs for a given ontology are provided, they are unlikely to be formalized

as SPARQL-OWL queries. To compile a dataset of CQs translated into SPARQL-OWL queries,

we collected a set of publicly available ontologies that have CQs published along and manually

1https://github.com/CQ2SPARQLOWL/Dataset
2For example, the website https://lov.linkeddata.es/dataset/lov/vocabs/owl provides a non-exhaustive list

of 280 ontologies expressed in OWL.

43

https://github.com/CQ2SPARQLOWL/Dataset
https://lov.linkeddata.es/dataset/lov/vocabs/owl

6.1. Dataset collection process 44

generated SPARQL-OWL queries where required. Each ontology accompanied by its CQs, in order

to be included in CQ2SPARQLOWL, had to meet each of the following criteria [189]:

1. For a given ontology, there has to be a technical report or a peer-reviewed published paper

available.

2. The CQs must have questions for the terminological part of an ontology.

3. Either SPARQL-OWL queries must be already provided as formalizations of CQs, the ex-

pected answers to CQs should be listed, or the domain of a given ontology should be familiar

to us.

The first criterion prevents low-quality data from being included in CQ2SPARQLOWL. The

second one ensures that at least some queries generated for a given ontology would benefit the

SPARQL-OWL language as described in Section 2.6. Finally, the third criterion ensures that we

are competent to construct SPARQL-OWL queries if they are not already provided.

With a simple web search, using keywords such as ontology, competency questions, cq1, we

identified 5 ontologies meeting each of the aforementioned criteria. These ontologies are:

1. The Software Ontology (SWO) [106] – an ontology describing software, software types, li-

censes, tasks and data formats. This ontology comes with 90 CQs.

2. Dementia Ambient Care Ontology (Dem@Care) [165] – an ontology describing vocabulary

related to health and patients with dementia. Dem@Care comes with 107 CQs and their

expected answers.

3. Ontology of Datatypes (OntoDT) [127] – an ontology describing datatypes, their taxonomies

and qualities. This ontology comes with 14 CQs defined.

4. African Wildlife Ontology (AWO) [84] – an ontology describing African wildlife. AWO has

14 CQs defined.

5. Stuff Ontology (Stuff) [83] – an ontology describing macroscopic stuff (e.g., colloids, bulk,

emulsions). It is provided along with 11 CQs.

The CQs collected were preprocessed in the following way [135]:

1. As we found two pairs of duplicates in the SWO ontology (CQs consisting of exactly the

same sequences of characters), we removed duplicates. The duplicates are found only in the

SWO CQ set, and their removal reduced the number of CQs stated for that ontology to 88.

2. For CQs missing required context (e.g., What other alternatives are there? stated for the

SWO), we added the most probable one based on our expertise, the domain of the ontology,

and the expected answers if they are provided (e.g., What other alternatives to this software

are there?).

3. We removed comments listing possible alternatives that can be used to create additional CQs

(e.g., removed (+ Cost + function) from the CQ defined for the SWO: (+ Cost + function)

Which visualisation software is there for this data and what will it cost?).

4. Some CQs contain fragments of texts that are too broad to be used in CQs. Let us consider

the following question: Where is the documentation of it? – in this CQ, the phrase it does not

represent any particular entity labeled in the ontology as it, but is a kind of a placeholder

6.1. Dataset collection process 45

that in a CQ should be substituted with some entity label. In our data, the too-broad

fragments are represented using the pronoun it or other phrases that indicate a placeholder

(e.g., software X, this software, suggesting that a concrete piece of software should be used

instead). In each case, we marked such too-general phrases with square brackets. Henceforth,

we call such phrases in square brackets placeholders. In consequence, the mentioned CQ was

transformed into Where is the documentation of [it]?

As a result of applying the aforementioned preprocessing steps, we collected 234 CQs. We

included all 234 preprocessed CQs and all five ontologies in CQ2SPARQLOWL.

SPARQL-OWL queries None of the collected ontologies provided SPARQL-OWL translations

of their CQs. For this reason, we defined the queries ourselves. Out of each CQ stated for a given

ontology, a single expert familiar with the ontology domain attempted to formulate a query. In

problematic cases, where an engineer was unsure if it is possible to construct a query or what form

it should take, a group of 3 or 4 engineers collectively decided if it is possible to propose a query

and how it should look like.

We constructed the queries using the following procedure [135]:

1. Search for phrases in CQs that may be related to ontology vocabulary and match them with

ontological entities manually.

2. Identify the set of answers expected to be returned by each query.

3. Construct queries with regard to entities identified in step 1 and step 2 of this procedure.

4. Use OWL-BGP3 to test if queries constructed in step 3 give the same answers as provided

in step 2.

As a result of applying this procedure, out of 234 CQs in total, 131 were translated into queries.

A detailed summary providing the numbers of translated CQs, grouped by the ontology they query,

can be found in Table 6.1.

Table 6.1: Per ontology summary of the number of CQs translated into SPARQL-
OWL queries.

Ontology CQs CQs translated into SPARQL-OWL queries

SWO 88 42
Dem@Care 107 60
OntoDT 14 13
AWO 14 7
Stuff 11 9

There are several reasons why only 131 out of 234 CQs are translated into queries. As described

in [189], these are:

1. Missing vocabulary in a given ontology – 58 CQs contain phrases that refer to ontology

vocabulary that is not (yet) modeled (e.g., the query for the CQ with an ID SWO 71: Does

[it] have a tutorial? should contain the IRI of a resource representing tutorial, which is not

modeled).

3https://github.com/iliannakollia/owl-bgp

https://github.com/iliannakollia/owl-bgp

6.2. CQs analysis 46

2. CQ ambiguity – 26 CQs are formulated in a way that may be understood differently depend-

ing on its interpretation (e.g., SWO 74 How well documented is [the software] for developers?

introduces the how well phrase. For one person, good documentation describes all use cases

in-depth, while for others, it may be understood as short and concise).

3. CQs used to query the assertional rather than the terminological part of the ontology –

15 CQs are asking about the assertional knowledge. These CQs should be expressed us-

ing SPARQL rather than SPARQL-OWL queries and are considered out of scope (e.g.,

Dem@Care 11: What data are collected for FAB?).

4. Missing knowledge – in the case of 8 CQs the knowledge in an ontology is incomplete,

which makes it impossible to construct a query (e.g., Dem@Care 95: What physiological

measurements are detected? contains phrases physiological measurements and detected, which

can be mapped to ontology resources labeled as PhysiologicalMeasurement and Detection.

In the ontology, all we know about their relations is: Detection describes an Event, while

PhysiologicalMeasurement is an Event. This knowledge cannot be used to generate the

query).

Five CQs in CQ2SPARQL cannot be translated into SPARQL-OWL queries because more

than one category of problems applies. The CQ: Dem@Care 26 What is the nature of a directed

task?, requires that the notion of nature should be modeled in the ontology. However, because it

is not, the word nature becomes a vague term, which may be interpreted in various ways: for some

people – nature represents a set of abilities, while for others – it may refer to what a directed task

is in terms of taxonomical relations (what is its superclass). As a consequence, this CQ cannot

be translated into a query because there is missing knowledge in the ontology, and the CQ is

ambiguous.

6.2 CQs analysis

We start with an analysis of CQs from 3 perspectives. The first one investigates CQ lengths to

check if the complexity of questions, understood as the number of tokens, varies among ontologies.

The second perspective focuses on the words that start the questions, as they frequently determine

the kind of question as well as the type of answer that should be provided. The third one checks

how frequently placeholders are introduced in CQs.

6.2.1 Lengths of CQs

There are domains that tend to use vocabulary consisting of lengthy words (e.g., a medical domain

with entities like: Achondrogenesis-hypochondrogenesis, Acromioclavicular joint, Echocardiography),

while others may introduce mostly short names (e.g., programming languages domain with entities

like: C++, R, Java, Python). Since some domains may introduce longer words than others, we

decided to analyze the length of a given CQ as the number of tokens it contains. Such analysis can

help understand if there is a difference in the complexity of CQs stated for various ontologies. To

achieve it, we used word tokenize function from NLTK [16] to split CQs. We did not count square

brackets as tokens, since they are artificial markers indicating placeholders and are a by-product

of CQs preprocessing procedure described in Section 6.1.

The comparison of CQ lengths stated for different ontologies is provided in Figure 6.1. As can

be seen, the average length of a CQ is 9 tokens, and 50% of CQs in CQ2SPARQLOWL consist

of 8 to 11 tokens.

6.2. CQs analysis 47

The shortest CQs are made of 4 tokens (ignoring square brackets): SWO 65: Is [it] FOSS?,

SWO 35: Who developed [it]?, SWO 77: Is [it] scriptable?, SWO 78: Is [it] extensible?. The longest

CQs consist of 22 tokens, these are: Dem@Care 71: What food and drink preparation-related situa-

tions indicate a problem or possibly problematic behaviour that needs to be highlighted to the clinician?

and Dem@Care 72: What food and drink consumption-related situations indicate a problem or possibly

problematic behaviour that needs to be highlighted to the clinician?.

Figure 6.1: The number of tokens among CQs. The boxplot named as ’Aggregated’
is related to the whole CQ2SPARQLOWL. In this figure, heights of the rectangles
represent interquartile ranges (IQR) defined as differences between third and first
quartiles (Q3 and Q1, respectively). Each whisker represents a range from Q1 - 1.5
IQR to Q3 + 1.5 IQR. The circles represent outliers.

6.2.2 Words at the beginnings of CQs

The CQs can be grouped according to the words they start with. In CQSPARQLOWL the

following question starters are observed:

1. What (used in 144 CQs), Which (21 CQs) – These words start CQs expected to obtain entities

meeting the given restrictions (e.g., OntoDT 03: What is the value space for [a datatype X]?).

2. Is (16 CQs), Are (6 CQs) – In 19 cases these CQs should be answered with either yes or no

depending on the state of affairs in the ontology (e.g., Stuff 06: Are solutions never emulsions?).

In the remaining 3 cases, the question starting with Is should be answered with one or more

alternatives explicitly mentioned in the CQ (e.g., Stuff 01: Is [this stuff] a pure or a mixed

stuff?).

3. How (13 CQs) – In 6 cases they are expected to provide procedures (e.g., SWO 32: How can

I get problems with [it] fixed?). In the remaining cases, How introduces a question about a

measure or quality:

• In 4 cases the word How is used to ask for intensity, magnitude or extent of a given

thing or process (e.g., SWO 47: How reliable is [it]?).

• In 2 cases it is used to ask for a quantity of something (e.g., SWO 64: How many licenses

do we need to run [it] productively?).

• In one case, How is used to ask for a time period (SWO 44: How long has [this software]

been around?).

4. Can (7 CQs) – 3 CQs started with Can are used to ask for capabilities of modelled entities

(e.g., SWO 22: Can [software A] work with data that are output from [software B]?) and the

6.2. CQs analysis 48

remaining 4 to ask for capabilities of people using the ontology (e.g., SWO 27: Can I render

[it] if the software supplier goes out of business?).

5. Does (6 CQs), Do (4 CQs) – are used to express binary questions that should be answered

with either yes or no, similarly to Is and Are (e.g., SWO 41: Does [this software] meet the

ISO-4 standard?).

6. Where (6 CQs) – is used to ask for locations (e.g., SWO 29: Where can I get [the software]?).

7. Who (4 CQs) – is used to ask for agents (e.g., SWO 62: Who owns the copyright for [it]?).

8. In (what/which) (3 CQs) – is used in the same context as What and Which (e.g., AWO 11:

In what kind of habitat do [this animal] live?).

9. When (1 CQs) – is used to ask about a point in time (SWO 57: When was the 1.0 version of

[it] released?).

10. Given (1 CQ) – is used to add the context to the question (SWO 28: Given [input x], what

are the data exports for [this version] of [x]?)

11. At (1 CQ) – is used to ask for a point in time (SWO 61: At what point did the license type of

[it] change?).

12. To (1 CQ) – is used to ask about the extent (SWO 23: To what extent does [the software]

support appropriate open standards?).

Among all 234 CQs collected, 6 of them are expected to return more than one category of

things at once:

• SWO 10: What are the primary inputs and outputs [of this software]?

• SWO 11: Which visualisation software is there for [this data] and what will it cost?

• SWO 16: What are the input and output formats for [this software]?

• SWO 59: What license does [it] have, and what is its permissiveness?

• SWO 70: Is there any documentation for [it] and where can I find it?

• Dem@Care 56: How are the statistics and identified problematic situations about the monitored

functional areas reported to the clinician?

No CQ in CQ2SPARQLOWL asks for more than 2 categories of things in a single CQ.

6.2.3 Materialized vs dematerialized CQs

Almost 50% (116 out of 234) CQs contain one or more placeholders introduced during step 4 of

CQs preprocessing procedure described in Section 6.1. These are special-purpose sequences of

tokens wrapped with square brackets, which cover words or phrases that are too general to be

used in a CQ but are expected to be replaced with more concrete ontological entities to form CQs.

For example, the CQ: SWO 06: Does [this software] provide XML editing? contains a placeholder

[this software], which informs that any piece of software defined in the modeled domain can be used

as a substitute for the placeholder to construct multiple CQs.

As a consequence, CQs with placeholders (further called dematerialized CQs) are just templates

to produce multiple similar CQs and should be used to query ontologies only if the placeholders are

6.3. CQ patterns analysis 49

substituted with phrases representing ontological entities, either already modeled or expected to

be modeled. We refer to CQs introducing no placeholders or CQs with all placeholders substituted

as materialized. In CQ2SPARQLOWL, there are 13 CQs introducing two placeholders each and

2 CQs introducing 3 of them each.

From the analyzed dematerialized CQ SWO 06: Does [this software] provide XML editing?, the

following examples of materialized CQs can be produced:

• Does Weka provide XML editing?

• Does AIDA provide XML editing?

• Does MATLAB provide XML editing?

Table 6.2: Number of materialized and dematerialized CQs per ontology.

Ontology Materialized CQs Dematerialized Fraction of materialized

SWO 1 87 1.1%
Dem@Care 107 0 100%
OntoDT 0 14 0%
AWO 6 8 42.9%
Stuff 4 7 36.4%

As can be seen, introducing dematerialized CQs can help to increase the number of CQs. In

the context of such questions, for example, the analyzed CQ SWO 06 Does [this software] provide

XML editing?, an automatic tool could extract all subclasses of software in the SWO, and for

each of them, use the subclass label to substitute the placeholder and generate a new CQ. Since

there is a relationship between placeholders and ontology vocabulary, we consider placeholders as

domain-dependent sequences of tokens. The prevalence of dematerialized CQs varies among the

collected ontologies. The summary providing per ontology counts can be found in Table 6.2.

6.3 CQ patterns analysis

In this section, we define CQ patterns that group similarly constructed CQs. Then, we analyze

which CQ patterns are there in CQ2SPARQLOWL, and which of them are shared among CQs

stated for different ontologies.

6.3.1 Domain-dependent and domain-independent tokens

Each CQ is constructed using two kinds of tokens:

1. Domain-dependent tokens – these tokens or sequences of tokens make up phrases that are

expected to point to entities defined in an ontology (e.g., in the CQ Dem@Care 41: What

data are measured for dynamic balance?, there are 3 such phrases: data, dynamic balance and

are measured for).

2. Domain-independent tokens – these do not represent any ontological entity. Tokens or phrases

such as: what, when, and, or, is, are there, what kind of help to define questions that are

grammatically correct, introduce the question target, and define relations between domain-

dependent tokens (e.g., in the CQ Stuff 08: What distinguishes structured from unstructured

6.3. CQ patterns analysis 50

stuff? the word what informs that the distinction is expected to be the answer to the ques-

tion, and distinguishes . . . from introduces relation between two domain-dependent phrases

structured (stuff) and unstructured stuff).

We use the distinction between domain-dependent and domain-independent tokens to define

CQ patterns.

6.3.2 Domain-independent CQ patterns

Each CQ in CQ2SPARQLOWL consists of a unique sequence of characters. Considering CQs stated

for a single ontology, the CQs differ because each question introduces a separate requirement the

ontology should meet. Any pair of CQs stated for two different ontologies is unlikely to share

domain-related phrases, since ontologies frequently describe different domains.

For this reason, we introduce a process aiming to generate domain-independent CQ patterns.

Each CQ is processed using Algorithm 3 presented along with its related functions in Appendix A.1.

These were introduced in [189]. In short, these procedures can be summarized as follows:

1. Normalize a given CQ using: lowercasing, redundant spaces removal, and removal of dashes.

2. Tokenize the CQ, assign POS-tags to each token, and generate the dependency parse tree.

3. Using the predefined set of rules identify entity chunks (phrases referring to things) and

predicate chunks (phrases referring to actions or states).

4. For predicate chunks, attach auxiliary verbs if present.

5. Replace each chunk with a domain-independent marker in the following way:

• For each entity chunk, use the EC{IDX} marker as its substitution. The {IDX} part

represents a numerical identifier unique for each chunk of a given type.

• For each predicate chunk, use the PC{IDX} marker as its substitution. The {IDX} part

represents a numerical identifier unique for each chunk of a given type.

For example, considering the CQ: Which countries are larger than Germany?, the rules would

classify countries and Germany as entity chunks and are larger than as a predicate chunk.

These would be replaced with EC and PC chunk markers forming domain-independent form:

Which EC1 PC1 EC2?.

6. Validate the generated output and manually fix errors made by the POS-tagger and imperfect

rules that were designed to aid human verification only.

The application of the described procedure to each of the 234 CQs from CQ2SPARQLOWL

transforms each CQ into a domain-independent CQ pattern candidate. Since a pattern is a regu-

larly repeated arrangement, at least one condition introduced below must be satisfied to classify a

given pattern candidate as a pattern:

1. A given pattern candidate is observed more than once in CQ2SPARQLOWL.

2. A given pattern candidate is created from a dematerialized CQ (CQ containing placeholders).

The first condition ensures that all repeated pattern candidates are classified as patterns. The

second one includes candidates that may not be explicitly repeated in CQ2SPARQLOWL, but

since they are dematerialized, they are expected to be transformed in multiple similar CQs.

6.3. CQ patterns analysis 51

From all 234 CQs, 106 distinct patterns are extracted. Table 6.3 summarizes the number of

pattern candidates, patterns extracted for each ontology, and the percentage of CQs covered by

patterns. We say that a given CQ is covered by a given pattern if the pattern candidate extracted

from the CQ is equal to the pattern. The first column in the table, named Pattern Candidates,

shows from how many CQs pattern candidates are constructed. Because the algorithms presented

in Appendix A.1 always provide a pattern candidate for a given CQ, the number in this column is

always equal to the number of CQs stated for the ontology.

The second column, named Patterns shows how many CQ pattern candidates represent pat-

terns. In OntoDT, all CQs are covered by patterns, since all CQs are dematerialized. Similarly,

all but one CQ from the SWO are dematerialized and the only remaining CQ forms a pattern

candidate that is shared among more questions. The most unique CQs can be observed in the

context of Stuff. Here, only 7 CQs are covered by patterns, and the remaining 4 are unique as

their pattern candidates are not repeated.

Multiple CQs may be covered by the same pattern. To check how intensively patterns are

reused among the CQs, the column named Distinct Patterns is introduced to count how many

different patterns are found in a given CQ set. This column tells us that in the case of the SWO,

from the 88 CQs that are covered by patterns, we identify 72 different patterns (some patterns

cover more than one CQ). In all but one CQ sets, more than 50% of CQs covered by patterns are

covered by distinct patterns. An interesting outlier is Dem@Care, where only 18 distinct patterns

are extracted, while 90 CQs are covered by patterns. It is due to the lack of dematerialized CQs in

Dem@Care. For this reason, in Dem@Care, there are multiple similar (sharing the same pattern)

CQs stated so that the 18 distinct patterns are highly reused. The last column CQs covered by

patterns presents the ratio of the total number of CQs covered by patterns to the number of CQs.

We present the average number of CQs covered by a pattern in Figure 6.2. All extracted patterns

are listed in Appendix B.1.

From the union of all CQs stated for each of the five collected ontologies, we extracted 106

different patterns. We found that only six of them are shared among more than one ontology

(covering at least one CQ in more than one ontology). Table 6.4 provides a list of these patterns

as well as the names of the ontologies where each pattern was observed.

Table 6.3: Per ontology summary of the number of CQs covered by pattern can-
didates and patterns as well as the number of distinct patterns and the percentage
of CQs covered by patterns.

Ontology Pattern Candidates Patterns Distinct Patterns CQs covered by patterns
SWO 88 88 72 100%
OntoDT 14 14 8 100%
Dem@Care 107 90 18 84.1%
AWO 14 10 9 71.4%
Stuff 11 7 6 63.6%
Total 234 209 106 89.3%

6.3.3 Domain-independent higher-level CQ patterns

The list of patterns provided in Appendix B.1 exposes groups of patterns sharing the same seman-

tics, but differing using synonym words, grammar, or introducing words that are not mandatory.

An example pair of CQ patterns introducing synonyms is: What EC1 PC1 EC2? and Which EC1

PC1 EC2?. Here, both Which and What indicate that the formalization of a question should list

the entities that belong to a set related to EC1 PC1 EC2, and can be used interchangeably.

6.3. CQ patterns analysis 52

Table 6.4: The list of patterns shared among multiple ontologies. Reprint
from [189].

Pattern CQ sets for ontologies
What EC1 PC1 EC2? SWO, Dem@Care
Which EC1 PC1 EC2? SWO, AWO
What are EC1 for EC2? SWO, OntoDT
What is EC1 for EC2? SWO, OntoDT
What is EC1 of EC2? SWO, AWO
Which EC1 are EC2? Dem@Care, AWO

Figure 6.2: Average number of CQs covered by a pattern. Reprint from [189].

A difference induced by the grammar can be presented using a pair: What is EC1 for EC2?,

What are EC1 for EC2?. The decision on whether to use is or are depends on whether EC1 is in

the singular or in the plural form.

An example of a difference caused by a word that is not mandatory may be: Is there EC1 for

EC2 and Are there any EC1 for EC2. Here, apart from the difference between the be verb forms,

only one CQ pattern introduces the word any. However, if the word was omitted, the meaning of

the question would not change.

To make CQ patterns robust to such small differences, based on the CQ patterns list, we

introduced the normalization procedure, transforming similar CQ patterns into a common form.

Table 6.5 lists tokens or token sequences that are normalized and presents the normalization steps.

Moreover, our design choice behind constructing CQ patterns was to treat noun phrases that

are separated by a preposition as separate entities (entity chunks). However, considering SWO 68:

What level of expertise is required to use [it]? as an example, the ontology engineer using this CQ

has to decide whether to model level of expertise as a single class, or to introduce separate level

and expertise classes to the modeled ontology. As we cannot be sure what modeling decision the

ontology engineer makes, we cannot predetermine if the CQ pattern should be of form What EC1

of EC2 PC1 EC3? or What EC1 PC1 EC2?, where the EC1 stands for the whole level of expertise.

Therefore, to group CQ patterns, we also introduced an additional normalization step aggregating

EC chunks separated with in/from/with/of into a single EC chunk.

6.3. CQ patterns analysis 53

The application of both normalization steps to the CQ patterns set introduces a new set of

higher-level patterns listed in the Appendix B.2. The higher-level patterns set consists of 81 entries.

Using normalization, we can transform the following CQ patterns:

1. What is EC1 of EC2?

2. Which are EC1 of EC2?

3. What is EC1 for EC2?

4. What is EC1 of EC2 for EC3?

5. What are EC1 for EC2?

6. What is EC1?

7. What are EC1?

into a common higher-level pattern What is EC1?

Regarding higher-level patterns, more of them are shared among multiple ontologies as can be

seen in Table 6.6. However, no higher-level CQ pattern is shared among all ontologies. Table 6.7

provides the comparison between the number of patterns and higher-level patterns per each on-

tology. In Figure 6.3, we present how many CQs are covered by higher-level patterns per each

ontology.

Table 6.5: The transformations used to normalize similar CQ patterns. The special
token ”—” represents situations where a given text is removed from the pattern
during normalization. Reprint from [189].

Textual pattern Normalized form
are is
any —
did do
we I
does do
which of which
has have
which kind what kind
will is
Which (if at the beginning of a sentence) What
possible —
are there —

Table 6.6: Higher-level patterns shared among multiple ontologies. Multiple oc-
curences of PC1 in a single pattern are due to auxiliary verbs that we consider parts
of predicate chunks (e.g., does support in What formats does Weka support? repre-
sent a single predicate chunk even if does and support are separated with another
word. Reprint from [189].

Pattern In CQ sets for ontologies
What type of EC1 is EC2? SWO, Stuff, Dem@Care
What EC1 PC1 EC2? SWO, Dem@Care, AWO
What is EC1? SWO, OntoDT, Dem@Care
What EC1 PC1 I PC1 EC2? SWO, AWO
Is EC1 EC2? SWO, AWO
Is there EC1? SWO, AWO
What EC1 PC1 EC2 PC1? SWO, AWO
What EC1 is EC2? Dem@Care, AWO

6.4. SPARQL-OWL queries analysis 54

Table 6.7: Comparison of the number of patterns and higher-level patterns per
ontology.

Ontology Distinct patterns Distinct higher-level patterns
SWO 72 60
Stuff 6 5
AWO 9 8
Dem@Care 18 15
OntoDT 8 4
Total 106 81

Figure 6.3: Average number of CQs covered by a higher-level pattern. Reprint
from [189].

6.4 SPARQL-OWL queries analysis

In this section, we analyze how SPARQL-OWL queries are constructed and what groups of queries

arise in our dataset.

6.4.1 Query forms used in CQ2SPARQLOWL

To keep the analyzed queries short and easy to read, from now on, for each query, we use prefixes

as defined in Table 6.8.

There are four query forms of SPARQL queries defined in the SPARQL language standard [158]:

• ASK – used to verify whether or not a query pattern can be matched in a given ontology.

• SELECT – used to list values of variables that can be bound to a match of a query pattern.

• DESCRIBE – used to construct an RDF graph that provides a description of the resource(s)

found.

• CONSTRUCT – used to obtain an RDF graph created by substituting variables in a triple

templates set.

6.4. SPARQL-OWL queries analysis 55

Table 6.8: Prefixes used in SPARQL-OWL queries. Reprint from [135].

Prefix Namespace

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
owl: http://www.w3.org/2002/07/owl#
xsd: http://www.w3.org/2001/XMLSchema#
awo: http://www.meteck.org/teaching/ontologies/AfricanWildlifeOntology1.owl#
stuff: http://www.meteck.org/files/ontologies/stuff.owl#
event: http://www.demcare.eu/ontologies/event.owl#
exch: http://www.demcare.eu/ontologies/exchangemodel.owl#
home: http://www.demcare.eu/ontologies/home.owl#
lab: http://www.demcare.eu/ontologies/lab.owl#
swo: http://www.ebi.ac.uk/swo/
efo-swo: http://www.ebi.ac.uk/efo/swo/
maturity: http://www.ebi.ac.uk/swo/maturity/
interface: http://www.ebi.ac.uk/swo/interface/
license: http://www.ebi.ac.uk/swo/license/
obo: http://purl.obolibrary.org/obo/
OntoDT: http://www.ontodm.com/OntoDT#
OntoDT2 http://ontodm.com/OntoDT#

Out of these possibilities, only ASK and SELECT are used in CQ2SPARQLOWL. In Table 6.9

we summarize how many of them are provided per each ontology. In total, 87% of queries are of

SELECT type and in case of two ontologies: OntoDT and Dem@Care no query of the ASK type is

provided.

Table 6.9: Number of ASK and SELECT queries per ontology.

Ontology Count ASK Count SELECT

SWO 12 30
Dem@Care 0 60
OntoDT 0 13
AWO 3 4
Stuff 2 7
Total 17 114

6.4.2 Solution modifiers

There are 6 solution modifiers that can be used in SPARQL (and SPARQL-OWL) queries [158].

These are PROJECTION, DISTINCT, ORDER, LIMIT, REDUCED and OFFSET. From that list, DISTINCT

can be found in CQ2SPARQLOWL, which is used in 71 queries (4 times in AWO, 57 in Dem@Care,

4 in SWO, and 6 in Stuff). The DISTINCT keyword used in a query assures that in the solution

list generated, no two solutions are representing the same results. The projection is used to select

a subset of variables to be returned to the user in 7 queries in CQ2SPARQLOWL (2 times in Stuff

and 5 times in SWO).

6.4.3 Basic graph patterns

The most variability among SPARQL-OWL queries comes from applying different BGPs. In this

paragraph, we discuss the most interesting cases.

6.4. SPARQL-OWL queries analysis 56

In CQ2SPARQLOWL, the most commonly used BGP is a single existential property restriction

or a single owl:hasValue. 41 out of 131 queries in total are conforming to this kind of BGP.

However, this BGP is present in various forms:

• with a variable in the place of the subject, e.g., AWO 7:

SELECT DISTINCT * WHERE {

?eats rdfs:subClassOf awo:animal, [

a owl:Restriction ;

owl:onProperty awo:eats;

owl:someValuesFrom $PPx1$] .

$PPx1$ rdfs:subClassOf awo:animal .

FILTER(?eats != owl:Nothing) }

• with a variable in the place of the object, e.g., Dem@Care 36:

SELECT DISTINCT * WHERE {

lab:S1_P21_SentenceRepeatingTask rdfs:subClassOf [

a owl:Restriction;

owl:onProperty lab:measuredData;

owl:someValuesFrom ?x].

?x rdfs:subClassOf lab:MeasuredData.

FILTER(?x != lab:MeasuredData) }

• without variables in ASK queries, e.g., SWO 88:

ASK WHERE {

$PPx1$ rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty swo:has_license ;

owl:someValuesFrom <http://www.ebi.ac.uk/swo/license/SWO_1000002>].}

• introducing multiple variables, e.g., AWO 1:

SELECT DISTINCT * WHERE {

?eats rdfs:subClassOf awo:animal, [

a owl:Restriction ;

owl:onProperty awo:eats;

owl:someValuesFrom ?eaten] .

?eaten rdfs:subClassOf awo:animal .

FILTER(?eats != owl:Nothing) }

The only ontology for which such kind of query is not observed is Stuff Ontology. The $PPx1$

sequences are placeholders related to placeholders from CQs (e.g., [it]). When a given CQ is

6.4. SPARQL-OWL queries analysis 57

materialized, both placeholders should be filled: the one stated in a CQ with appropriate entity

label and $PPx1$ with the IRI of that entity.

The second most common BGP relates to queries asking only about subclasses of a given

named class. In CQ2SPARQLOWL there are 25 such cases, with 18 of them asking about

proper subclasses, e.g., Dem@Care 29:

SELECT DISTINCT * where {

?e rdfs:subClassOf lab:SemiDirectedTask .

FILTER(?e != lab:SemiDirectedTask && ?e != owl:Nothing) }

and 7 asking about direct subclasses of a given class, e.g., Dem@Care 88:

SELECT DISTINCT * WHERE {

?e rdfs:subClassOf event:Event .

FILTER NOT EXISTS {

?e rdfs:subClassOf ?f .

?f rdfs:subClassOf event:Event.

filter(?f != event:Event && ?e != ?f)

}

FILTER(?e != event:Event && ?e != owl:Nothing) }

Queries about direct subclasses are related to CQs asking for main types/kinds/categories of

things. Queries about subclasses of a given named class only are observed in Dem@Care and AWO.

The third big group of queries are questions about properties. These queries are observed in 24

queries from Dem@Care and are not present in any other ontology. An example of such a query

is Dem@Care 101:

SELECT DISTINCT * WHERE {

[] rdfs:subClassOf exch:Report, [

owl:onProperty ?p;

owl:someValuesFrom []

]. }

The 3 aforementioned groups constitute 69% of the query set. The remaining 31% of queries

contain numerous forms of BGPs, like:

• Cardinality restriction (e.g., Stuff 07):

SELECT DISTINCT * WHERE {

?stuff rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty :hasSubStuff ;

owl:cardinality "2"^^xsd:nonNegativeInteger] }

• Complex BGPs with more than one property, multiple variables, intersections, unions, or

functions used (e.g., OntoDT 07):

SELECT ?x0 WHERE {

?x0 rdfs:subClassOf* OntoDT2:OntoDT_378476 .

?x0 rdfs:subClassOf [rdf:type owl:Restriction ;

6.4. SPARQL-OWL queries analysis 58

Table 6.10: Keywords/functions used in SPARQL-OWL queries collected in
CQ2SPARQLOWL. Reprint from [189]. .

Keyword Count Occurences in ontologies
PREFIX 131 Dem@Care (60), SWO(42), OntoDT(13), Stuff(9), AWO(7)
WHERE 131 Dem@Care (60), SWO(42), OntoDT(13), Stuff(9), AWO(7)
rdfs:subClassOf 125 Dem@Care(57), SWO(42), OntoDT(13), Stuff(7), AWO(6)
SELECT 114 Dem@Care(60), SWO(30), OntoDT(13), Stuff(7), AWO(4)
owl:onProperty 96 SWO(42), Dem@Care(33), OntoDT(13), Stuff(2), AWO(6)
owl:someValuesFrom 83 SWO(31), Dem@Care(32), OntoDT(13), AWO(6), Stuff(1)
rdf:type / a 72 SWO(40), OntoDT(13), Dem@Care(11), AWO(6), Stuff(2)
DISTINCT 71 Dem@Care(57), Stuff(6), SWO(4), AWO(4)
owl:restriction 69 SWO(40), OntoDT(13), Dem@Care(8), AWO(6), Stuff(2)
NOT EXISTS 11 Dem@Care(7), SWO(2), Stuff(1), AWO(1)
FILTER 58 Dem@Care(31), SWO(16), Stuff(6), AWO(5)
owl:Nothing 34 SWO(6), AWO(4), Dem@Care(24)
ASK 17 SWO(12), Stuff(2), AWO(3)
owl:hasValue 13 SWO(13)
owl:intersectionOf 7 SWO(7)
owl:unionOf 4 AWO (2), Dem@Care(1), SWO(1)
isURI 3 SWO (3)
UNION 3 SWO(2), Dem@Care(1)
owl:disjointWith 3 Stuff(2), AWO(1)
owl:allValuesFrom 1 Dem@Care(1)
owl:cardinality 1 Stuff(1)
rdf:first 1 Dem@Care(1)
rdf:rest 1 Dem@Care(1)
STRSTARTS 1 SWO(1)
BIND 1 SWO(1)

owl:onProperty OntoDT:OntoDT_0000405;

owl:someValuesFrom ?x1

] .

?x1 rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty obo:OBI_0000298;

owl:someValuesFrom $?PPx1$

] .

$PPx1$ rdfs:subClassOf OntoDT2:OntoDT_283020 .

}

• Operations on fetched results (e.g., SWO 44, asking about the period of time between a given

point in time and the present moment):

SELECT ?result WHERE { $PPx1$ rdfs:subClassOf swo:SWO_0000001,[

a owl:Restriction ;

owl:onProperty maturity:SWO_9000068 ;

owl:hasValue ?date

]

bind(now()-xsd:dateTime(?date) as ?result) }

Table 6.10 lists all SPARQL, RDF(S), and OWL keywords observed among the queries collected

in CQ2SPARQLOWL. As can be seen, 16 of them are used in the context of at least two

ontologies.

6.5. SPARQL-OWL query signatures 59

6.5 SPARQL-OWL query signatures

A signature of a SPARQL-OWL query represents a domain-independent pattern similar to CQ

patterns, which is obtained from the query using the following steps:

1. Transform a given query into a SPARQL algebra expression, also expand every abbreviation

inherited from Turtle serialization (e.g., ?x a :C, :D is expanded into ?x a :C . ?x a :D)

in the process.

2. Remove solution modifiers.

3. Remove, from each BGP expressed in the SPARQL algebra expression, triple patterns of

forms (·, rdf:type, owl:Restriction) and (·, rdf:type, owl:Class), where · stands for

any node [189].

4. Remove expressions of the form ?var != owl:Nothing, where ?var represents a blank node

or a variable. Remove a filter if the aforementioned comparison was the only expression used

in the filter. Filtering applied for owl:Nothing is a user preference: some experts may prefer

to remove them from the results while others may prefer to keep them. With this step we

make the decision consistent.

5. Remove symbols: + and * from property paths in cases where + and * refer to a known

transitive property [189] (e.g., rdfs:subPropertyOf or rdfs:subClassOf). With respect to

the SPARQL-OWL entailment regime these symbols are redundant.

6. Replace, to remove redundancy, a property path of the form rdf:type/rdfs:subClassOf

with rdf:type [189].

7. Merge all BGPs being arguments of a single SPARQL join operation present in the SPARQL

algebra expression to generate a single BGP [189].

8. Replace every IRI from namespaces other than OWL, RDFS, RDF and XSD with new blank

nodes in a consistent manner, i.e., the same IRI is consistently replaced with the same blank

node within a query. This allows to generalize queries among more questions.

The aforementioned steps are formalized in Algorithm 10 that can be found in Appendix A.2.

The list of steps does not take into consideration differences in the order of triple patterns, the

usage of various variable names, and blank nodes among different queries, so that queries with

different names of variables or with different order of triple patterns are considered different. To

overcome that limitation, we propose the definition of signature equivalence. Two signatures S1,

S2 are equivalent if and only if it is possible to find a one-to-one mapping (i.e., a bijection) from

the set of variables and blank nodes in S1 to the set of variables and blank nodes in S2 such that

by applying to S2 one obtains an expression that is isomorphic with S1, i.e., identical to S1 barring

the order of operators [189].

Let us consider the following pair of queries:

SELECT DISTINCT * WHERE {

_:c1 rdfs:subClassOf

lab:DemographicCharacteristicsRecord, [

owl:onProperty ?p;

owl:someValuesFrom _:c2

].

6.5. SPARQL-OWL query signatures 60

}

that is a formalization of Dem@Care 3 and

SELECT DISTINCT * WHERE {

?eats rdfs:subClassOf :animal, [

a owl:Restriction ;

owl:onProperty :eats;

owl:someValuesFrom :impala].

filter(?eats != owl:Nothing)

}

that is a formalization of a materialized AWO 07.

These queries are transformed into the following signatures:

_:c1 rdfs:subClassOf _:c4.

_:c1 rdfs:subClassOf _:c3.

_:c3 owl:onProperty ?p.

_:c3 owl:someValuesFrom _:c2.

created from Dem@Care 03 and

?eats rdfs:subClassOf _:b2.

?eats rdfs:subClassOf _:b1.

_:b1 owl:onProperty _:b3.

_:b1 owl:someValuesFrom _:b4.

created from AWO 07. Because we can observe the following bijection between blank nodes and

variables:

:c17→?eats,
:c37→ :b1,
:c47→ :b2,
?p 7→ :b3,
:c27→ :b4,

we consider both signatures as equivalent so that we can say that both queries share the same

recurring pattern.

From all 131 SPARQL-OWL queries, the signature construction algorithm created 46 distinct

query signatures. 9 of them are shared among more than a single query as provided in Table 6.11.

6 signatures are shared among at least two ontologies as listed in Table 6.12. Considering the

signatures presented in Table 6.11, the signature:

[] rdfs:subClassOf [], [owl:onProperty []; owl:someValuesFrom []]

is the most widely used, being shared by 27 queries (20.5% of the queries in CQ2SPARQLOWL)

stated against 4 out of five ontologies. The majority of queries in CQ2SPARQLOWL are con-

structed using recurrent patterns. 82 queries (62.6% of queries in CQ2SPARQLOWL) are con-

structed with queries having signatures shared by at least 3 queries. Dem@Care is the ontology

that uses such signatures the most, with 57 out of 60 (95%) SPARQL-OWL queries covered by

some signature introduced in Table 6.11. We say that a signature S covers a query Q if the

signature SQ generated from the query Q is equivalent to S. In contrast, Stuff contains queries,

6.6. Relationship between CQs and SPARQL-OWL queries 61

each of which produces a signature different than those presented in Table 6.11 so that 0 out of

9 (0%) of queries are covered by signatures. Considering other ontologies, 8 out of 13 (62%) for

OntoDT, 4 out of 7 (57%) and 13/42 (33%) of SPARQL-OWL queries are covered by signatures

from Table 6.11.

Focusing on the signatures shared among at least 2 ontologies, 49 queries are covered by the 6

signatures presented in Table 6.12.

Considering the number of queries transformed into signatures that are not shared by any two or

more ontologies, based on the results presented in Table 6.12, we see that SWO contains 34 (85%),

Stuff 7 (78%), AWO 5 (71%), Dem@Care 29 (48%) and OntoDT 5 (38%) of such ontology-wise

unique signatures.

Table 6.11: The list of signatures that are shared by more than 2 queries in
CQ2SPARQLOWL. The number of occurrences of a given signature in a given
ontology is provided in the column Ontologies. Reprint from [189].

Signature Ontologies
[] rdfs:subClassOf [], [owl:onProperty [];
owl:someValuesFrom []]

Dem@Care (23), AWO (1), On-
toDT (2), SWO (1)

?x rdfs:subClassOf ?y FILTER (?x != ?y) Dem@Care (17)

[] rdfs:subClassOf [], [owl:onProperty [];
owl:someValuesFrom ?x]. ?x rdfs:subClassOf [].

SWO (3), OntoDT (6)

[] rdfs:subClassOf [owl:onProperty [];
owl:someValuesFrom ?x].
?x rdfs:subClassOf ?y FILTER (?x != ?y)

SWO(1), Dem@Care (7)

?x rdfs:subClassOf ?y FILTER NOT EXISTS { ?x
rdfs:subClassOf ?z . ?z rdfs:subClassOf ?y
FILTER(?z != ?y && ?x != ?z) } FILTER(?x != ?y)

Dem@Care (7)

[] rdfs:subClassOf [owl:onProperty [];
owl:hasValue []]

SWO (5)

[] rdfs:subClassOf [], [owl:onProperty [] ;
owl:hasValue []]

SWO (4)

[] a [] Dem@Care (3)

[] rdfs:subClassOf ?x, [owl:onProperty [];
owl:someValuesFrom ?y]. ?y rdfs:subClassOf ?x

AWO (3)

6.6 Relationship between CQs and SPARQL-OWL queries

In this section, we analyze if certain words relate to constructs in SPARQL-OWL. Moreover, we

discuss the problem of approximated queries, which are stated due to missing vocabulary, and

which relate a single phrase in a CQ to a complex expression spanning over multiple ontological

entities.

Signal words To understand better what is the relation between queries and CQs, we analyzed

which words or phrases among CQs (further called signal words and signal phrases) co-occur with

6.6. Relationship between CQs and SPARQL-OWL queries 62

Table 6.12: The list of signatures shared among more than one ontology. The
number of occurrences of a given signature in a given ontology is provided in the
column Ontologies. Reprint from [189].

Signature Ontologies
[] rdfs:subClassOf [], [owl:onProperty [];
owl:someValuesFrom []]

Dem@Care (23), AWO (1), On-
toDT (2), SWO (1)

[] rdfs:subClassOf [], [owl:onProperty [];
owl:someValuesFrom ?x]. ?x rdfs:subClassOf [].

SWO (3), OntoDT (6)

[] rdfs:subClassOf [owl:onProperty [];
owl:someValuesFrom ?x].
?x rdfs:subClassOf ?y FILTER (?x != ?y)

SWO (1), Dem@Care (7)

[] rdfs:subClassOf [] ; rdfs:subClassOf [
owl:onProperty [] ; owl:someValuesFrom [
owl:onProperty [] ; owl:someValuesFrom ?x]].
?x rdfs:subClassOf ?y FILTER (?x != ?y)

SWO (1), Stuff (1)

[] rdfs:subClassOf [owl:onProperty [] ;
owl:someValuesFrom []]

Dem@Care (1), SWO(1)

[] rdfs:subClassOf [], [] AWO (1), Stuff (1)

which queries or parts of queries. To check which fragments of CQs co-occur with fragments of

SPARQL-OWL queries, we used the following procedure [189]:

1. Tokenize CQs and create a list of all anygrams (all possible sequences of n consecutive tokens,

where n is between 1 and the number of tokens in a given CQ).

2. Tokenize SPARQL-OWL queries and create a list of all anygrams.

3. Create a Cartesian product between all anygrams created from CQs and those created from

queries and count how many times a given pair from the product was observed in CQs and

queries defined in CQ2SPARQLOWL.

4. Manually verify the list of most frequent co-occurrences in order to filter out uninteresting

cases (e.g., frequent co-occurrence of words like the/a/an with common keywords like WHERE,

SELECT).

Using the procedure described above, we discovered that certain words and phrases relate to

sequences of tokens used among SPARQL-OWL queries. Table 6.13 shows that there are certain

phrases, especially CQ starters, that can help to detect how SPARQL-OWL queries are constructed

in CQ2SPARQLOWL.

Similarly, in Table 6.14 we can observe that Wh- question starters always relate to SELECT

type of queries. In most cases the same applies to Is/Are/Can/Does, but as we already discussed

in Section 6.2.2, questions starting with these words can be used with SELECT queries if they

contain a list of alternatives to be chosen from (e.g., Is carbonara a pizza or pasta?). Interestingly,

words like or, and, do rarely imply the choice of owl:unionOf and owl:intersectionOf.

Approximated queries In most cases, a single phrase mentioned in a CQ maps to a single IRI.

However, in CQ2SPARQLOWL, there are 32 examples where a single phrase maps to a more

complex construct due to missing vocabulary.

6.6. Relationship between CQs and SPARQL-OWL queries 63

Table 6.13: The list of frequent signal phrases mapped to frequent SPARQL-OWL
queries they are observed with. Each :IRI in the table may represent a different
IRI. Reprint from [189].

Signal Corresponding SPARQL-OWL Co-
occurrences

What are the possible
types . . .

SELECT DISTINCT * WHERE
{ ?x rdfs:subClassOf :IRI . FILTER(?x != :IRI &&
?x != owl:Nothing) }

3/3
(100%)

What are the types of
. . .

SELECT DISTINCT * WHERE
{ ?x rdfs:subClassOf :IRI . FILTER(?x != :IRI &&
?x != owl:Nothing) }

3/4
(75%)

What types of
. . . is/are . . .

SELECT DISTINCT * WHERE
{ [] rdfs:subClassOf :IRI, [owl:onProperty ?x;
owl:someValuesFrom []]. }

8/11
(72.3%)

Which/what kind of
. . . is/are . . .

SELECT DISTINCT * WHERE { :IRI rdfs:subClassOf
?x . ?x rdfs:subClassOf :IRI. FILTER(?x != :IRI
&& ?x != :IRI) }

2/3
(66.7%)

What are the main
types of . . .

SELECT DISTINCT * WHERE { ?x rdfs:subClassOf
:IRI. FILTER NOT EXISTS { ?x rdfs:subClassOf ?y
.
?y rdfs:subClassOf :IRI. }
FILTER(?x != :IRI && ?x != owl:Nothing) }

6/9
(66%)

exactly NUMBER
ENTITY

owl:cardinality "NUMBER"^^xsd:nonNegativeInteger 1/1
(100%)

Table 6.14: The list of words and parts of SPARQL-OWL queries they co-occur
with. Reprint from [189]. .

Signal Corresponding SPARQL-OWL Co-occurences
Which/What/Who/Where/When
– at the beginning of CQ

SELECT type query 107/107 (100%)

Is/Are/Can/Does – at the begin-
ning of CQ

ASK type query 16/18 (88.9%)

or – used as part of CQ owl:unionOf – present in
SPARQL-OWL

2/9 (22.2%)

and – used as part of CQ owl:intersectionOf – present in
SPARQL-OWL

2/11 (18.2%)

Consider the following CQ: SWO 76: Is there a publication with [it]?. It is translated into the

following query:

ASK WHERE { $PPx1$ rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty swo:SWO_0000043 ;

owl:hasValue ?doc].

filter(STRSTARTS(?doc, "http://dx.doi.org/")) }

, which can be verbalized as: Is there a documentation (swo:SWO 0000043) assigned for a given

software ($PPx1$), where the IRI of the documentation starts with ”http://dx.doi.org”?. In the query,

6.7. Relationship between CQ patterns and query signatures 64

the sequence $PPx1$ relates to a placeholder [it]. If the placeholder in the CQ is materialized using

the entity label l, the IRI of l should be used in place of $PPx1$.

In this example, the missing class representing a publication is approximated using the notion

of documentation IRI, which is used in the range of the object property swo:SWO 0000043. We

expect the IRI to point to some DOI, as scientific publications have commonly DOIs assigned.

Another interesting example is the CQ SWO 02: What are the alternatives to [this software]?.

It is expressed using the following query:

SELECT ?sw2 WHERE {$PPx1$ rdfs:subClassOf swo:SWO_0000001 ,

[

a owl:Restriction ;

owl:onProperty efo-swo:SWO_0000740;

owl:someValuesFrom ?alg

] .

?sw2 rdfs:subClassOf swo:SWO_0000001 ,

[

a owl:Restriction ;

owl:onProperty efo-swoSWO_0000740;

owl:someValuesFrom ?alg

] .

?alg rdfs:subClassOf obo:IAO_0000064 .

filter(?alg != obo:IAO_0000064) .

filter(?sw1 != ?sw2). }

, which can be verablized as What other software (swo:SWO 0000001) implements (efo-swo:SWO 0000740)

the same algorithm (obo:IAO 0000064)?. In this example, the missing notion of an alternative soft-

ware is understood as another software implementing the same algorithm.

6.7 Relationship between CQ patterns and query signatures

In this section, we relate CQ patterns to query signatures to understand if similarly constructed

CQs are similarly expressed as queries.

CQ patterns and query signatures Out of 106 CQ patterns detected in CQ2SPARQLOWL

only 63 map to some SPARQL-OWL query signature. The lack of signatures for 43 CQ pat-

terns is a consequence of inability to provide SPARQL-OWL queries for 103 out of 234 CQs in

CQ2SPARQLOWL. Most of CQ patterns that map to signatures, map to a single signature (50

CQ patterns) and 13 CQ patterns map to more than one signature. It means that 13 CQ patterns

are expressed using more than one query form. The CQ pattern Is EC1 EC2? is mapped to 4 (the

highest number in the dataset) distinct query signatures [189].

Performing the same analysis of the mapping between higher-level CQ patterns and SPARQL-

OWL signatures, we see that from 81 higher-level CQ patterns: 31 of them map to a single

query signature, 11 map to more than one signature and 34 patterns have no mapping defined.

The higher-level CQ pattern What is EC1? is the most diverse regarding the number of possible

signatures used to express the pattern being mapped to 8 of them.

All 46 signatures generated from CQ2SPARQLOWL map to at least one CQ pattern. 23 of

them map to a single CQ pattern and the remaining 23 of them map to at least two distinct CQ

patterns. The signature that is connected to the highest number of CQ patterns is:

6.7. Relationship between CQ patterns and query signatures 65

SELECT * WHERE {

?placeholder_PPx1 rdfs:subClassOf _:b0 .

_:b0 owl:onProperty _:b1 ;

owl:someValuesFrom _:b2 .

?placeholder_PPx1 rdfs:subClassOf _:b3

}

This signature is mapped to the following CQ patterns:

• Which EC1 PC1 EC2?

• What EC1 is of EC2 regarding EC3 and EC4?

• What EC1 are of EC2 with respect to EC3?

• What EC1 is of EC2 regarding EC3?

• What EC1 PC1 EC2?

• What types of EC1 are EC2?

• What types of EC1 PC1 EC2?

• PC1 EC1 PC1 EC2?

• What is EC1 of EC2 for EC3?

Considering higher-level CQ patterns, every signature has at least one one higher-level CQ

pattern: 25 have exactly one pattern assigned and 21 have more patterns assigned.

The same signature as in the context of CQ patterns is also related to the highest number of

higher-level CQ patterns. There are 9 distinct higher-level CQ patterns related to it:

• What EC1 is of EC2 regarding EC3 and EC4?

• What EC1 is of EC2 with respect to EC3?

• What EC1 is of EC2 regarding EC3?

• What is the main type of EC1?

• What type of EC1 PC1 EC2?

• What type of EC1 is EC2?

• What EC1 PC1 EC2?

• PC1 EC1 PC1 EC2?

• What is EC1?

6.8. Summary 66

6.8 Summary

In this chapter, we introducedCQ2SPARQLOWL, the first dataset of CQs assigned with SPARQL-

OWL queries. We showed that CQs share their forms among questions stated for a single ontology

and among different ontologies. In total, among the 234 CQs, we identified 106 domain-agnostic

CQ patterns and 81 domain-agnostic higher-level CQ patterns.

We also analyzed the SPARQL-OWL queries stated for 131 CQs. Using a procedure generating

ontology-agnostic SPARQL-OWL signatures, we identified 46 of them in the dataset.

We also analyzed the relation between CQs and SPARQL-OWL queries. Considering the

CQ patterns and SPARQL-OWL signatures, we observed that there is a many-to-many relation

between them as a single CQ pattern can be expressed using various SPARQL-OWL queries

depending on how the knowledge is modeled, and a single SPARQL-OWL query can be expressed

using various question forms.

We made the dataset public on GitHub4 under the Creative Commons Attribution 3.0 Unported

License.

4https://github.com/CQ2SPARQLOWL/Dataset/

https://github.com/CQ2SPARQLOWL/Dataset/

Chapter 7

Automatic glossary of terms extraction

CQs are used in many ontology development methodologies as a source of the vocabulary engineers

need to model. For this purpose, engineers collect CQs to outline the requirements and then decide

which classes, instances, and properties they will model in the ontology to make it competent to

answer the gathered questions. For example, in the NeON methodology [167], phrases extracted

from CQs are listed in the glossary of terms included in the Ontology Requirements Specification

Document.

However, in the case of large ontologies, based on multiple CQs stated by groups of experts, the

automatization of this task could speed up the ontology authoring. Tools detecting glossaries of

terms can also fuel automatic translators of CQs into queries as they can indicate domain phrases

in CQs related to the vocabulary in an ontology.

Based on the insights gained in Section 6.3.2, where we introduced the first – requiring human

supervision – heuristics for detecting domain phrases for domain-agnostic CQ patterns construc-

tion, we propose two methods that do not require human intervention: a machine learning-based

tagger and a manually handcrafted rules-based approach.

The machine learning-based method proposed in this chapter was published as a conference

poster [186], and the rule-based approach is accepted for publication in Foundations of Computing

and Decision Sciences.

The remainder of this chapter is structured as follows: In Section 7.1, we introduce the datasets

used to prepare and evaluate each of the methods. In Sections 7.2 and 7.3, we describe both

methods in detail. We evaluate both approaches in Section 7.4, discuss the results and errors in

Section 7.5, and conclude in Section 7.6.

7.1 Materials

We use the two largest available datasets of ontological requirements to construct the following

disjoint sets:

• Training set – used to train the machine learning-based model and handcraft rules for the

rule-based method.

• Evaluation set – used to measure the quality of both approaches and choose the better quality

one.

In this section, we describe how we construct each of these sets.

67

7.1. Materials 68

7.1.1 Training set

CQ2SPARQLOWL, introduced and analyzed in Chapter 6, was used to generate domain-agnostic

CQ pattern candidates in a semi-automatic manner. It contains 234 CQs, transformed into pattern

candidates by replacing domain phrases with EC and PC markers. These domain phrases represent

vocabulary to model in an ontology and can be used to populate the glossary of terms.

For this reason, we can use CQs and their CQ pattern candidates to identify domain-related

phrases. As shown in the upper box presented in Figure 7.1, we can make the alignment between

the CQ and the CQ pattern candidate to achieve it. Considering the example given in Figure 7.1,

the following relation between chunks is observed:

• EC1 – the placeholder [it]

• EC2 – the word FOSS

We iterated over each of the 234 CQs and marked which phrases relate to chunks. In the case

of 116 CQs from CQ2SPARQLOWL, one or more chunks relate to placeholders that should

be replaced with appropriate strings to produce multiple similar CQs. As CQ2SPARQLOWL

provides ontologies related to CQs, we can replace placeholders with actual labels from a given

ontology (e.g., [it] in Is [it] FOSS? should be replaced with various pieces of software modeled in

SWO). To materialize CQs, we applied the following procedure:

For a given CQ cq and an ontology O:

1. Identify the placeholder ph in cq.

2. Extract all labels L from O that are possible materializations of ph.

3. For each label l in L, generate a new CQ by replacing the placeholder ph with l.

In SWO and its CQs, most placeholders refer to pieces of software. This ontology defines a

rich taxonomy of software types, providing 537 names of software. We noticed that some CQs

regarding SWO introduce more than a single placeholder (e.g., the SWO 22: Can [software A]

work with data that are output from [software B]?). In all such CQs, to prevent combinatorial

explosion (where, e.g., we materialize CQ SWO 22 with all possible pairs of software, generating

5372 = 288, 369 materializations of this single CQ), we use only a single random label to materialize

each placeholder.

The materialization of CQs in CQ2SPARQLOWL increased the number of questions from

234 to 47,313. As each placeholder replacement was extracted from an appropriate ontology, we

automatically marked those labels as domain-related fragments. Moreover, each placeholder in

CQ2SPARQLOWL represents a class or an instance, so we automatically labeled each replace-

ment as an entity chunk. This way, we transformed the initial set of 234 CQs manually marked

with domain-related vocabulary candidates (via the analysis of the alignment between the CQs

and the CQ patterns) into 47,313 materialized examples. We visualize the materialization process

in the lower box presented in Figure 7.1. We also provide detailed information on the number of

materialized CQs generated per ontology in Table 7.1.

All 47,313 materialized CQs marked with domain-related vocabulary were serialized using the

IOB format in the following process:

1. Tokenize each CQ, i.e., split it into a sequence of tokens.

2. Tag each token that is not marked as domain-related with the O tag. This tag informs that

a given token does not represent any class, instance, or property.

7.1. Materials 69

Is [it] FOSS? Is EC1 EC2?
CQ CQ pattern

Is [it] FOSS?
EC1 EC2

Is Weka FOSS?
EC1 EC2

Is AIDA FOSS?
EC1 EC2

Is Linux FOSS?
EC1 EC2

...

First, tokens from a given CQ
are matched with chunks from
a given CQ pattern

Then, the materialization
of placeholders generates
multiple CQs

Figure 7.1: The process of marking phrases with chunks followed by the
materialization of placeholders to generate multiple training examples from
CQ2SPARQLOWL automatically.

Table 7.1: The number of materialized CQs per ontology in CQ2SPARQLOWL.

Ontology # of CQs before materialization # of CQs after materialization
SWO 88 46,465
Dem@Care 107 107
OntoDT 14 482
AWO 14 47
Stuff 11 90

7.1. Materials 70

Table 7.2: Number of labels in materialized CQ2SPARQLOWL. Column Label
represents a given label, column Occurrences couns how many times a given label
occurs, and column Relative occurrences summarizes what percentage of tokens
in CQ2SPARQLOWL are tagged with a given label.

Label Occurences Relative occurences
O 188,438 42.48%
B-E (Begin entity) 86,639 19.53%
I-E (Inside entity) 115,953 26.14%
B-R (Begin relation) 29,844 6.72%
I-R (Inside relation) 22,697 5.12%

3. For each sequence of tokens that is marked as an entity chunk (EC):

• Mark the first token in the sequence with the B-E tag, which indicates the beginning of

the entity (a class or an instance candidate).

• Mark the remaining tokens in the sequence with the I-E tag, which indicates continu-

ation of the entity started with B-E.

4. For each sequence of tokens that is marked as a predicate chunk (PC):

• Mark the first token in the sequence with the B-R tag, which indicates the beginning of

the relation (a property candidate) the PC represents.

• Mark the remaining tokens in the sequence with the I-R tag, which represents contin-

uation of the relation started with B-R.

The differentiation between B- and I- is needed to separate two entities if they are located next

to each other, as presented in Figure 7.2.

Is Microsoft Excel 2003 FOSS ?
O OB-E B-EI-E I-E

Figure 7.2: Example CQ tokenized and tagged with IOB tags. Here, Microsoft
Excel 2003 is adjacent to FOSS.

With the use of IOB encoding, the automatic glossary of terms extraction becomes a sequence

tagging problem, where each token ti in some tokenized document d is mapped onto one of the

labels from the label set using a mapping function m(·):

∀ti ∈ d : m(ti) ∈ {O,B-E, I-E,B-R, I-R}

Using this procedure, we generated 47,313 CQs consisting of 443,571 tokens in total. The CQs

are tagged with 86,639 candidates for classes or instances (labeled with IOB as entities) and 29,844

for properties (labeled with IOB as relations). The summary providing the numbers of the IOB

labels assigned to tokens can be found in Table 7.2. This dataset serves as the training set for the

machine learning-based tagger and a set providing examples for the rule-based tagger.

7.1.2 Evaluation set

To evaluate the methods, we searched for a dataset providing requirements stated for ontologies

different than those included in CQ2SPARQLOWL. We chose the largest collection of ontology

7.2. Machine learning-based tagger 71

Table 7.3: Evaluation set extracted from CORAL.

Ontology name Number of questions Number of statements
VICINITY Core [109] 58 68
VICINITY WOT [109] 7 17
VICINITY WOT mappings [109] 0 15
BTN100 [128] 77 0
SAREF [46] 1 70
SAREF4BLDG [46] 97 1
SAREF4ENVI [46] 18 40
OneM2M [46] 0 58
ODRL [166] 0 12
BTO [105] 0 18
Total 258 299

Table 7.4: The summary of the gold standard phrases tagged manually in the
evaluation set by an expert.

Questions or Statements Number of entities Number of relations
Questions 472 89
Statements 892 327

requirements calledCORAL [49], containing requirements expressed as CQs and statements. From

this dataset, we discarded those requirements that are part of CQ2SPARQLOWL, so from the

initial number of 834 requirements, 557 formed our evaluation set. Although the training set

consists of CQs only and the evaluation set contains both CQs and declarative statements, we

decided to use both kinds of requirements to check if any of the methods designed to work on CQs

generalizes to statements. In total, our evaluation set consists of 258 CQs and 299 statements.

The summary outlining the ontologies used in the evaluation set and the numbers of questions

and statements per each ontology is provided in Table 7.3.

For each requirement in the evaluation set, we manually marked the phrases that are candidates

for ontological entities to be included in the glossary of terms. Similar to the training set, we split

those candidates into two categories: entities - representing candidates for classes or instances, and

relations representing candidates for properties.

We marked 1,780 glossary of terms candidates in the evaluation set and published this data

online1,2. Since different ontologies may use different modeling styles (e.g., whether to use a class,

an instance, or a property to represent a verb), the glossary of terms candidates were constructed

independently of the actual ontology vocabulary, e.g., all domain-related noun phrases are marked

as entities and phrases representing actions as relations. This approach ensures consistency among

all examples.

In Table 7.4, we summarize the number of candidates proposed for questions and statements

as well as entities and relations.

7.2 Machine learning-based tagger

The first tagger we propose is a model based on Conditional Random Fields (CRFs) [91]. We used

python-crfsuite3, a Python wrapper using CRFSuite [126] as the implementation of CRFs.

1https://github.com/reqtagger/ReqTagger/blob/master/evaluation_cqs.json
2https://github.com/reqtagger/ReqTagger/blob/master/evaluation_statements.json
3https://pypi.org/project/python-crfsuite/

https://github.com/reqtagger/ReqTagger/blob/master/evaluation_cqs.json
https://github.com/reqtagger/ReqTagger/blob/master/evaluation_statements.json
https://pypi.org/project/python-crfsuite/

7.2. Machine learning-based tagger 72

To choose the list of features describing each token in a CQ and select the values of hyper-

parameters, which are parameters that influence the learning process, we extracted a holdout set

from the training set to form two disjoint subsets:

• SWO set – consisting of CQs stated for the SWO ontology (46,465 CQs in total).

• validation set – consisting of CQs stated for other ontologies (107 stated for Dem@Care, 482

for OntoDT, 47 stated for AWO, 90 stated for Stuff – 726 CQs in total).

Using such a split, we ensure that there are different terms in the validation set than in the SWO

set so that the validation set can be used to verify how well the model works on unseen data.

First, we used the default hyperparameter values:

• C1 = 0.001

• C2 = 0.001

• max iterations = 10

• training method = L-BFGS

to handcraft the list of features that maximizes the F1 score of the model trained on the SWO set

and evaluated on the validation set. Here, C1 and C2 correspond to the λ1 and λ2 parameters of the

Elastic Net regularization, respectively. The max iteration parameter determines the maximum

number of iterations of the L-BFGS optimization algorithm.

In consequence, we selected the following list of features to describe each token:

• The lowercased token.

• A flag (set to 0 or 1) indicating whether the token is an auxiliary verb (e.g., does, have).

• The sequence of the token’s last 3 characters.

• A flag (0 or 1) that is set to 1 if and only if the token starts with a capital letter.

• A flag (0 or 1) that is set to 1 if and only if the token contains more than one capital letter.

• A number that represents how many tokens in the CQ are verbs.

• A flag (0 or 1) that is set to 1 if and only if the token is a number.

• Part-of-speech (POS) tag from the Universal POS tag set assigned to the token.

• The label assigned to the token in a dependency parse tree constructed over the CQ.

• The label assigned to the token’s head in a dependency parse tree constructed over the CQ.

To pass more context to the model, we enrich the current token description with features

describing 2 previous and 2 next tokens (each of those context tokens is described using the

following features from the list above [186]: the lowercased token, a flag indicating if the token

starts with a capital letter, a flag indicating if the token contains more than one capital letter,

POS tag, dependency tree label of the token, dependency tree label of the token’s token).

Then, we used grid search to optimize the values of the hyperparameters. We verified the

following values:

1. C1: [0.001, 0.01, 0.1, 1, 10]

7.3. ReqTagger: a rule-based tagger 73

2. C2: [0.001, 0.01, 0.1, 1, 10]

3. max iterations: [10, 100, 1,000]

Grid search evaluates each combination of hyperparameter values and chooses the one that maxi-

mizes the F1 score calculated on the validation set.

We found the following values lead to the highest F1 score:

• C1 = 1

• C2 = 0.001

• max iterations = 100

• training method = L-BFGS

We published the tagger implementation and the best model online4. The tagger splits a given

CQ into tokens and calculates features for each token. Then it produces the output, which is a

sequence of IOB labels assigned to the tokens.

7.3 ReqTagger: a rule-based tagger

The second tagger we propose is an evolution of the Algorithm 3 presented in Appendix A.1

that is used to extract CQ patterns from CQs. Contrary to the algorithm from Appendix A.1,

our solution, hereafter referenced to as ReqTagger, can be used without human supervision.

Figure 7.3 visualizes the workflow of ReqTagger, which can be summarized in three steps:

1. Pass the requirement to a rule-based extractor to identify which fragments of text represent

candidates for properties or classes/instances.

2. If overlapping spans of texts are extracted, merge them.

3. Filter out phrases that do not represent candidates for classes, instances, or properties.

ReqTagger produces two output lists: candidates for properties and classes/instances separately.

In the following subsections, we describe each processing step in detail.

7.3.1 Rule-based extractor

ReqTagger is based on a predefined set of rules that are expressed in our own rule language.

First, it tokenizes the input text and assigns each token its POS tag. Then, it uses rules to match

sequences of POS tags and passes the sequences of tokens related to them to subsequent processing

steps.

Let us define the rule language using Extended Backus-Naur Form [184]:

<rule> ::= <item>, {" ", <item>};

<item> ::= [<modifier>], <POStags>;

<modifier> ::= "{0+}" | "{1+}" | "{1?}";

<POStags> ::= <POS> , {"|", <POS>};

4https://github.com/dwisniewski/CRFBasedGlossaryOfTermsExtraction

https://github.com/dwisniewski/CRFBasedGlossaryOfTermsExtraction

7.3. ReqTagger: a rule-based tagger 74

Competency Question

Rule-based extractor

Overlap resolver

Phrase rejector

Entities

Entities

Suggested Entities

Relations

Relations

Suggested Relations

Figure 7.3: The workflow of ReqTagger. Suggested entities relate to classes and
instances, while suggested relations relate to data and object properties.

Each rule (<rule>) consists of a sequence of items (<item>) separated by a single space. Each

item consists of a set of |-separated POS tag (<POStags>) alternatives that can be preceded by

an optional modifier (<modifier>) specifying how many tokens can be matched by this item. We

support the following modifiers:

• {O+} – we expect a sequence of at least zero tokens matching any of the POS tags in a given

POS tag set.

• {1+} – we expect a sequence of at least one token matching any of the POS tags in a given

POS tag set.

• {1?} – we expect at most one token matching any of the POS tags in a given POS tag set.

<POS> is a non-terminal symbol that represents a POS tag. spaCy5, one of the most popular NLP

libraries, uses two POS tag sets:

• Universal POS tags: a coarse-grained tag set proposed in Universal Dependencies6. This tag

set provides 17 distinct tags.

• OntoNotes (version 5) of the Penn Treebank POS tags (further referenced as OntoNotes POS

tags): a fine-grained tag set providing 53 tags7.

To verify which tag set is better for the glossary of terms extraction, in ReqTagger, we

support both tag sets. An example of a rule using Universal POS tags is:
5https://spacy.io
6https://universaldependencies.org/u/pos/
7https://spacy.io/api/annotation#pos-en

https://spacy.io
https://universaldependencies.org/u/pos/
https://spacy.io/api/annotation#pos-en

7.3. ReqTagger: a rule-based tagger 75

{0+}VERB {1+}NOUN|PROPN ADJ

The rule can be interpreted as: search for a sequence of at least zero verbs, followed by at least

one token that represents either a noun or a proper noun, followed by exactly one adjective.

Since modifiers: {O+} and {1+} may produce many possible matches (e.g., the rule {1+}NOUN
applied to a sequence of 2 nouns may match the first noun only, the second one only, or the sequence

of both), we decided that they should work greedily – matching only the longest possible sequence.

Internally, each rule is transformed into a regular expression8 so that the rule language is a more

human-friendly way to state regexes. Then, these regexes are translated into nondeterministic

state automata to find matches. As we support two part-of-speech tag sets, separate sets of rules

are prepared to support Universal POS tags and OntoNotes POS tags. Moreover, because we suggest

candidates for classes/individuals (called entities) and properties (called relations) independently,

we defined separate sets of rules for entities and relations.

In Table 7.5, we listed all rules expressed using Universal POS tags, while in Table 7.6 all rules

expressed using OntoNotes POS tags. The description of each POS tag used is provided in Table 7.7

for Universal POS tags and in Table 7.8 for OntoNotes POS tags.

These rules were constructed manually on a subset of the training set. We selected all CQs that

did not introduce placeholders and a single random materialization from those CQs that initially

contained placeholders. As a result, the rules were handcrafted on a sample of 234 materialized

CQs.

Table 7.5: Rules for entities and relations extraction based on Universal POS tags.
The identifiers are described in Table 7.7.

Entities extraction rules
1. {0+}ADJ {1+}NOUN|PROPN
2. {0+}ADJ {1+}NOUN|PROPN {0+}ADJ {1+}NOUN|PROPN
3. VERB NOUN|PROPN
Relations extraction rules
1. {0+}PART|VERB|AUX VERB
2. {0+}VERB ADV|AUX
3. {0+}PART|VERB|AUX {1+}AUX|VERB|ADJ|ADV ADP|SCONJ

7.3.2 Overlap resolver

With multiple rules defined (e.g., 10 rules based on OntoNotes POS tags to extract relations), a pair

of rules may mark the same sequence of tokens or mark sequences, one of which is the substring

of the other. We use the overlap resolver to identify such cases and reject:

• The shorter sequence, if a longer match is found.

• One sequence, if both matches are identical (i.e., two rules mark the same sequence).

The main goal of the overlap resolver is to remove duplicated candidates from the extracted

phrases.

7.3.3 Phrase rejector

We found that some matched phrases have special meanings and do not represent ontology vocab-

ulary. For example, nouns such as kind, category, type most likely indicate the subclass relation
8As defined in https://github.com/reqtagger/ReqTagger/blob/master/reqtagger/reqtagger.py in the

parse rule() function.

https://github.com/reqtagger/ReqTagger/blob/master/reqtagger/reqtagger.py

7.3. ReqTagger: a rule-based tagger 76

Table 7.6: Rules for entities and relations extraction based on OntoNotes POS
tags. The identifiers are described in Table 7.8.

Entities extraction rules
1. {1?}DT {0+}JJ|JJS|FW|NN|NNS|NNP NN|NNP|NNS
2. DT VB|VBG|VBD|VBZ|VBN {0+}NN|NNS|NNP|JJ NN|NNS|NNP
Relations extraction rules
1. {1+}JJ IN
2. JJR IN
3. RB VBD
4. {0+}MD {1+}VBZ|VBN TO VB
5. {0+}MD VB VBN IN
6. {1?}TO VB|VBN|VBZ|VBP {1?}JJ IN
7. {0+}VB|MD {0+}TO VB
8. {1?}TO {0+}VB|VBP|VBZ|VBN|VBD|VBG
{1+}RBS|VB|VBZ|VBN|VBD|VBG|IN RBS|IN

9. {1?}TO VB|VBZ|VBP|VBG|VBD VB|VBN|VBG|VBG|VBD|JJR|RP
10. VBN VBG

Table 7.7: Descriptions of identifiers used in rules based on Universal POS tags.

Identifier Description Example
ADJ adjective blue
NOUN noun chair
PROPN proper noun Mike
VERB verb reading
PART particle possesive marker ’s
AUX auxiliary verb should
ADV adverb up
ADP adposition during
SCONJ subordinating conjunction through

Table 7.8: Descriptions of identifiers used in rules based on OntoNotes POS tags.

Identifier Description Example
VB verb, base form be
VBZ verb, 3rd person, singular, present is
VBN verb, past participle been
VBG verb, gerund/present participle being
VBP verb, singular, present, non-3d are
RP particle give up
RB adverb good
RBS adverb, superlative best
DT determiner the
JJ adjective blue
JJS adjective, superlative tallest
JJR adjective, comparative taller
NN noun, singular or mass chair
NNS noun plural chairs
NNP proper noun Mike
IN preposition, subordinating conjunction of
MD modal will

7.4. Evaluation 77

rather than resources with those labels (e.g., in the CQ: What kinds of cars are produced in Poland?).

We handcrafted a list of rejected phrases based on the training set and our expertise. The phrase

rejector analyzes each extracted candidate, and if it is found on the list, it is not presented to the

user. We provide the rejected phrases as two lists regarding entities and relations in Appendix C.

7.4 Evaluation

In the evaluation set, an expert marked zero or more candidates for entities and relations in each

requirement. We call these gold standard annotations. Each of our taggers also marks phrases

(sequences of tokens) that it considers as candidates. Those we call tagger predictions. To measure

the quality of each tagger, we compare the gold standard annotations with tagger predictions for

entities and relations separately.

To introduce the metrics used to evaluate taggers, first, let us define what we consider a

correctly extracted phrase. If a given phrase extracted by a tagger covers exactly the same tokens

as one of the gold standard annotations and the extracted phrase represents the same type (either

entity or relation candidate) as stated in the gold standard, we consider the extracted candidate

as correct. We still consider the extracted phrase as correct if:

• The only difference between the extracted phrase and any annotation in the gold standard

is the use of an article (either a, an, or the). For example, the extracted word car is equal to

a gold standard annotation the car.

• The extracted phrase and the gold standard phrase both represent a relation and differ only

in the presence of an auxiliary verb. For example, the extracted phrase is published by is

equal to a gold standard annotation published by.

If the extracted phrase is considered correct, we call it a true positive (TP).

There can be 2 kinds of errors introduced:

• If a phrase extracted by the tagger cannot be matched with any annotation from gold standard

annotations of a given type, we call it a false positive (FP) because we falsely mark some

phrase as a candidate.

• If a phrase in the gold standard annotations is not extracted by the tagger or it is extracted

but is assigned a different type, we call it false negative(FN), as we falsely assume an expected

phrase as a non-candidate.

If the extracted phrase is a subsequence of the phrase marked in a gold standard or covers more

tokens, both false positive and false negative are produced.

The true positives, false positives, and false negatives can be aggregated to introduce two

measures:

• Precision P , defined as P = TP
TP+FP , which tells us what fraction of phrases marked as

candidates of a given type are indeed the expected ones.

• Recall R, defined as R = TP
TP+FN , which tells us what fraction of phrases of a given type,

marked in the gold standard annotations, is correctly extracted.

Those measures allow us to look at the errors from two perspectives. Moreover, we introduce a

single number F1 = 2PR
P+R that is a harmonic mean of P and R, to rank the methods.

We compared the following methods:

7.5. Discussion 78

• ReqTagger using OntoNotes POS tags-based rules.

• ReqTagger using Universal POS tags-based rules.

• The method provided in Appendix A.1 with no human postprocessing (referenced asCQ2SPARQLOWL

RULES + CHUNKING).

• CRF-based tagger as introduced in Section 7.2. It is trained on all materialized 46,465

CQs from the SWO ontology only.

• CRF-based tagger trained on all materialized 47,313 CQs from all ontologies included in

CQ2SPARQLOWL. It uses the same hyperparameter values as the previous one.

We evaluated the methods from four perspectives. These perspectives are created by splitting

the dataset to separate CQs from statements and entities from relations. As a result, we:

1. Measure the quality of extracting entities from CQs,

2. Measure the quality of extracting relations from CQs,

3. Measure the quality of extracting entities from statements,

4. Measure the quality of extracting relations from statements.

The evaluation scores calculated for entities and relations extracted by taggers from CQs are pre-

sented in Table 7.9. The scores calculated for phrases extracted from the statements are provided

in Table 7.10.

In Table 7.11, we ranked the methods by a single measure, which is a macro F1 that is calculated

as an average over F1 scores calculated for questions marked with entities, questions marked with

relations, statements marked with entities, and statements marked with relations.

Table 7.9: Methods scored using precision, recall, and F1, calculated over evalua-
tion questions. The scores are calculated separately over entities and relations. The
highest scores are marked in bold.

Setting Scores entities Scores relations
P R F1 P R F1

ReqTagger (OntoNotes POS tags) 0.968 0.972 0.970 0.835 0.854 0.844
ReqTagger (Universal POS tags) 0.958 0.964 0.961 0.773 0.843 0.806
CQ2SPARQLOWL rules + noun chunking 0.645 0.778 0.705 0.788 0.753 0.770
CRF-based tagger (SWO) 0.872 0.780 0.823 0.875 0.236 0.372
CRF-based tagger (CQ2SPARQLOWL) 0.898 0.824 0.860 0.923 0.270 0.417

Table 7.10: Methods scored using precision, recall, and F1, calculated over evalu-
ation statements. The scores are calculated separately over entities and relations.
The highest scores are marked in bold.

Setting Scores entities Scores relations
P R F1 P R F1

ReqTagger (OntoNotes POS tags) 0.891 0.888 0.889 0.749 0.869 0.805
ReqTagger (Universal POS tags) 0.860 0.861 0.861 0.718 0.865 0.785
CQ2SPARQLOWL rules + chunking 0.837 0.830 0.833 0.722 0.706 0.714
CRF-based tagger (SWO) 0.544 0.355 0.43 0.678 0.180 0.285
CRF-based tagger (CQ2SPARQLOWL) 0.604 0.401 0.482 0.687 0.174 0.278

7.5 Discussion

Based on the evaluation scores, in this chapter, we compare the methods proposed and discuss the

errors made by the best solution.

7.5. Discussion 79

Table 7.11: Aggregated F1 scores. Each score is the arithmetic mean of F1 scores
calculated for entities extracted from questions, entities extracted from statements,
relations extracted from questions, and relations extracted from statements.

Method Macro-averaged F1 score
ReqTagger (OntoNotes POS tags) 0.877
ReqTagger (Universal POS tags) 0.853
CQ2SPARQLOWL rules + chunking 0.756
CRF-based tagger on CQ2SPARQLOWL 0.509
CRF-based tagger on SWO 0.478

7.5.1 Methods comparison

To better understand the results presented in Tables 7.9, 7.10, and 7.11, we provide three perspec-

tives:

Global perspective Considering all categories (entities, relations, questions, and statements)

jointly, in Table 7.11, we observe a strong dominance of ReqTagger. Considering the model

using OntoNotes POS tags, the results gathered in Tables 7.9 and 7.10 prove that it outperforms

all competitors in 11 out of 12 scenarios. The only scenario where it scores lower than any other

competitor is the task of relation extraction from questions. However, although the CRF-based

tagger outperforms ReqTagger in terms of precision, it has a very low recall.

ReqTagger with OntoNotes POS tags consistently scores higher than with Universal POS tags.

We suppose that it is due to the much larger tag set provided in OntoNotes POS tags, which allows

to state more precise rules.

Extracting phrases from questions and statements We see that each of the considered

methods scores higher on questions than on statements. We expected such behavior, as the meth-

ods were prepared on the training set, which contains only CQs. However, it is interesting that

the rule-based methods (ReqTagger and CQ2SPARQLOWL rules + chunking) are scored

much better than both CRF-based taggers. We hypothesize that the low scores of the CRF-

based taggers measured on statements are due to the information on neighboring tokens it uses

during training. As the grammatical constructions are different between questions and statements,

they form different contexts that may misguide the CRF-based taggers.

Extracting entities and relations candidates As we can see in Tables 7.9 and 7.10, it is

much easier to extract candidates for entities than for relations. We noticed that in the training

set most noun phrases represent candidates for entities, and these are easy to identify.

However, the relations are more vague as they can be represented in various forms (such as

verbs, adjectives, or even nouns). The analysis of errors made on the evaluation set shows that

some rejected phrases should be verified (e.g., we considered is in as the sequence to reject, but

some requirements from the evaluation set support another decision – to make it a candidate for

a relation).

An interesting observation is that CQ2SPARQLOWL rules + chunking scores very low

on the entity extraction from questions task. This situation is caused by the way spaCy extracts

noun phrases. spaCy builds a dependency parse tree for each input sequence and marks as a noun

phrase every subtree, the head of which is a noun. These are then suggested as candidates for

classes or instances. However, as can be seen in Figure 7.4 in questions starting with a Wh- word

7.5. Discussion 80

(what, which, why, who, whom, whose, where, when) followed by a noun, this noun is a head of

the wh- word so that the whole Which software is extracted as an entity suggestion.

Which software provides REST API

POS tags (Universal) DET NOUN VERB PROPN NOUN

compound
dobj

nsubj
det

Dependency tree

Figure 7.4: The dependency parse tree constructed over a sample CQ.

7.5.2 Error Analysis

As can be seen in Table 7.11, ReqTagger with OntoNotes POS tags achieved the best evaluation

scores. However, the method is not perfect, so in this section, we discuss the errors generated

by ReqTagger with OntoNotes POS tags in the evaluation process. The list of errors is split

into two subsections: describing those related to entity suggestions and those related to relation

suggestions.

Candidates for entities

Wrong POS tags In a CQ: Which properties does a weight scale affect?, the word affect is tagged

by spaCy as a noun instead of a verb. For this reason, the whole phrase a weight scale affect is

suggested as a single entity candidate.

An adjective many before a noun Two CQs from the evaluation set : How many organizations

can have a partnership? and How many rivers flow into the sea or ocean X? contain sequences, in

which the adjective many is followed by a noun (many organizations, many rivers). In both cases,

ReqTagger wrongly attaches the word many as a word that should start the entity name. Since

many is an adjective (tagged as JJ), from the perspective of ReqTagger, it is indistinguishable

from other situations where adjectives should be attached to glossary of terms entries (e.g., African

wildlife, Red Cross).

Gerund followed by a noun The CQ: Which are the FFCC stations that are stopping places and

which are the FFCC stations that have passenger traffic? contains a phrase stopping places, which,

from the perspective of POS tags, is a sequence of a verb ending with the -ing suffix (gerund)

followed by a noun. However, ReqTagger suggests a single word places instead. The problem

cannot be easily solved. Adding a rule with the gerund (VBG tag) followed by a noun would

generate many false-positive errors. For example, in a CQ: What is keeping John from promotion?,

the keeping John would be extracted as an entity candidate.

Candidates for relations

7.6. Summary 81

Wrong POS tags When processing one of the test requirements: IoT gateways expose endpoints.,

the POS tagger makes wrong decisions assigning a verb (VBZ) to a noun gateways. As a result,

ReqTagger thinks that gateways expose is a sequence of two verbs and suggests it as a single

relation name instead of the expected expose verb.

Verb in the past tense followed by a noun In the CQ What is a cooled beam?, ReqTagger

extracts the token cooled and suggests it as a candidate for a relation, while it should be a part of

the a cooled beam entity suggestion. If there is a determiner before the verb, a new rule could solve

that type of problem. However, we observed that frequently no determiner precedes such verbs.

In such cases adding a new rule matching a verb in the past followed by a noun would generate

many wrong results (e.g., from the requirement I called John yesterday, the called John would be

wrongly suggested as an entity).

Dropping tokens that should not be dropped In the CQ: Which historic places are in a

county? the sequence are in can be a relation to be modeled in an ontology. However, the analysis

of the training set provided arguments to discard such a phrase, so although the sequence is

extracted by one of the rules, it is later rejected.

Extracting only fragments of relations When processing the CQ: Which villages does the

road go through?, ReqTagger proposes the verb go as a relation candidate instead of go through.

This kind of error can be fixed by adding new rules.

Splitting long relation suggestions In A mapping might be needed to be executed before

another mapping., there is a phrase needed to be executed before that is marked by an expert as

a relation candidate. However, ReqTagger detects 2 relations there: needed to be and to be

executed before. Relations consisting of so many tokens were not observed in the CQs from the

training set, but they are popular among statements. To fix this kind of error, we should add new

rules.

7.6 Summary

In this chapter, we described how glossary of terms extraction from textual requirements can be

automated. We proposed two methods: a machine learning-based one and a handcrafted rule-based

one.

The rule-based method works better for several reasons:

• It is based on human expertise rather than purely on machine-based data analysis. The CRF-

based model may be unaware that phrases such as kind, category are not good candidates for

entities.

• It does not depend on the context words so that it scales to processing statements with good

quality.

• It uses sequences of POS tags rather than noun phrases defined as in spaCy.

However, the rule-based method is not perfect for several reasons:

• The list of rejected phrases is not exhaustive. One has to maintain it and expand if needed.

7.6. Summary 82

• The rule language we provide can only mark consecutive sequences of tokens as candidates

for entities and relations. There are cases where nonconsecutive sequences state phrases. For

example, in Do you prefer white or red wine?, ReqTagger finds red wine only and fails to

detect white . . . wine as a candidate.

• The method cannot decide whether an extracted phrase should be a class or an instance.

Moreover, it cannot distinguish between data and object properties.

In conclusion, considering the evaluation scores, we showed that it is possible to recommend

candidates for entities and relations without human supervision.

Chapter 8

BigCQ: a synthetic dataset of CQ

patterns formalized into SPARQL-OWL

templates

The CQ2SPARQLOWL dataset that we introduced in Chapter 6 is a good starting point to

understand how engineers construct CQs and how CQs are related to the knowledge provided in

ontologies. However, its small size and the multitude of modeling styles that engineers use to

express the knowledge limit the generalization capacity of the dataset as it does not cover many

possible question and query forms. Moreover, in Table 6.4, we show that only 6 CQ patterns

presented in CQ2SPARQLOWL are shared by more than one ontology. Considering higher-level

patterns, Table 6.6 lists 8 of them observed in two or more ontologies. Furthermore, in the same

table, we show that the most commonly used higher-level CQ pattern is shared by only 3 out of 5

ontologies.

Such a state of affairs may indicate that human language provides engineers with rich possi-

bilities to formulate questions. Various CQs can differ in their grammatical forms and use dif-

ferent words to express the same meaning. Our analysis of competency questions provided in

CORAL1 [49] shows that CQ2SPARQLOWL does not introduce some CQ forms (e.g., questions

about counting, for example, How many organizations can a partnership count?).

Regarding ontology modeling styles, the 5 ontologies included in CQ2SPARQLOWL provide

knowledge formalized by different engineers and describe diverse domains, but they do not cover

all possible modeling decisions.

For these reasons, in this section, we provide a method for automatic construction of CQs

related to SPARQL-OWL queries. The goal of this method is to generate a large set of diverse

CQ forms mapped to SPARQL-OWL queries targeting the most prevalent modeling decisions.

The BigCQ dataset generated using the method introduces 549 SPARQL-OWL query tem-

plates mapped to 77,575 CQ patterns and is motivated by a set of frequent ontology axiom forms

extracted from a large group of over 300 biomedical ontologies. The pairs of generated patterns

and templates can be filled with labels and IRIs extracted from a given ontology to produce even

larger collections of questions and queries.

BigCQ may be used to provide silver-standard datasets for tasks such as automatic translation

of CQs into SPARQL-OWL queries. The BigCQ dataset and the method implementation used

to generate the dataset are published online2. BigCQ and the method for CQ patterns and

1https://coralcorpus.linkeddata.es
2https://github.com/dwisniewski/BigCQ/

83

https://coralcorpus.linkeddata.es
https://github.com/dwisniewski/BigCQ/

8.1. Materials 84

SPARQL-OWL templates generation, which is visualized in Figure 8.1, has been described in a

preprint [187], the shortened form of which was accepted for presentation at the student abstract

track during AAAI’22.

This chapter is structured as follows: In Section 8.1, we discuss the datasets used to motivate

the method and evaluate the coverage of BigCQ. Section 8.2 covers the analysis of the frequent

ontology axioms processed into a form that helps transform them into questions and queries.

In Section 8.3, we describe the workflow of the method, while in Section 8.4, we describe the

dataset produced using the method. The coverage of the dataset measured on a set of previously

unseen CQs is calculated in Section 8.5. We conclude, describe potential applications, and provide

examples of generated questions and queries in Section 8.6.

8.1 Materials

There are four sources of information that influence the method and the BigCQ dataset described

in this chapter:

1. The dataset prepared by Ławrynowicz et al. [92], providing axiom patterns that frequently

recur in a large set of ontologies.

2. ACE verbalizer [80], which translates axioms stated in OWL into English sentences.

3. CQ2SPARQLOWL, which is introduced in Chapter 6, provides examples of how CQs are

formalized into queries.

4. CORAL [49], which provides the largest dataset of ontological requirements.

In the remainder of this section, we describe how we use each of these information sources.

8.1.1 Modeling patterns shared among ontological axioms

Ontological axioms are used to define how entities relate to each other. As we showed in Ta-

ble 8.1, each ontology in CQ2SPARQLOWL introduces a large set of various types of logical

axioms, among which the class expression axioms are the most common. A sample axiom can

state that Every piece of software implements an algorithm, relating classes representing software

and algorithm using a relation named implements.

Table 8.1: The number of axioms per ontology in CQ2SPARQLOWL.

Axiom type SWO Stuff AWO Dem@Care OntoDT
Class axioms 7,469 326 51 575 951
Object property axioms 96 118 8 55 19
Data property axioms 6 31 0 46 0
Individual axioms 133 279 0 27 0

Frequent axiom patterns

Ławrynowicz et al. [92] constructed a dataset listing frequent axiom patterns (further referenced as

frequent axiom patterns dataset). These patterns represent the most common modeling decisions

identified among 331 ontologies coming from the BioPortal repository [183]. They used the frequent

axiom patterns dataset to identify emergent ontology design patterns (ODPs) [136].

To construct the dataset, the authors selected a subset of axioms that meet the following

criteria:

8.1. Materials 85

?lhs SubClassOf: obo:TEMP#part_of some ?classexpr

Frequent axiom pattern(s)
INPUT

P
re
p
ro
ce
ss
in
g

 ex:C1 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty ex:OP1;
 owl:someValuesFrom ex:C2]

Axiom shape(s) generation

Every C1 OP1 C2.

Axiom shape verbalization

 ASK WHERE { ex:C1 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty ex:OP1;
 owl:someValuesFrom ex:C2] }

Step1: Query templates generation

Is it true that every C1 OP1 C2?

Step 2: CQ patterns generation

 Is it true that ... ASK ...
 Which ... SELECT ...

Step 3: Linking CQ patterns to SPARQL-OWL templates

P
os
tp
ro
ce
ss
in
g

 Is it true that a professor teaches students?

 ASK WHERE { <http://myonto.org/Professor> rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty <http://myonto.org/teaches>;
 owl:someValuesFrom <http://myonto.org/Student>] }

(Optional) Pattern and template Filling

CQ patterns and SPARQL-OWL templates
or

CQs and SPARQL-OWL queries

OUTPUT

Figure 8.1: The workflow of the method generating CQ and SPARQL-OWL forms
that was used to construct BigCQ.

8.1. Materials 86

• The axiom has to contain a named class on its left-hand side.

• The axiom has to express the subsumption or equivalence between classes.

Afterward, they applied the following procedure on those:

1. Transform all selected axioms into trees [92].

2. Use tree-mining techniques, namely SLEUTH [194] and its modification FF-SLEUTH [92]

to identify the most common subtrees.

3. Serialize the most common subtrees. These are either whole axioms, axiom fragments, or

axioms with elements replaced with variables.

The most popular axiom pattern extracted from BioPortal is ?lhs SubClassOf: obo:TEMP#part of

some ?classexpr. This pattern introduces variables on both the left-hand side and the right-hand

side (?lhs, ?classexpr). Moreover, it introduces domain-related IRI (obo:TEMP#part of).

Axiom shapes

We transformed each frequent axiom pattern into a domain-independent axiom shape using the

following procedure:

1. Substitute all domain-related IRIs (outside of XSD, OWL, RDF, and RDFS namespaces),

variables, and missing axiom fragments with artificial IRIs, according to forms defined in

Table 8.2. The artificial IRIs encode the entity type and provide numerical identifiers for

each entity of a given type.

2. Serialize the results in Turtle [138].

Table 8.2: Artifical IRIs used in axiom shapes. Reprint from [187].

IRI Short name (local name) Represents
http://example.org/C{NUM} C{NUM} class
http://example.org/I{NUM} I{NUM} individual
http://example.org/OP{NUM} OP{NUM} object property
http://example.org/DP{NUM} DP{NUM} data property
http://example.org/DT{NUM} DT{NUM} data type

By applying the procedure to the axiom pattern: ?lhs SubClassOf: obo:TEMP#part of

some ?classexpr, we generate the following axiom shape:

<http://example.org/C1> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org/OP1> ;

owl:someValuesFrom <http://example.org/C2>]

We constructed 239 distinct axiom shapes by applying the described transformations to all

axiom patterns. These provide the most common domain-independent modeling decisions among

a diverse set of ontologies.

8.2. Analysis of axiom shapes and their verbalizations 87

8.1.2 ACE verbalizer

Although Turtle serialization yields concise representations of axiom shapes, it is more natural for

humans to interpret natural language. We decided to translate all axiom shapes into sentences

expressed in English. For this purpose, we chose the ACE verbalizer [80]3 that uses Attempto

Controlled English (ACE) [54] to express OWL axioms as statements in natural language.

The ACE verbalizer expects ontology properties to be labeled with verbs and ontology classes

with noun phrases to generate grammatically correct verbalizations. It also provides a mapping of

OWL constructs to English words.

An example verbalization generated by ACE is Every computer that is owned by a gamer and

that contains a dedicated graphics card is a gaming PC.

8.1.3 Requirements collections

CQ2SPARQLOWL introduced in Chapter 6 is the biggest set of CQs formalized as SPARQL-

OWL queries, but it is not the biggest set of ontology requirements in general. The CORAL

dataset defines 834 requirements: 469 expressed as CQs and 365 as declarative sentences (e.g., A

device has a unique identifier.), which make it much bigger than CQ2SPARQLOWL.

We decided to use both datasets in the following contexts:

• We used all 234 CQs and their SPARQL-OWL formalizations defined in CQ2SPARQLOWL

to observe how CQs are constructed and how they relate to queries. This relation motivates

the design choices behind the method presented in this chapter.

• We used all CQs present in CORAL and not included in CQ2SPARQLOWL for evaluation

to verify to what extent the dataset we generate covers real, unseen CQs. As presented in

Table 8.3, 324 CQs from CORAL are not included in CQ2SPARQLOWL.

Table 8.3: The size of requirement datasets involved in BigCQ construction and
evaluation. Reprint from [187].

Dataset Number of requirements
CORAL (all CQs + sentences) 834
CORAL (all CQs) 469
CORAL (all CQs that are not in CQ2SPARQLOWL) 324
CQ2SPARQLOWL (all CQs) 234
CQ2SPARQLOWL (all CQs with SPARQL-OWL queries defined) 131

8.2 Analysis of axiom shapes and their verbalizations

First, we analyze the axiom shapes collected and their verbalized forms. The observations we make

in this step motivate the workflow of the method described later in this chapter.

8.2.1 Axiom shape verbalization groups

We used the ACE verbalizer [80] to process all 239 axiom shapes. As a result, 125 axiom shapes

are successfully translated into sentences, while 114 failed to be translated because they represent

axioms too complex for ACE verbalizer.

Using the ACE verbalizer, a sample axiom shape:

3https://github.com/Kaljurand/owl-verbalizer

https://github.com/Kaljurand/owl-verbalizer

8.2. Analysis of axiom shapes and their verbalizations 88

<http://example.org#C1> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org#OP1> ;

owl:someValuesFrom <http://example.org#C2>]

is translated into Every C1 OP1 a C2. As can be seen, the ACE verbalizer uses local names

extracted from IRIs to form sentences.

52 of the successfully verbalized axiom shapes express class subsumption using rdfs:subClassOf,

which relates two, possibly complex, class expressions. Let us refer to the left-hand side class ex-

pression as CE1 and the right-hand side one as CE2. Then, we can represent each axiom shape in

this group using a common form CE1 rdfs:subClassOf CE2.

The remaining 73 of the successfully verbalized axiom shapes express class equivalence using

owl:equivalentClass. The ACE verbalizer translates each such an axiom shape into two sen-

tences with class subsumption because the form of CE1 owl:equivalentClass CE2 is semantically

equivalent to two-way subsumption: CE1 rdfs:subClassOf CE2 and CE2 rdfs:subClassOf CE1.

A sample axiom shape:

<http://example.org#C1> owl:equivalentClass <http://example.org#C2>.

is translated into Every C1 is a C2. Every C2 is a C1..

We provide the list of verbalizations of all the verbalizable axiom shapes in Appendix D.

8.2.2 Mapping between fragments of axiom shapes and fragments of their

verbalizations

Each verbalization can be represented using a shared form LHS VERB RHS, where:

• VERB – stands for the main verb that denotes the root of the dependency parse tree con-

structed over the sentence.

• LHS (left-hand side) – stands for the span of text ranging from the beginning of the sentence

to the last non-whitespace character preceding VERB.

• RHS (right-hand side) – stands for the span of text ranging from the first non-whitespace

character after VERB to the end of the sentence.

Since axiom shapes introducing class equivalence can be transformed into pairs of axioms

with two-way subsumption, and because ACE verbalizer applies this transformation to produce

verbalizations, in the remainder of this section, we focus on subsumption only.

As the verbalizations we generated are translations of axiom shapes into human language,

there is a relation between VERB, LHS, RHS and CE1, CE2, rdfs:subClassOf defined. We observed

that among the verbalizations listed in Appendix D, there are two groups of verbalizations. We

visualized them in Figure 8.2. These are:

Verbalizations using the property label as the main verb If the (possibly complex) class

expression CE2 found at the right-hand side of the rdfs:subClass starts with a property restriction,

the ACE verbalizer uses the label of the property as the main verb. In that case, as presented on

the right-hand side of Figure 8.2:

1. Class expression CE1 in the axiom shape relates to the LHS of the verbalization.

8.2. Analysis of axiom shapes and their verbalizations 89

CE1
:C1 rdfs:subClassOf [a owl:Restriction;
 owl:onProperty :OP1;

 owl:someValuesFrom :C2]

CE2

Every C1 OP1 C2
LHS RHSVERB

CE1

:C1 rdfs:subClassOf :C2

CE2

Every C1 IS C2
LHS RHSVERB

Figure 8.2: Relations between fragments of verbalizations and fragments of axiom
shapes. Reprint from [187]

2. Class expression CE2 relates to both RHS and the VERB of the verbalization.

A sample axiom:

<http://example.org#software> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org#implements> ;

owl:someValuesFrom <http://example.org#functionality>

]

is verbalized into Every software implements a functionality so that:

• CE1 (<http://example.org#software>) relates to the LHS (Every software).

• CE2 ([
rdf:type owl:Restriction;

owl:onProperty <http://example.org\#implements>;

owl:someValuesFrom <http://example.org\#functionality>

])

relates to both:

– <http://example.org#functionality> to the RHS (a functionality).

– <http://example.org#implements> to the VERB (implements).

Hereafter, we refer to this kind of verbalization as Subject-Predicate-Object (SPO).

Verbalizations using the word is as the main verb If the string representing CE2 does not

start with a property restriction, the word is is used to relate verbalizations of class expressions. In

that case, LHS relates to CE1, RHS relates to CE2 and the main verb is relates to rdfs:subClassOf.

A sample axiom:

<http://example.org#game> rdfs:subClassOf <http://example.org#software>

is verbalized into Every game is a software so that:

• CE1 (<http://example.org#game>) relates to the LHS (Every game).

• CE2 (<http://example.org#software>) relates to the RHS (a software).

• rdfs:subClassOf relates to VERB (is).

Hereafter, we refer to this case as Subclass-Superclass (SS).

8.3. Method of translating axiom shapes into CQ patterns and query templates 90

Transformation of the SPO type into SS type We can observe that each verbalization of

the SPO type can be simply transformed into the SS type. Considering the example mentioned

above, one can transform: Every software implements a functionality into the SS form by putting

the phrase is something that just before the verb representing the property label. In that case,

the word is in Every software is something that implements a functionality becomes the root of the

dependency parse tree (VERB), and something that implements a functionality becomes the RHS

of the verbalization.

8.3 Method of translating axiom shapes into CQ patterns and query

templates

In this section, we motivate and describe the method of transforming axiom shapes into SPARQL-

OWL query templates and CQ patterns automatically.

8.3.1 Motivation

SPO and SS types in the context of question generation The distinction between SPO

and SS types of verbalizations is helpful to generate grammatically correct questions automatically.

Considering a sample verbalization of the SPO type: Every software implements an algorithm, one

can ask the following question: Does every software implement an algorithm? generated by wrapping

the verbalization with Does and ? strings and changing the 3rd person form of the verb implements

into infinitive verb. However, verbalizations following SPO require different transformations than

those following the SS type. In contrast to the example above, a sample verbalization following

the SS type Every software is a piece of information cannot be transformed into a grammatically

correct question by wrapping it with Does and ?.

Question targets Only 2% of CQs stated in CQ2SPARQLOWL represent questions asking

for two or more entities at once. For this reason, we decided to make our method able to generate

questions asking for at most a single thing. This restriction simplifies the problem, as in general,

in queries, any combination of IRIs can be replaced with variables. Many of such replacements

generate queries that are harder than the others to formulate as natural language questions.

In general, it is not equally simple to construct questions targeting different phrases stated in

verbalized axioms. Considering a simple verbalized axiom: Every software implements an algorithm,

it is easy to produce a question that asks about each ontological entity stated in the sentence:

1. What implements an algorithm? to ask about software.

2. What relates software and an algorithm? to ask about implements.

3. What does software implement? to ask about an algorithm.

However, let us consider a more complex example: Every dissertation is a piece of work that solves a

problem that is analyzed by a Ph.D. student. Here, the LHS is represented by Every dissertation, the

VERB is represented by is, and the RHS is a piece of work that solves a problem that is analyzed by

a Ph.D. student. It is easy to ask about the LHS, as one can state the following question: How can

we call a piece of work that solves a problem that is analyzed by a Ph.D. student?, but at the same

time it is hard to provide a way of producing questions about some of the entities mentioned in

the RHS, e.g., a Ph.D. student.

8.3. Method of translating axiom shapes into CQ patterns and query templates 91

Every C1 is C2

Every C1 OP1 C2

Every C1 is C2 that OP1 C3 or C4

No C1 OP1 C2

ROOT's left-hand side ROOT's right-hand sideMain verb
(ROOT)

1

2

3

4

Figure 8.3: Verbalizations generated from example axiom shapes that are split
into LHS, VERB and RHS. Reprint from [187]

In Figure 8.3, we present examples of verbalizations marked with LHS, VERB, and RHS. In

general, it is easy to ask about LHS or RHS if it consists of a single named class. Considering the

first example (Every C1 is a C2), we can ask about the LHS using What are the specializations of

C2? and the RHS using What kind of thing is every C1?. Considering the second example (Every

C1 OP1 a C2), we can ask about the LHS using What OP1 a C2? and the RHS using Which things

does C1 OP1?.

However, stating questions about particular ontological entities in the LHS in the 4th example

(No C1 OP1 a C2) or the RHS in the 3rd example (Every C1 is a C2 that OP1 a C3 or a C4) is

very hard and would cause the questions to be complicated (e.g., a question about C4 in the 3rd

example). For these reasons, we decided that in our method, we can ask for:

• LHS – if it corresponds to a single named class.

• RHS – if it corresponds to a single named class.

• VERB – if it corresponds to a property label.

8.3.2 Step 1: Query templates generation

As described in Section 6.4, there are 4 query forms that SPARQL handles: ASK, SELECT, DESCRIBE

and CONSTRUCT. The first two: ASK and SELECT are useful in the context of CQs.

In the remainder of this subsection, we use the following axiom shape:

<http://example.org#C1> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org#OP1> ;

owl:someValuesFrom <http://example.org#C2>]

as a running example.

Generating ASK queries To construct an ASK query that checks if a given BGP matches in the

ontology, one has to wrap a given axiom shape with ASK WHERE { ...} preamble and postamble.

The following ASK query can be constructed for our running example:

ASK WHERE { <http://example.org#C1> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org#OP1> ;

8.3. Method of translating axiom shapes into CQ patterns and query templates 92

owl:someValuesFrom <http://example.org#C2>] }

For each axiom shape, we use this procedure to produce a single ASK query.

Generating SELECT queries Similar to the ASK type of queries, SELECT also requires wrap-

ping BGPs with appropriate preamble and postamble. However, it also expects a set of variables

introduced in the BGP.

An example query:

SELECT ?x WHERE { ?x rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <http://example.org#OP1> ;

owl:someValuesFrom <http://example.org#C2>] }

asks about things that are in relation OP1 with instances of the class C2. The variable ?x is used

to collect the matched IRIs, which are then presented to the user.

A single query can introduce multiple variables to be matched in the ontology. For example,

the following query:

SELECT ?x ?y WHERE { ?x rdfs:subClassOf ?y }

simply searches for pairs of subclass and a superclass, but as we stated in the previous subsection,

our method does not support queries with multiple variables.

A special case of the SELECT type are queries that are stated to count rather than list all the

matches. This can be achieved by wrapping a variable listed after SELECT and WHERE keywords with

(COUNT(variable name) as count variable name). For example, the following query counts

how many classes are subclasses of C1:

SELECT (COUNT(?x) as ?count) WHERE { ?x rdfs:subClassOf <http://example.org#C1> }

Considering the decisions made in Section 8.2, from each axiom shape, one can produce up to

7 kinds of queries:

• A single ASK query.

• A pair of SELECT and SELECT COUNT stated to ask for the LHS if it represents a single named

class.

• A pair of SELECT and SELECT COUNT stated to ask for the RHS if it represents a single named

class.

• A pair of SELECT and SELECT COUNT stated to ask for the VERB if it represents a property

label.

In Table 8.4, we listed all kinds of query types generated from the running example.

If a given verbalization introduces a complex class expression in LHS or RHS or if the axiom

shape represents the SS type, we can construct only a subset of the 7 types of queries. We produce

all possible queries from a given axiom shape. Since the queries contain placeholders instead of

real IRIs, we refer to the generated representations as query templates.

8.3. Method of translating axiom shapes into CQ patterns and query templates 93

Table 8.4: All supported forms of query templates generated from
<C1> rdfs:subClassOf [a owl:Restriction; owl:onProperty <OP1>;
owl:someValuesFrom <C2>] axiom shape. Reprint from [187].

.
Query Type Example of query template

ASK
ASK WHERE {<C1> rdfs:subClassOf [a owl:Restriction;

owl:onProperty <OP1>;
owl:someValuesFrom <C2>]}

SELECT LHS
SELECT ?x WHERE {?x rdfs:subClassOf [a owl:Restriction;

owl:onProperty <OP1>;
owl:someValuesFrom <C2>]}

SELECT
RHS

SELECT ?x WHERE {<C1> rdfs:subClassOf [a owl:Restriction;
owl:onProperty <OP1>;
owl:someValuesFrom ?x]}

SELECT
VERB

SELECT ?x WHERE {<C1> rdfs:subClassOf [a owl:Restriction;
owl:onProperty ?x;
owl:someValuesFrom <C2>]}

SELECT
COUNT LHS

SELECT COUNT(?x) WHERE {?x rdfs:subClassOf [a owl:Restriction;
owl:onProperty <OP1>;
owl:someValuesFrom <C2>]}

SELECT
COUNT RHS

SELECT COUNT(?x) WHERE {<C1> rdfs:subClassOf [a owl:Restriction;
owl:onProperty <OP1>;
owl:someValuesFrom ?x]}

SELECT
COUNT
VERB

SELECT COUNT(?x) WHERE {<C1> rdfs:subClassOf [a owl:Restriction;
owl:onProperty ?x;
owl:someValuesFrom <C2>]}

8.3.3 Step 2: CQ patterns generation

For each of the 7 query types defined in Section 8.3.2, we manually prepared a list of transformations

used to transform each verbalization into question patterns automatically. A sample of those

transformations can be found in Table 8.5. Our goal was to provide as many transformations as

possible for each of the types so that large and diverse datasets of CQs could be constructed.

Table 8.5: Examples of CQ templates used to transform verbalized axiom shapes
following the SPO type and expressing subsumption. Here, {VERB} stands for a
property label. {LHS} and {RHS} stand for LHS and RHS, respectively. Reprint
from [187].

Question type Example of CQ template
ASK Does {LHS} {VERB} {RHS}?
Questions asking for LHS What {VERB} {RHS}?
Questions asking for RHS What does {LHS} {VERB} ?
Questions asking for VERB What relates {LHS} and {RHS}?
Questions asking for COUNT LHS How many things {VERB} {RHS}?
Questions asking for COUNT RHS How many things does {LHS} {VERB}?
Questions asking for COUNT VERB How many relations are there between

{LHS} and {RHS}?

For a given axiom shape verbalization, we mark LHS, VERB, and RHS and use them to fill

predefined question templates. For example, let us consider the following axiom shape verbaliza-

tion: Every C1 OP1 a C2 that OP2 a C3.. Here, the VERB is represented by OP1 (a label of an

8.3. Method of translating axiom shapes into CQ patterns and query templates 94

object property), RHS is represented by a C2 that OP2 a C3 and the LHS is represented by Every

C1.

We can construct the following CQ patterns by filling CQ templates defined in Table 8.5:

• ASK: Does every C1 OP1 a C2 that OP2 a C3?

• Asking for LHS: What OP1 a C2 that OP2 a C3?

• Asking for VERB: What relates every C1 and a C2 that OP2 a C3?

• Asking for COUNT LHS: How many things OP1 a C2 that OP2 a C3?

• Asking for COUNT VERB: How many relations are there between every C1 and a C2 that OP2

a C3?

Most verbalizations start their LHSs with the word every, which can be used to fill CQ tem-

plates, but its lack does not change the meaning of the constructed question. For this reason, we

decided to strip the word every when filling placeholders in CQ templates.

As can be seen, out of the 7 possible question types defined in Table 8.5, we generated CQ pat-

terns for only 5, since RHS represents a complex class expression, querying which is not supported

by the method as presented earlier in this section.

Our method takes a list of CQ templates assigned to each question type as one of the inputs.

Moreover, separate sets of CQ templates should be provided for axiom shape verbalizations follow-

ing SPO and SS types, as well as for verbalizations expressing subsumption or class equivalence

to generate grammatically correct questions.

To understand why separate sets of CQ templates have to be provided, let us analyze how

different examples of CQ templates asking for the RHS of a verbalization should look like:

• Subsumption + SPO: What does LHS VERB?

• Subsumption + SS: What kind of thing is LHS?

• Class equivalence + SPO: What is another name for things that LHS VERB?

• Class equivalence + SS: What kind of thing is another name for LHS?

For each of these 4 combinations, we provide possibly large sets of question templates categorized

into question types. A sample of these for the Subsumption + SPO scenario is provided in Table 8.5.

Synonym sets in CQ templates In English, multiple words may share the same meaning

and can be used interchangeably. For example, a CQ that starts with the word Which can have

the word replaced with What and still convey the same meaning. A CQ: Which games can be

regarded as open source? can be paraphrased by replacing the phrase regarded with its synonyms,

e.g., Which games can be counted as open source?, Which games can be categorized as open source?,

Which games can be considered as open source?.

We use that observation to provide CQ templates with synonym sets, substrings enclosed with

square brackets that are substituted with all predefined synonyms to multiplicate the number of

CQ templates. For example, with two predefined synonym sets:

• [kinds] representing the following synonyms: kinds, categories, classes

• [What] representing the following synonyms: What, Which

8.4. BigCQ: a dataset of CQ patterns mapped to SPARQL-OWL templates 95

, one can transform the following CQ template using synonym sets: [What] LHS are [kinds] of RHS?

to produce the following CQ templates:

• What LHS are kinds of RHS?

• Which LHS are kinds of RHS?

• What LHS are categories of RHS?

• Which LHS are categories of RHS?

• What LHS are classes of RHS?

• Which LHS are classes of RHS?

8.3.4 Step 3: Linking CQ patterns to SPARQL-OWL templates

Both SPARQL-OWL templates and CQ patterns defined above contain information about the

question type they are used to express. Since both Tables: 8.4 and 8.5 define 7 kinds of queries and

questions sharing their types, we can simply relate each SPARQL-OWL query template constructed

for a given question type to all CQ templates created for the same question type.

8.4 BigCQ: a dataset of CQ patterns mapped to SPARQL-OWL

templates

We implemented the method defined in Section 8.3 in Python and published it online4. Based on

the 125 successfully verbalized axiom shapes collected and the forms of CQs in theCQ2SPARQLOWL

dataset, we generated a comprehensive list of CQ templates, listed in Appendix G, which are used

to translate axiom shape verbalizations into CQ patterns. We tried to provide as many CQ tem-

plates as possible to cover the multiple forms CQs may have. We handcrafted a list of synonym

sets that is provided in Appendix F. It is used in CQ templates to multiplicate the size of the

generated dataset.

As a result, as presented in Table 8.6, we created 77,575 CQ patterns assigned to 549 unique

SPARQL-OWL templates. The dataset provides over 93x more CQs patterns than the total num-

ber of CQs collected inCORAL and 12x more SPARQL-OWL templates than inCQ2SPARQLOWL.

It is important to note that BigCQ contains CQ patterns and SPARQL-OWL templates that

should be filled with domain vocabulary to form real CQs and queries. For example, the CQ

pattern: Does C1 OP1 C2?, in the context of the food-related domain, can be filled with various

ontological entity labels to form CQs, e.g., Does cheese contain gluten?, Does expired food causes

illness?. For this reason, BigCQ may be used to generate millions of CQs and SPARQL-OWL

queries. In Table 8.6, we show that a single CQ pattern may be linked to multiple query templates,

and conversely, a single SPARQL-OWL query template may be linked to many CQ patterns.

The one-to-many relation between SPARQL-OWL templates and CQ patterns comes from the

multiple CQ templates with various synonym sets defined for each question type. One-to-many

relations between a single CQ pattern and SPARQL-OWL templates come from ambiguous CQ

templates. For example, the CQ template: What is C1 can be interpreted as a question about

listing all subclasses or all superclasses of C1. In the first case, we define C1 by showing what

specializations it has, while in the second case, we define C1 by showing where it lies in the

taxonomy.

4https://github.com/dwisniewski/BigCQ

https://github.com/dwisniewski/BigCQ

8.5. Coverage of BigCQ measured on existing datasets 96

Table 8.6: Overall summary of BigCQ. Reprint from [187].

Measured dimension Measured value
Number of distinct CQ patterns 77,575
Number of distinct SPARQL-OWL query templates 549
Average number of CQ patterns per SPARQL-OWL template 171.68
Average number of SPARQL-OWL templates per a CQ pattern 1.22

Figure 8.4 presents the number of CQ patterns generated for each of the 7 question types

analyzed. As can be seen, the vast majority of CQ patterns express ASK queries. There are two

reasons for this state of affairs:

1. It is always possible to state a CQ pattern and a SPARQL-OWL template to express ASK

questions regardless of the complexity of class expressions observed in the axiom shape.

2. It is relatively easy to construct a large list of various question forms represented as CQ

templates that ask if a given BGP matches in the ontology.

Frequently, RHSs of verbalizations represent complex class expressions, providing multiple entities

our method cannot ask for. For this reason, many more questions are asking about LHSs rather

than RHSs.

We found counting questions and questions about verbs the hardest ones to paraphrase so that

they are represented with the smallest number of CQ patterns.

BigCQ introduces a subset of OWL vocabulary that is rarely used among SPARQL-OWL

queries in CQ2SPARQLOWL. In Table 8.7, we listed all IRIs coming from OWL and RDFS

namespaces and ranked them by the number of occurences in BigCQ. Considering those, the fol-

lowing ones: owl:equivalentClass, owl:qualifiedCardinality, owl:maxQualifiedCardinality,

owl:complementOf, and owl:minCardinality are present in BigCQ but are not used in any query

defined in CQ2SPARQLOWL.

Table 8.7: The number of the most frequent (present in more than 5% of BigCQ
query templates) OWL and RDFS-related IRIs. Reprint from [187].

Construct Times observed
owl:Restriction 504/549
owl:onProperty 504/549

owl:intersectionOf 319/549
rdfs:subClassOf 268/549

owl:equivalentClass 281/549
owl:someValuesFrom 273/549

owl:qualifiedCardinality 87/549
owl:hasValue 71/549
owl:unionOf 69/549

owl:allValuesFrom 56/549
owl:maxQualifiedCardinality 38/549

owl:complementOf 37/549
owl:minCardinality 30/549

8.5 Coverage of BigCQ measured on existing datasets

To check how well CQ patterns and SPARQL-OWL templates cover existing datasets, we evaluated

BigCQ on datasets that did not influence the method‘s workflow.

8.5. Coverage of BigCQ measured on existing datasets 97

Figure 8.4: Number of CQ patterns generated for each of the 7 categories. Reprint
from [187]

As SPARQL-OWL query templates created in BigCQ are simple transformations of axiom

shapes and are not influenced by queries found in CQ2SPARQLOWL, we used all queries intro-

duced in CQ2SPARQLOWL to evaluate the coverage of query templates on real cases.

We evaluated BigCQ in the following way:

• From each of the 324 CQs unique for CORAL (that is not included in CQ2SPARQLOWL),

we replaced all domain-related vocabulary with placeholders. Then, an expert verified if this

form is equal to any of the CQ patterns defined in BigCQ.

• From each SPARQL-OWL query in CQ2SPARQLOWL, we replaced all domain-related

IRIs with placeholders. Then, an expert verified if this form is equal to any of SPARQL-

OWL templates defined in BigCQ.

We provide the results of the evaluation in Table 8.8. Regarding SPARQL-OWL templates, the

coverage of query templates varies between ontologies in CQ2SPARQLOWL. The highest one

was observed for the AWO Ontology (71%), while the lowest one was observed for Stuff Ontology

(9%). Considering SPARQL-OWL queries from all ontologies jointly, 45.74% of them are covered

by BigCQ.

We found that 19.38% of queries defined in CQ2SPARQLOWL share the following query

template:

SELECT ?x WHERE {

[] rdfs:subClassOf <C1>, [owl:onProperty ?x; owl:someValuesFrom []].

}

This template is not provided in BigCQ. However, such a template can be found in Dem@Care

ontology only. Moreover, 11.63% of queries in CQ2SPARQLOWL express the following template:

SELECT ?x WHERE {

<C1> rdfs:subClassOf [

a ow:Restriction ;

owl:onProperty <OP1>;

owl:someValuesFrom ?x

] . ?x rdfs:subClassOf <C2>

8.6. Summary 98

Table 8.8: The coverage of CQ patterns and SPARQL-OWL templates on real-
world cases. Reprint from [187].

Dataset Coverage
SPARQL-OWL queries from CQ2SPARQLOWL 45.74%

CQs unique for CORAL (that are not in CQ2SPARQLOWL) 63.89%

}

, which is also missing in BigCQ. As can be seen, adding support for these two SPARQL-OWL

query templates can increase the query coverage measured on the CQ2SPARQLOWL dataset by

over 30 percentage points.

The remaining SPARQL-OWL queries that are not covered can be categorized as follows:

• Queries with variables, the bindings of which are not returned to the user.

• Queries asking for ontological entities stated in complex class expressions.

• Queries with owl:disjointWith. These are not covered by the frequent axiom patterns

dataset.

• Queries using union keyword rather than owl:unionOf.

• Queries asking for multiple resources at once (introducing multiple variables).

Regarding CQs stated in CORAL that are not included in CQ2SPARQLOWL, the BigCQ

dataset covers almost 64% of forms presented there. Considering that human language provides

rich possibilities for expressing questions, such a score can be interpreted as a success.

Some CQs that are not covered by BigCQ are:

• What are the rivers which belong to municipality x?, which is not covered because of the

presence of the second which word.

• Through which autonomous community does the river x flow into?, which is not covered since

no CQ pattern in BigCQ starts with the Through word.

• Where does the river X flows into?, which is not covered since no CQ pattern in BigCQ starts

with the Where word.

• Who is the owner of a given device?, which is not covered since no CQ pattern in BigCQ

starts with the Who word.

• What consumable items does a player have in game?, which is not covered because such a

question form is not supported by BigCQ.

• After gaining an item in the game, how many players use it?, which is not covered because there

is an additional context introduced before the comma.

8.6 Summary

In this section, we discuss how BigCQ can be used to generate materialized CQs and SPARQL-

OWL queries. Moreover, we provide a list of areas where incorporating such a dataset may increase

the quality of a given method, tool, or analysis.

8.6. Summary 99

8.6.1 Filling BigCQ with domain-related vocabulary

BigCQ introduces CQ patterns paired with SPARQL-OWL templates. We can materialize them

by filling artificial identifiers with domain-related labels and IRIs. We provide a simple proof of

concept piece of code showing how CQ patterns and SPARQL-OWL templates can be populated

with labels and IRIs extracted from ontology axioms5.

However, we have to remember that the CQ patterns filled with ontology vocabulary may

require additional postprocessing. If, when materializing the CQ pattern: Which C1 is a C2?, C2

is filled with a noun in plural, the word is should be replaced with are and a should be omitted.

Similarly, CQ patterns like: Does C1 OP1 a C2? should replace Does with Do if the label used

to fill C1 uses a noun in plural.

A subset of CQ patterns mapped to SPARQL-OWL templates involve cardinality restrictions.

These include numeric values that are represented using {NUM} value markers shared between

patterns and templates (e.g., Every C1 is a C2 that OP1 at most {NUM} thing.). In BigCQ,

we replaced the numeric values with a single selected value. However, these could be treated

analogously to synonym sets so that we could produce multiple patterns and templates by filling

the numeric value markers with various popular numbers.

8.6.2 Potential applications of BigCQ

We found several research projects where BigCQ may be beneficial:

• CLARO by Keet et al. [86] provides a controlled natural language (CNL) guiding how to

construct CQs. Since CLARO is built from a set of only 234 CQ patterns, adding over 77,000

CQ patterns from BigCQ will increase the expressivity of that tool.

• Glossary of terms taggers introduced in Chapter 7. BigCQ can provide a large dataset to

train taggers and handcraft rules.

• Ren et al. [148] provided the idea of testing ontologies with competency questions. They

collected CQs defined for two ontologies, then extracted and analyzed a set of 12 archetypes

from them. Applying CQ templates or materialized CQs from BigCQ could result in a larger

collection of archetypes analyzed.

• BigCQ could be used in a new challenge in QALD6 [174] as a task for querying terminological

parts of ontologies. The scripts transforming verbalizations (sentences) into questions that

we published with BigCQ may be used to generate questions from documents automatically.

8.6.3 Examples of CQ patterns and SPARQL-OWL query templates

Below, we provide some examples of CQ patterns formalized as SPARQL-OWL templates that are

included in BigCQ

Which sort of entities OP1 C2 that OP2 C3?

SELECT ?x WHERE {

?x rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <OP1> ;

5https://github.com/dwisniewski/BigCQ/blob/main/template_materialization_poc/materialize.py
6http://qald.aksw.org

https://github.com/dwisniewski/BigCQ/blob/main/template_materialization_poc/materialize.py
http://qald.aksw.org

8.6. Summary 100

owl:someValuesFrom [

owl:intersectionOf (

<C2> [

rdf:type owl:Restriction ;

owl:onProperty <OP2> ;

owl:someValuesFrom <C3>

])

]

] . }

Could we regard C1 the same as C2 that OP1 C3 and that OP2 nothing but C4?

ASK WHERE {

<c1> owl:equivalentClass [

owl:intersectionOf (<C2> [

rdf:type owl:Restriction ;

owl:onProperty <OP1> ;

owl:someValuesFrom <C3>] [

rdf:type owl:Restriction ;

owl:onProperty <OP2> ;

owl:allValuesFrom <C4>]

)] . }

How many categories of things does C1 OP1?

SELECT (COUNT(?x) AS ?cnt) WHERE {

<C1> rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty <OP1> ;

owl:someValuesFrom ?x]}

Chapter 9

SeeQuery: a recommender of

SPARQL-OWL queries for CQs

In this chapter, we introduce SeeQuery – an automatic method making SPARQL-OWL query

recommendations out of CQs. SeeQuery consists of a pipeline of 6 processing steps aimed to

generate queries via template matching and filling.

The structure of this chapter is as follows: In Section 9.1, we introduce materials used to design

and evaluate SeeQuery. In Section 9.2, we describe each of the processing steps and evaluate

SeeQuery in Section 9.3. We discuss the limitations of SeeQuery and errors observed during

the evaluation in Section 9.4. Finally, we conclude in Section 9.5.

9.1 Materials

9.1.1 CQs translated into SPARQL-OWL

SeeQuery is a data-driven method, developed based on existing collections of CQs translated

into SPARQL-OWL that we introduced in Chapters 6 (CQ2SPARQLOWL) and 8 (BigCQ).

These, as described later in this section, are transformed into a common set consisting of pairs of

domain-agnostic CQ patterns and SPARQL-OWL query templates. We call that set patterns and

templates set and use it to guide the method on how given forms of CQs map to queries (e.g., CQs

starting with can are expressed using the ASK query form).

Approximation filtering CQ2SPARQLOWL contains a subset of translations, in which enti-

ties mentioned in CQs are not explicitly modeled in an ontology. Let us consider the CQ SWO 76:

Is there a publication with [it]? and its translation in SPARQL-OWL:

prefix swo: <http://www.ebi.ac.uk/swo/>

ASK WHERE { $PPx1$ rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty swo:SWO_0000043 ;

owl:hasValue ?doc] .

filter(STRSTARTS(?doc, "http://dx.doi.org/")) }

We observe that even though SWO does not introduce any ontological entity representing a

publication, it can be approximated using some operation over the entities provided in the ontology.

In this query, we check whether the documentation is defined for a given piece of software and

if the IRI of the documentation starts with http://dx.doi.org/. The placeholder $PPx1$ –

101

9.1. Materials 102

related to placeholder [it] in the CQ – represents a given piece of software, while the property

swo:SWO 0000043 represents a relation labeled as has documentation.

In other words, the engineer who stated the query used their expertise to approximate a publi-

cation with documentation having a DOI. The need for external knowledge to construct approxi-

mations makes such pairs of CQs and queries unusable for automatic translators. For this reason,

we decided to reject all approximated queries for further processing.

As a result, considering CQ2SPARQLOWL, a subset of 99 out of 131 pairs of CQs translated

into SPARQL-OWL are used in SeeQuery. The problem of approximations does not occur in

BigCQ, so we use all 77,575 CQ patterns and their translations.

Patterns and templates set Patterns and templates set is the set of domain-agnostic CQ

patterns mapped to SPARQL-OWL query templates. We built it based on CQ2SPARQLOWL

with approximated translations rejected and BigCQ datasets using the following procedure:

• Considering CQ2SPARQLOWL, for each CQ and its SPARQL-OWL translation, we man-

ually related phrases stated in a CQ to IRIs in the query. Then, we replaced the related

elements with common chunk identifiers shared between each CQ and its query:

– EC{IDX} – used if the IRI represents an instance or a class.

– PC{IDX} – used if the IRI represents an object property or a data property.

In both cases, {IDX} is a unique numeric chunk identifier. The visualization of this step is

presented in Figure 9.1.

• As BigCQ already contains domain-agnostic patterns and templates differing only in place-

holder naming convention, we transformed placeholders for classes and instances into EC

markers and placeholders for properties into PC markers using regular expressions.

Are solutions never emulsions? ASK	WHERE	{:Solution	owl:disjointWith	:Emulsion	.}	

EC1 EC2 EC1 EC2

Are EC1 never EC2? ASK	WHERE	{	EC1	owl:disjointWith	EC2	.}	

CQ Query

CQ pattern SPARQL-OWL template

Figure 9.1: CQ pattern to SPARQL-OWL template mapping example. Relations
between phrases and IRIs are marked in the upper part of the Figure. In the lower
part of the Figure, a pair of a CQ pattern and a SPARQL-OWL query template is
presented. Reprint from [188].

9.1.2 Evaluation set

To construct the evaluation set, we searched the web for CQs and ontologies other than those

described in Section 9.1.1 that meet the following criteria:

1. The set of CQs and the ontology have to be publicly available.

2. Either SPARQL-OWL queries for CQs should be publicly available, or the domain covered

by a given ontology should be familiar to us so that it is possible to assess if the queries

generated by SeeQuery are correct or not.

9.2. Method description 103

3. At least one CQ should ask for the terminological part of the ontology.

We found two ontologies meeting the criteria:

1. Pizza Ontology [149] – a popular ontology used in OWL teaching tutorials with 42 require-

ments provided.

2. TrhOnt [12] – an ontology describing rehabilitation domain with 20 CQs provided.

There are 12 requirements in Pizza Ontology that are in the form of statements rather than

CQs. We rephrased each such statement into question (e.g., Find all the nut free pizzas. into Which

pizzas are nut free?).

9.2 Method description

SeeQuery consists of a sequence of 6 processing steps as presented in Figure 9.2. The method

requires a CQ and an ontology (in our implementation, we expect a CQ to be a string and an

ontology to be provided as an OWL/XML file). SeeQuery transforms these inputs into at least

one SPARQL-OWL query if it is possible or produces an error message otherwise.

While the detailed description of the method is provided later in this section, we can summarize

it as:

1. Analyze the CQ and search for phrases representing domain-related vocabulary that should

be modeled in the ontology as classes, individuals, or properties.

2. Remove domain-related vocabulary from the CQ to form a CQ pattern candidate.

3. Identify a CQ pattern in patterns and templates set that is the closest one in terms of meaning

to our CQ pattern candidate.

4. Select all SPARQL-OWL query templates assigned to the CQ pattern selected in the previous

step.

5. Link phrases in the CQ to labels of ontological entities.

6. Fill selected SPARQL-OWL query templates with IRIs of the ontological entities linked to

phrases.

9.2.1 Step 1: Vocabulary detection

IRIs, which in OWL ontologies serve as unique references to ontological entities, are used to

construct graph patterns of SPARQL-OWL queries. For this reason, the first processing step

focuses on parsing CQs to identify domain-related phrases in the input CQ. These phrases should

relate to ontological entities.

First, let us introduce basic terms. Let us consider an ontological entity label as a string

extracted from the ontological entity using:

1. skos:prefLabel property value if it is provided and nonempty. If multi-language labels are

provided (using language tags), we choose the one written in English. If multiple labels in

English are provided, we chose the first one.

2. If there is no skos:prefLabel, use rdfs:label property value using the same procedure as

defined in the previous point.

9.2. Method description 104

 SELECT DISTINCT * WHERE {
 ?x rdfs:subClassOf <EC1>,
 [a owl:Restriction;
 owl:onProperty <PC1>;
 owl:someValuesFrom <E]
 }

 SELECT DISTINCT * WHERE {
 ?x rdfs:subClassOf <EC1>,
 [a owl:Restriction;
 owl:onProperty <PC1>;
 owl:someValuesFrom <

]
 }

What kind of software provides data visualization?

CQ:

http://example.org

Ontology:

ENTITIES PREDICATES
EC1: software
EC2: data visualization

PC1: provides

What kind of EC1 PC1 EC2?

Which EC1 PC1 EC2?

 SELECT DISTINCT * WHERE {
 ?x rdfs:subClassOf <EC1>,
 [a owl:Restriction;
 owl:onProperty <PC1>;
 owl:someValuesFrom <EC2>]
 }

 SELECT DISTINCT * WHERE {
 ?x rdfs:subClassOf <http://example.org/application>,
 [a owl:Restriction;
 owl:onProperty <http://example.org/implements>;
 owl:someValuesFrom <http://example.org/data_visualization>
]}

EC1: software. => application (http://example.org/application)
EC2: data visualization => visualization (http://example.org/data_visualization)
PC1: provides => implements (http://example.org/implements)

STEP 1: VOCABULARY DETECTION

STEP 2: CQ PATTERN CANDIDATE EXTRACTION

STEP 3: CLOSEST KNOWN CQ PATTERN SELECTION

STEP 4: SPARQL-OWL TEMPLATE(S) SELECTION

STEP 5: PHRASE LINKING

STEP 6: QUERY (QUERIES) FILLING

PR
O

C
ESSIN

G
 W

O
R

K
FLO

W

Figure 9.2: The workflow of SeeQuery. The outputs of the current step serve
as the inputs of the subsequent step in a processing pipeline, the flow of which is
represented with the grey arrow. Multiplicated boxes visualized in the background
of steps 4-6 indicate that SeeQuery can select and process more than one query
template at once to produce multiple query recommendations. If that is the case,
SeeQuery processes all these templates independently.

9.2. Method description 105

3. If there is no skos:prefLabel, nor rdfs:label, use the local name extracted from the IRI

of an entity.

Since local names encoded in IRIs are often artificial identifiers that are hard to be understood by

humans (e.g., 123834 in http://example.org/123834), we prioritize other label sources if they

are provided.

Let the normalized entity label be an ontological entity label with all non-alphanumeric charac-

ters removed and tokens normalized to a space-separated format (e.g., the snake case some entity label

is normalized into some entity label).

The analysis of CQ2SPARQLOWL shows that it is not trivial to relate ontological entity

labels to phrases in CQs. We identified two main reasons that make the problem difficult:

• Grammar-related – phrases stated in CQs are sometimes expressed using different grammar

forms than labels in ontologies (e.g., singular versus plural nouns, different verb tense or

person). Two examples of grammar-related differences found in CQ2SPARQLOWL are

provided in the first two rows of Table 9.1.

• Synonym-related – phrases stated in CQs are sometimes expressed using different words that

serve as synonyms to labels in ontologies (e.g., software – application, provides – implements).

Three examples of such differences are presented in the last three rows of Table 9.1.

Table 9.1: Differences between phrases stated in CQs and ontological entity labels.
Reprint from [188].

CQ id CQ Ontological entity label Difference
Stuff 06 Are solutions never emul-

sions?
Solution, Emulsion plural vs sin-

gular
AWO 04 Does a lion eat plants or

plant parts?
eats 1st vs 3rd per-

son
SWO 14 Which software tool created

[this data]?
has specified data output synonym

SWO 53 Is this software available as
a web service?

has interface synonym

Dem@Care 3 What types of demographic
data are collected?

DemographicCharacteristics-
Record

synonym

The grammar and synonym-related differences show that a simple search for normalized onto-

logical entity labels in CQs (further referenced as direct matching) generates incomplete results.

For this reason, we propose a two-step procedure for vocabulary detection consisting of direct

matching followed by domain phrases extraction.

As the first step, we use direct matching to check which normalized entity labels are explicitly

stated in the CQ. If a match is found, we classify it, depending on the ontological entity type:

• as an entity chunk – if the entity represents an individual or a class.

• as a predicate chunk – if the entity represents an object property or a data property.

Moreover, we mark where the match starts and ends in the CQ. Direct matching assures that every

ontological label mentioned explicitly in the CQ is found.

As the second step, we use ReqTagger introduced in Chapter 7 to perform domain phrases

extraction. ReqTagger identifies and classifies domain-related phrases independently from the

ontology. We consider all phrases extracted with ReqTagger, the start and end offsets of each,

and the type suggestions generated so that phrases suggested as terms and relations are classified

9.2. Method description 106

as entity chunks and predicate chunks, respectively. The output of domain phrases extraction is

related to ontology entities in subsequent processing steps.

9.2.2 Step 2: CQ pattern candidate extraction

The CQ provided as an input as well as domain-related vocabulary detected in the previous step

are used to construct a domain-agnostic CQ pattern candidate.

A CQ pattern candidate is generated out of a CQ in the following way:

1. Replace with a unique entity chunk placeholder (EC{NUM}, where {NUM} is a unique number

representing a given entity) each phrase classified as an entity chunk during direct matching

or domain phrases extraction.

2. Replace with a unique predicate chunk placeholder (PC{NUM}, where {NUM} is a unique num-

ber representing a given predicate) each phrase classified as a predicate chunk during direct

matching or domain phrases extraction.

If, as presented in Figure 9.3, any pair of phrases marked with direct matching and domain

phrases extraction are overlapping spans of text, we merge them by considering a union of these

spans and assigning a single chunk identifier. If any overlapping spans are of different chunk

types (e.g., ReqTagger suggests an entity chunk, while direct matching a predicate chunk), the

suggestion from direct matching has priority since it is based on the actual content of a given

ontology.

As a result of this step, different similarly constructed CQs related to various domains, e.g.,

What kind of fruit is used in this shake?, What kind of company is led by prof. Jones?, What kind of

database provides access to DBpedia? are transformed into the same CQ pattern candidate: What

kind of EC1 PC1 EC2?.

CQ: What is the algorithm used to process graph data ?

Direct matching
http://example.com/algorithm

http://example.com/12
skos:prefLabel: graph data

POS: WP VBZ DT NN VBN TO VB NN NNS

Domain phrases extraction
ENTITY ENTITYPREDICATE

Figure 9.3: The spans identified in a sample CQ using direct matching and domain
phrases extraction.

9.2.3 Step 3: Closest known CQ pattern selection

The third step of the pipeline relates the CQ pattern candidate generated in the previous step to

one of the known CQ patterns stored in patterns and templates set so that the CQ pattern with

the closest meaning is chosen.

The natural language is so rich that it is likely to construct a CQ pattern candidate that is not

included in the patterns and templates set. For this reason, we introduce a procedure for choosing

the most similar one.

Let the n-grams set be a set of all possible n-grams generated from a tokenized sequence for a

fixed n. Let anygrams set be a union of all n-grams sets for n between 1 and the number of tokens

in a tokenized sequence.

9.2. Method description 107

Considering I like her. tokenized into: [’I’, ’like’, ’her’, ’.’], the follwing n-grams sets can be

produced:

• 1-grams set – {’I’, ’like’, ’her’, ’.’ }

• 2-grams set – {’I like’, ’like her’, ’her .’}

• 3-grams set – {’I like her’, ’like her .’}

• 4-grams set – {’I like her .’}

As a consequence, an anygram set for this example is {’I’, ’like’, ’her’, ’.’, ’I like’, ’like her’, ’her .’,

’I like her’, ’like her .’, ’I like her .’}
Let anygram-based Jaccard similarity of two tokenized sequences be a measure calculating the

Jaccard similarity between the anygram sets generated from both sequences. For the given two

sets: A and B, the Jaccard similarity is calculated using the following equation:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

.

The procedure selecting the most similar CQ pattern is defined as follows:

1. Select CQ patterns from patterns and templates set introducing the same number of EC and

PC markers as the CQ pattern candidate constructed.

2. For every CQ pattern selected and a given CQ pattern candidate, calculate the anygram-based

Jaccard similarity between the tokenized sequences.

3. Select the CQ pattern with the highest similarity.

This procedure can map an example CQ pattern candidate What EC1 PC1 EC2? into the CQ

pattern Which EC1 PC1 EC2? being its paraphrase sharing the same meaning.

9.2.4 Step 4: SPARQL-OWL template(s) selection

In patterns and templates set, each CQ pattern is related to one or more SPARQL-OWL templates.

These relations provide information on how formulations of CQs are realized in SPARQL-OWL

queries in CQ2SPARQLOWL and BigCQ datasets. For example, the following CQ pattern

starting with does was formalized as two kinds of ASK queries:

"Does EC1 PC1 EC2?": [

"ASK WHERE { <EC1> rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty <PC1> ;

owl:hasValue <EC2>] . }",

"ASK WHERE { <EC1> rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty <PC1> ;

owl:someValuesFrom <EC2>] . }"

]

Using patterns and templates set and the CQ pattern selected in the previous step, for further

processing, we choose all SPARQL-OWL query templates a given CQ pattern relates to. From

now on, each query template is processed independently in the subsequent processing steps. As a

consequence, we can generate more than one SPARQL-OWL query recommendation.

9.2. Method description 108

9.2.5 Step 5: Phrase linking

This step aims to link the phrases extracted during the vocabulary detection step to appropriate

ontological entities. The IRIs of the resources are then used to construct queries. As the direct

matching already linked phrases, here, we link the output of domain phrases extraction.

Let a phrase vector pi denote a vector calculated as an element-wise average of embeddings

related to tokens in a given phrase pi. The method of generating embedding can be chosen freely,

but in our implementation, we used the BERT [38] model for this purpose. A phrase vector pi

can be then interpreted as a fixed-length dense representation of the meaning of pi.‘

Let Lnthings represent the set of all normalized labels related to classes in a given ontology.

Similarly, let Lnprop represent the set of all normalized labels related to object and data properties.

First, we lemmatize each pi (i.e., transform each inflected token into its base form [107]) and

check if the lemmatized pi is equal to any element from:

• Lnthings – if pi is classified as an entity chunk.

• Lnprop – if pi is classified as a predicate chunk.

We also verify if the lemmatized pi is equal to any lemmatized element from Lnthings or Lnprop.

If no match is found for a given pi, we calculate the cosine similarity between pi and all phrase

vectors generated for labels in Lnthings or Lnprop depending on whether pi represents an entity

or a relation. If a match is found, we link pi with the matched entity and assign the maximum

similarity value (1.0) between pi and the phrase vector generated from the label of the linked

entity.

If the most similar vector scores lower than the threshold hyperparameter γ, SeeQuery stops

processing and informs the user that there is no ontological entity related to pi modeled in the

ontology and, as a consequence, no query can be generated.

Further actions depend on the SPARQL-OWL template used. If the query template introduces

no PC markers, no properties have to be linked. In this case, we link each phrase pi independently

by choosing the ontological entity with the highest cosine similarity.

If PC markers are used in the query template, we cannot link ontological entities independently

of each other, because properties may introduce domain and range restrictions. These influence

the choice of ontological entities that serve as the subject and object of a given property as they

should comply with the property restrictions.

Moreover, we observe that ontologies in CQ2SPARQLOWL provide rich class taxonomies and

a few quite general properties. These properties have often labels that are different than phrases

stated in CQs. It could be beneficial to use additional information sources such as axioms stated

in the ontology to see which properties are used together with which classes or instances.

For these reasons, to handle the problem, we present a way of choosing the best translations

of properties and their arguments jointly.

We assume that each predicate chunk PC representing a property in a SPARQL-OWL query

template must have exactly two arguments representing the property’s subject and object. Both

arguments in the CQs are entity chunks, referenced to as ECs and ECo, respectively.

Let translate(pi) represent a function that for a given phrase pi returns a set of ontological

entities, the labels of which are possible translations of pi. Denote by domain(prop) the domain

of the property prop if it is specified or owl:Thing otherwise. Denote by range(prop) the range

of the property prop if it is specified or owl:Thing otherwise. Denote by super(C) the set of all

superclasses of a given class C.

The following helper functions operate on the axioms defined in the ontology O:

9.2. Method description 109

1 function example score(subj,pred,obj)
2 if subj ∈ lhs(pred, oobj) return 1
3 else if super(subj) ∩ lhs(pred, obj) 6= ∅ return 0.75
4 else if super(obj) ∩ rhs(pred, subj) 6= ∅ return 0.75
5 else if rhs(pred, subj) 6= ∅ ∨ lhs(pred, obj) 6= ∅ return 0.5
6 else if ∃subj′ ∈ super(subj) : rhs(pred, subj′) 6= ∅ return 0.25
7 else if ∃obj′ ∈ super(obj) : lhs(pred, obj′) 6= ∅ return 0.25
8 else return 0
9 end
Algorithm 2: Computing an example score for a given triple of ontological entities
(subj, pred, obj). The score is based on the content of the ontology and rewards triples that
co-occur in the axioms. Reprint from [188].

• τ(prop) returns a set of pairs of classes that are expected to be seen with property prop, in
this sense that if (C,D) ∈ τ(prop) then for an individual i1 of the class C, there should exist
some (possibly anonymous) individual i2 of the class D such that i1 is connected to i2 via
prop [188].

τ(prop) = {(C,D) : (C SubClassOf: prop someD) ∈ O∨

∃n ≥ 1: [(C SubClassOf: propminnD) ∈ O ∨ (C SubClassOf: prop exactlynD) ∈ O]}

• lhs(prop,D) = {C : (C,D) ∈ τ(prop)} is the set representing first elements of the pairs of

τ , intuitively: these are known possible classes of the left-hand sides of assertions related to

prop [188].

• rhs(prop, C) = {D : (C,D) ∈ τ(prop)} is the set of the second elements of the pairs of τ ,

corresponding to the set of classes of the right-hand sides of assertions related to prop [188].

For a given string marked as a predicate chunk PC, its subject ECs, and object ECo, we

compute the translation candidates set CT consisting of translation triples that do not contradict

the domain and range restrictions of each PC translation candidate.

subjects(prop) = {s ∈ translate(ECs) : domain(prop) ∈ {s ∪ super(s)}}

objects(prop) = {o ∈ translate(ECo) : range(prop) ∈ {o ∪ super(o)}}

CT =
⋃

prop∈translate(PC)

subjects(prop)× {prop} × objects(prop)

From the candidates in CT , representing all possible translations of PC, ECs and ECo jointly,

we select the best translation according to the scoring function:

best = arg max
(subj,pred,obj)∈CT

{θ · label sim(subj, pred, obj) + (1− θ) · example score(subj, pred, obj)}

where θ represents a trade-off parameter, example score is a function defined in Algorithm 2 that

rewards triples co-occurring among axioms in an ontology, and label sim is the average cosine

similarity of the chunks and normalized entity labels of their candidate translations:

sim(entity, phrase) = cos(embedding(label(entity)), embedding(phrase))

label sim(subj, pred, object, ECs, ECo, PC) =
1

3
sim(subj, ECs) + sim(pred, PC) + sim(obj, ECo)

Function label(e) produces the normalized entity label from the entity e and embedding(p) is a

function generating phrase vector for a phrase p. In short, the process can be summarized as: from

all possible candidates for the property and its arguments translations, consider those that do not

contradict the domain and range restrictions of the property and choose top-scored translations

based on a scoring function aggregating the phrase embedding similarity and co-occurrence from

the axioms stated in an ontology.

9.3. Evaluation 110

9.2.6 Step 6: Query (queries) filling

In Step 4, we selected ≥ 1 query templates, each of which contains chunk markers linked with

ontological entities in Step 5. In this step, we substitute the EC and PC markers with actual IRIs

extracted from the linked ontological entities. We iterate over each chunk and replace it with the

chosen IRI enclosed with angle brackets.

As a result, each query template is materialized into a SPARQL-OWL query representing a

query recommendation for a given CQ.

9.3 Evaluation

9.3.1 Evaluation procedure

We implemented SeeQuery in Python and published it online 1 under the MIT licence.

We used the CQ2SPARQLOWL dataset to choose the best values of hyperparameters. After

30 runs of SeeQuery, using a random set of hyperparameters in each run, we observed the γ

similarity threshold set to 0.82 and 0.0 for ECs and PCs, respectively, and the θ tradeoff parameter

set to 0.6 gave the best quality of results.

To generate context-aware embeddings, we used BERT [38] in its base and uncased version 2.

The embeddings are generated in the following way:

• Vectorize the CQ using BERT. As a result, each token is mapped to its context-aware em-

bedding. Then, for each phrase pi marked with ReqTagger, collect embeddings assigned

to tokens in pi and apply mean pooling to obtain a single phrase vector pi.

• For each ontological entity label l, form a label in context cl by using the CQ and l to fill

the template [CQ] How about [l]?. For example, for the ontological entity label l set to

Weka and the CQ defined as Does Matlab provide clustering algorithms?, the following cl is

produced: Does Matlab provide clustering algorithms? How about Weka?. Then, vectorize cl,

collect embeddings related to tokens from l and average them using mean pooling.

The rationale behind generating cl before calculating embeddings is to add context to the label

l. As BERT is pretrained on a multidomain text corpus, it can only provide good representations

of polysemic words if the context disambiguates their meaning. In the example above, Weka can

be a piece of software or a bird from New Zealand. If BERT sees other tokens from the CQ during

vectorization, it generates an embedding of Weka that is similar to other pieces of software.

The evaluation was performed on every CQ from the evaluation set. SeeQuery processed

each CQ, and an expert verified the output deciding if the query can be generated for a given CQ,

and if the output produced is correct or not. We did not state the predefined golden standard to

evaluate the method automatically as frequently, multiple semantically equivalent queries can be

provided (e.g., queries with different filter orders).

After processing all 62 CQs from the evaluation set, we observed that 6 of them were translated

with SeeQuery to exactly two query recommendations. No CQ was translated to 3 or more

SPARQL-OWL queries. For this reason, we decided to consider the output of SeeQuery as

correct if any of the generated recommendations are correct. The evaluation summary, which

shows that SeeQuery provides correct recommendations for 46 out of 62 CQs (74%), can be

found in Table 9.2.

1https://github.com/dwisniewski/SeeQuery
2https://huggingface.co/bert-base-uncased

https://github.com/dwisniewski/SeeQuery
https://huggingface.co/bert-base-uncased

9.3. Evaluation 111

Table 9.2: Evaluation scores on different ontologies. The columns denote (i) the
fraction of generated outputs considered correct, (ii) the fraction of correctly iden-
tified untranslatable questions.

Ontology Correct outputs Correctly chosen untranslatable
Pizza 33/42 (78.57%) 25/26 (96.15%)
TrhOnt 13/20 (65%) 9/11 (81.8%)

9.3.2 Error analysis

There are interesting groups of errors that we observed among the 16 CQs the SeeQuery translates

incorrectly.

Lack of required SPARQL-OWL template The patterns and templates set extracted from

CQ2SPARQLOWL and BigCQ does not cover all possible queries. For example, no query

template using owl:disjointWith is provided in patterns and templates set. However, 3 CQs in

the Pizza ontology: Which pizzas do not have nuts?, Which pizzas contain prawns but not anchovy?

and Which are the nut free pizzas? all require owl:disjointWith in their translations.

CQs with too many chunks Consider the CQ from TrhOnt: Which are the conditions that a

patient must fulfill in order to be in a phase of a treatment protocol?. From that CQ, SeeQuery, in

step 2 of the pipeline generates a CQ pattern candidate that uses 4 entity chunks (the conditions,

a patient, a phase, a treatment protocol) and 2 predicate chunks (in order to, be in). However, no

CQ pattern in patterns and templates set introduces the same number of chunks of given types, so

it is not possible to choose the closest known CQ pattern. As a consequence, the method returns

no query.

Phrase linking failures Consider two CQs from Pizza: Can you have a pizza with any com-

bination of toppings? and Are different bases available?. In both cases, no queries are produced

because SeeQuery assumes there is no required vocabulary in the Pizza ontology provided. How-

ever, pizza topping and pizza base are ontological entity labels represented in the ontology

and these should be linked to toppings and bases, respectively. Unfortunately, they are not linked,

because the similarity between pizza topping and toppings as well as between pizza base and

bases is scored below the threshold γ. It is not clear, however, how to determine the equivalence

between these phrases. The assumption of equivalence between pizza topping and toppings is

reasonable in the domain of Pizza, but in general, the noun topping can also represent a distinct

(top) part of a thing. Similarly, the equivalence between pizza base and bases can be considered

reasonable in the context of the knowledge modeled in the Pizza ontology, but if one adds an entity

representing the base salary of a pizza-maker, the term bases in the CQ becomes ambiguous.

Such ambiguity is observed in the case of CQ Which pizzas are spicy?. The Pizza ontology

provides two classes introducing the word spicy: Spicy Topping and Spicy Pizza and the query

produced wrongly asks about the subclasses of both Pizza and SpicyTopping. Such a query is

incorrect, as there is no possibility of being both a pizza and a topping in this domain.

Expected relation between one chunk in a CQ and many ontological entities An

example of such an error is the CQ Which body part does an auxiliary movement refer to?, where the

phrase refer to maps to a chain of object properties: has component and has location. Another

example is the CQ Which are the nut free pizzas?, where the nut free pizzas should be mapped

to Pizza subclasses that are disjoint with classes with nut topping defined. SeeQuery fails to

9.4. Discussion 112

produce correct outputs for both CQs, as there is no functionality of mapping a single phrase to

complex relations between entities.

Wrong interpretation of CQs Consider two CQs: Which range of movement does a movement

cover? and Are anchovies and capers used together?. These introduce phrases such as range and

used together. SeeQeury marks both phrases as chunks and tries to link those to ontological

entities. However, it should not interpret these phrases explicitly but rather

• used together should be interpreted as a phrase that determines the form of query template

instead of pointing to an ontological entity label. It should be used to construct a query

asking for pizzas that contain both ingredients at once.

• range should be interpreted as a reference to a pair of properties that in the TrhOnt define

the minimum and the maximum value of the movement.

9.4 Discussion

SeeQuery’s limitations The limited number of examples of CQs translated into SPARQL-

OWL queries in CQ2SPARQLOWL was the reason for making SeeQuery template-based. How-

ever, this approach causes several limitations:

• Since SeeQuery fills templates extracted from predefined pairs of CQs and SPARQL-OWL

queries examples, it cannot express a query constructed differently from the predefined tem-

plates. Because ontologies are modeled using various modeling styles, new patterns and

templates should be added to increase the coverage. For this reason, the implementation

of SeeQuery makes it easy to extend the patterns and templates set, which is stored in a

JSON file.

• As we showed in the error analysis section, SeeQuery fails to map a single phrase to

an expression introducing multiple ontological entities. This task is very hard to solve as

complete knowledge about a given domain is required to assess that, e.g., a dog is not

equivalent to a mammal that barks because foxes also bark.

• The heuristic of searching for a translation of a predicate chunk with its subject and object

jointly may fail in complex queries. If a property chain is used, the object of a property may

not be a named class. Similarly, in some complex scenarios, an object of one predicate chunk

may serve as a subject for another predicate chunk. Fortunately, the evaluation shows that

such complex representations are rare.

Design choices made In the SeeQuery implementation, we used BERT to calculate embed-

dings for tokens. The rationales behind this choice are:

1. BERT achieves state-of-the-art scores on many NLP tasks.

2. BERT, as opposed to methods generating static embeddings, provides context-aware repre-

sentations. They are especially useful to process polysemic words.

3. BERT uses WordPiece tokenization, which handles arbitrary texts. Even if some word was

not seen by BERT during training, the vector representation of the word can be still cal-

culated by splitting the word into subword units known by the tokenizer and aggregating

embeddings calculated for these.

9.5. Summary 113

The delegation of entity linking to step 5 of the pipeline rather than performing it in step 1

is motivated by the need for a joint search for translations if predicate chunks and their subjects

and objects are found.

Using threshold values for entity linking but not for the closest known pattern selection is

motivated by the fact that if the vocabulary is provided (entities can be linked to phrases), the query

can be most probably generated. In this scenario, we prefer to generate a query recommendation

even if the closest known CQ pattern has a low similarity score to the CQ pattern candidate

constructed from the input CQ. Even if the query recommendations are wrong, the IRIs of the

linked phrases may guide the engineer on how to fix the recommendations.

9.5 Summary

The main goal of this chapter was to introduce a method for generating SPARQL-OWL query

recommendations from CQs and ontologies. We described SeeQuery – a template-based method,

which can assist the process of verifying if an ontology is complete and correct.

The SeeQuery is based on the biggest to date dataset of the real-world: ontologies, CQs, and

their formalizations in SPARQL-OWL, as well as on the largest automatically generated silver-

standard dataset of CQ patterns mapped to SPARQL-OWL templates. Those datasets introduce

knowledge that generalizes well. The evaluation shows that, even for new domains, the method

presents decent performance.

However, ontologies differ in the modeling styles used to construct them, so the patterns and

templates set should be expanded as new CQs translated to SPARQL-OWL queries dataset will

be published.

Chapter 10

Presuppositions and Test-Driven

Development of ontologies

Questions (e.g., competency questions) hold implicit assumptions that have to be satisfied to

obtain meaningful answers [148, 37]. For example, the following question: Did Dawid finish his

Ph.D. thesis? implicitly assumes that Dawid was in the process of preparing his Ph.D. thesis. We

refer to such implicit assumptions about the world or background beliefs that relate to an utterance

whose truth is taken for granted in discourse as presuppositions [2]. These were introduced and

analyzed in the area of linguistics called pragmatics.

In this chapter, we analyze how CQs and their SPARQL-OWL formalizations can be enriched

with presuppositions handling. We show that we can automate presupposition testing using ASK-

type SPARQL-OWL queries, which can be generated automatically via template selection and

filling. Moreover, we discuss how presuppositions can be used as testing artifacts and embedded

in the Test-Driven Development of ontologies pipeline [134].

The main contributions presented in this chapter are:

1. A way of formalizing presuppositions using SPARQL-OWL queries,

2. A presupposition-based testing model to verify CQs that can be formalized as SELECT

queries,

3. A way of integrating presupposition tests into test-driven ontology development,

4. An extension of CQ2SPARQLOWL providing queries for automated presupposition check-

ing.

10.1 Presuppositions among CQs

Questions that begin with one of the following words: when, where, what, who, whom, whose,

which, why, and how are called wh- questions. All of them contain presuppositions that assume

some objects fulfill the predicate stated in the question [104]. To generate a presupposition out of

such a question, one needs to replace the wh-word with an appropriate indefinite pronoun, e.g., a

question Who won the match yesterday? presupposes that Someone won the match yesterday [104].

Moreover, the presupposition can be denied, e.g., Noone won the match yesterday [104].

Considering CQs, many of them are wh- questions. In the context of CQ2SPARQLOWL,

189 out of 234 CQs represent this category. These always explicitly or implicitly assume a domain

114

10.2. Ontology testing using presuppositions 115

for their answers [134]. Also, there must be elements capable of fulfilling the predicate (a posi-

tive presupposition), yet the domain elements do not necessarily fulfill the predicate (a negative

presupposition) [134].

10.2 Ontology testing using presuppositions

Presuppositions can be used to test the knowledge modeled in an ontology to verify if the answers

obtained from SPARQL-OWL queries are meaningful. To define the testing model, let us define

the following symbols:

• O – used to denote an ontology expressed in OWL 2 [119],

• CE1 and CE2 – used to denote class expressions (e.g., named classes),

• Q – used to represent a SPARQL-OWL query that is a formalization of a given CQ,

• PQ – used to denote a presupposition query – a query of the form ASK WHERE {CE rdfs:subClassOf
owl:Nothing} that we use to check the satisfiability of CE,

• PQ+ and PQ− – used to denote a positive and negative presupposition query, respectively,

• µ(PQ) and µ(Q) – used to denote the answer(s) to PQ and Q, respectively.

To check the satisfiability of CE, we can query the ontology using the query PQ: ASK WHERE {CE
rdfs:subClassOf owl:Nothing} and interpret the answer given by the ontology. If the logical

consequence of the ontology O is C rdfs:subClassOf owl:Nothing, then the returned answer

µ(PQ) = true. In this case, no instance of CE exists so that the presupposition is not satisfied.

Alternatively, if µ(PQ) = false, there are instances of CE allowed in O so that the presupposition

is satisfied.

These two scenarios are visualized in Figure 10.1. We refer to the process of interpreting the

result of PQ as a presupposition test.

ASK WHERE { CE refs:subClassOf owl:Nothing }

CE unsatisfiable
(presupposition not satisfied)

CE satisfiable
(presupposition satisfied)

TRUE FALSE

Figure 10.1: A presupposition query and the two possible interpretations of the
result.

Ren et al. [148] noticed that ASK queries do not have presuppositions because they only check

whether there exists an answer satisfying a constraint [134]. For this reason, the testing model we

propose is defined over SELECT queries and open questions they are associated with.

Considering an example CQ Which software implements clustering algorithms?, two kinds of pre-

suppositions can be identified that both should be satisfied to answer the question in a meaningful

way:

10.3. Integration of presupposition tests into TDD 116

• Positive presupposition: There may exist a piece of software that implements clustering

algorithms.

• Negative presupposition: There may exist a piece of software that does not implement clus-

tering algorithms.

If a CQ can be formalized as a SELECT-type SPARQL-OWL query, the query can be inter-

preted as restricting a class expression CE1 with another class expression CE2 [134]. In that

interpretation, if the positive presupposition is satisfied, it indicates that objects that are both

CE1 and CE2 may exist (e.g., software that implements clustering algorithms). Similarly, the

negative presupposition is satisfied if there may exist objects that are CE1 and not CE2 (e.g.,

software that does not implement clustering algorithms) [134].

If the positive or negative presupposition is not satisfied, it means that the ontology determines

the answer:

• If the positive presupposition is not satisfied, the intersection of CE1 and CE2 is necessarily

empty (e.g., pieces of software that implement clustering algorithms cannot exist).

• If the negative presupposition is not satisfied, the intersection of CE1 and CE2 is equal to

CE1 (e.g., each piece of software implements clustering algorithms).

If both positive and negative presuppositions are satisfied, it is reasonable to query O with Q.

Formally, we can define the model for testing SELECT queries as follows: Given an ontology

O that is coherent (i.e., all named classes in O are satisfiable) and consistent (i.e., O has a model

– there is an interpretation where all axioms hold), a CQ formalized as a SPARQL-OWL query Q

asking about the intersection of class expressions CE1i and CE2i and its corresponding positive

and negative presupposition queries PQ+ and PQ−,the result of testing PQ+, PQ− and Q against

the ontology O can be expressed as:

testO(Q) =

µ(Q) = ∅ if µ(PQ+) = true (i.e., unsatisfiable)

µ(Q) = CE1i if µ(PQ−) = true (i.e., unsatisfiable)

compute the answer to Q if µ(PQ+) = false and µ(PQ−) = false

10.3 Integration of presupposition tests into TDD

The test-driven ontology authoring was proposed as a promising implementation of a test-first

approach that is already well established in the field of software engineering [10]. It was intended

to reduce authoring time and increase authoring efficiency [34]. We propose an extension of

the TDD workflow proposed in [34] to handle question-answerability checking by incorporating

presupposition tests and providing an automatic formalization of CQs into SPARQL-OWL. In

Figure 10.2, we present the TDD workflow, including additional steps marked with grey boxes. The

first and fourth of them can be handled automatically using SeeQuery introduced in Chapter 9.

Considering CQs related to SELECT queries, the steps in the second and third boxes can be

automated using positive and negative presupposition tests.

If SeeQuery identifies the required vocabulary (box named vocabulary is present), both positive

(box named positive presupposition is satisfied), and negative (box named negative presupposition

is satisfied) presupposition tests pass, and SeeQuery produces a query (box named translate CQ

into SPARQL-OWL), the subsequent steps may be performed.

10.4. Conclusions 117

To make presupposition tests automated, we enriched SPARQL-OWL query templates col-

lected in CQ2SPARQLOWL [189, 135]. For every template related to the SELECT query, we

constructed SPARQL-OWL query templates related to presupposition tests. This way, we can

fill the presupposition query templates similarly to ”main” templates used by SeeQuery, since

both kinds share the same placeholders. The dataset of presupposition query templates assigned

to query templates from CQ2SPARQLOWL is provided in Appendix E. We listed only those

SPARQL-OWL templates that require one or more presupposition tests.

An example of a SPARQL-OWL query template from CQ2SPARQLOWL enriched with pre-

supposition query templates is:

SELECT DISTINCT * WHERE {

?x rdfs:subClassOf <EC1>, [

a owl:Restriction ;

owl:onProperty <PC1> ;

owl:someValuesFrom <EC2>] },

for which the positive presupposition query is:

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction;

owl:onProperty <PC1>;

owl:someValuesFrom <EC2>

]

)] rdfs:subClassOf owl:Nothing }

and the negative presupposition query is:

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction;

owl:onProperty <PC1>;

owl:allValuesFrom [a owl:Class; owl:complementOf <EC2>]

]

)] rdfs:subClassOf owl:Nothing }

10.4 Conclusions

The idea of incorporating presupposition tests into the test-driven development of ontologies helps

to understand the reasons behind the answers provided by the ontology tested with queries. In

consequence, the outputs returned by the queries can be interpreted according to the engineer’s

intents. The CQs can be meaningfully answered if the appropriate vocabulary is present in the

ontology and if the presuppositions are satisfied.

The extension of the TDD pipeline and a way to automate each of the added steps may improve

the ontology authoring speed and make the ontology quality assurance easier.

10.4. Conclusions 118

missing vocabularyvocabulary is present

no: answer determined
Positive

presupposition
is satisfied

Negative
presupposition

is satisfied

Add
vocabulary

STOP

STOPno: answer determined

is present

is satisfied

Translate CQ into
SPARQL-OWL

Formalized CQs

Select tests

Run tests STOP

pass (the knowledge
is already present)

Update ontology with
axiom(s)

Run tests
(ontology inconsistent or

incoherent?)

Competency
Question

is satisfied

fail

Ontology refactor and
regression testing

STOP

pass (entailed)

fail

Figure 10.2: The TDD workflow with presupposition tests included. The white
shapes represent the simplified, preexisting steps and the grey ones represent our
contribution.

Chapter 11

Summary

11.1 Answers to the research questions

In this section, we provide the answers to the research questions defined in Chapter 1.

RQ1 – Are there recurring patterns among CQs, SPARQL-OWL queries, and be-

tween CQs and SPARQL-OWL queries? Based on our research, we can answer this ques-

tion positively. In Chapter 6, we analyzed a dataset of 234 CQs, 131 of which are translated into

SPARQL-OWL queries. We showed that among the CQs, there are 106 domain-independent CQ

patterns, 6 of which are shared among more than one ontology. Using CQ pattern normalization,

we generated 81 higher-level CQ patterns, 8 of which are shared by multiple ontologies. We also

constructed domain-independent SPARQL-OWL signatures to show that there are recurring pat-

terns among the queries as well. We found 6 SPARQL-OWL signatures shared among multiple

ontologies and 9 of them among more than one query. The mapping between CQ patterns and

SPARQL-OWL templates constructed from CQ2SPARQL-OWL and BigCQ was used as the

main component of SeeQuery. As that mapping determined the forms of recommended queries

and the evaluation scores show that SeeQuery generalizes well to new ontologies and CQs, we

conclude that there are recurring patterns between CQs and SPARQL-OWL queries.

RQ2 – How to automate the glossary of terms extraction? In Chapter 7, we proposed

two methods for the glossary of terms extraction. One of them is a CRF-based model trained

over a set of CQs annotated with candidates for classes and relations, and the other uses hand-

crafted rules. The evaluation of the methods shows that the rule-based approach gives better

results and can generalize to handle requirements expressed as sentences. As the rule-based tagger

achieves promising evaluation scores, we recommend it as a tool for an automatic glossary of terms

extraction.

RQ3 – How to construct pairs of CQs and SPARQL-OWL queries automatically based

on ontology axioms? In Chapter 8, we showed a method based on axiom verbalization and

linguistic transformations that can transform axiom shapes into pairs of CQ patterns and SPARQL-

OWL templates automatically. We used the method to construct BigCQ – a dataset of 77,575

CQ patterns mapped to 549 SPARQL-OWL templates. These patterns and templates can be filled

with labels and IRIs extracted from a given ontology to provide CQs and SPARQL-OWL queries.

RQ4 – How to construct SPARQL-OWL query recommendations from CQs automat-

ically? In Chapter 9, we proposed a method consisting of a pipeline defining 6 processing steps

119

11.2. Conclusions 120

used to transform CQs into SPARQL-OWL query recommendations automatically. The evaluation

procedure showed that this method, based on pattern matching and template filling, generalizes

to ontologies and CQ sets that are different than those used to build the pipeline.

RQ5 – How to integrate the automatic translation of CQs into SPARQL-OWL with

Test-Driven Development of ontologies? In Chapter 10, we described how our method for

translating CQs into SPARQL-OWL queries could be integrated into Test-Driven Development of

ontologies and extended with so-called presupposition tests. We visualized how to integrate our

approach with TDD in Figure 10.2.

11.2 Conclusions

In this dissertation, we focused on the problems of automated competency question handling in

ontology development. We analyzed how CQ handling can be automated to:

• construct glossaries of terms that provide terms to model in an ontology,

• verify the quality of a given ontology by counting how many CQs, formalized using SPARQL-

OWL, can be correctly answered.

We proposed two datasets. The first – smaller one – CQ2SPARQLOWL, consists of real-world

ontologies, and CQs translated into SPARQL-OWL. The second – much larger – BigCQ, which

is inspired by CQ2SPARQLOWL, is constructed automatically from frequent axiom patterns.

We focused on automating both described scenarios involving CQs:

1. Automating glossary of terms construction – There are two methods introduced in Chapter 7

that can be used to extract candidates for classes, instances, and properties without human

intervention. We showed that the rule-based approach provides candidates of better quality.

These methods allow engineers to limit the time spent during the tedious process of extracting

vocabulary from CQs.

2. Automating formalization of CQs into SPARQL-OWL – The method introduced in Chapter 9

recommends SPARQL-OWL translations for CQs. If more than one query is recommended,

an engineer can select the most appropriate one. Assuming that a comprehensive set of CQs

is provided, if all CQs can be formalized as queries and the queries return correct answers, one

can consider the ontology correct and complete. With the use of SeeQuery, the engineer

does not have to be specialized in SPARQL-OWL, as instead of constructing the query, they

have only to select an appropriate recommendation when needed. Moreover, the engineer

does not have to check which ontological entities should be used in the query as the method

can determine if the expected vocabulary is modeled and link phrases extracted from CQs

to appropriate entities to obtain their IRIs.

Finally, we propose the integration of the translation method into the existing Test-Driven

Development approach to ontology development.

We hope that our tools and analyses will make the competency question-based ontology au-

thoring easier and quicker, and the idea of using CQs in ontology development will become more

popular.

11.3. Future work 121

11.3 Future work

There are several directions for further research we would like to investigate in the future:

1. As more ontologies with CQs stated for their terminological parts become available, our

goal is to collect them to expand CQ2SPARQLOWL. This way, we make the patterns and

templates set cover more CQ formulations and more query forms.

2. The large-scale datasets of ontologies with CQs translated into queries that are created using

the method introduced in Chapter 8 may fuel deep learning-based translators that may be

an interesting alternative for a template-based SeeQuery.

3. Currently, the glossary of terms extractors we propose process each CQ independently. How-

ever, different CQs may mention the same entity using various grammatical forms (plurals,

different verb tenses) or synonyms. It would be interesting to group those forms and suggest

only a single, canonical entity form that should be modeled in the ontology.

4. The entity linking procedure defined for SeeQuery works well for the most common graph

patterns. However, there are cases (e.g., property chains) that cannot be handled properly

now. In the future, we should focus on creating a more robust entity linking method to

support more complex BGPs.

5. SeeQuery recommends queries based on the way knowledge was modeled in other ontologies.

However, it could use the information on how axioms are constructed in the queried ontology

to rank the recommendations so that the most probable ones are high on the list.

6. In CQ2SPARQLOWL, we found that approximations relating a single phrase extracted

from a CQ to a complex class expression are frequently used. In this dissertation, we rejected

such cases. However, we would like to investigate the problem of discovering equivalence

between phrases and complex class expressions.

7. As the machine learning-based tagger proposed in Chapter 7 was created before models

generating contextualized word representations (e.g., BERT) became widely used, it would

be interesting to extend the tagger to include such representations as additional features.

Bibliography

[1] Amir D Aczel and Jayavel Sounderpandian. Complete business statistics. Irwin/McGraw Hill

Boston, MA, 1999.

[2] Adrian Akmajian, Richard A. Demers, and Robert M. Harnish. Linguistics: An Introduction to

Language and Communication. MIT Press, Cambridge, Massachusetts, 1979.

[3] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A survey

of RDF stores & SPARQL engines for querying knowledge graphs. CoRR, abs/2102.13027, 2021.

[4] Tahani Alsubait. Ontology-based multiple-choice question generation. PhD thesis, University of

Manchester, UK, 2015.

[5] Takatura Ando. The origin of the concept of metaphysics. In Metaphysics: A Critical Survey of its

Meaning, pages 3–16. Springer Netherlands, Dordrecht, 1974.

[6] Grigoris Antoniou and Frank van Harmelen. Web ontology language: OWL. In Steffen Staab and

Rudi Studer, editors, Handbook on Ontologies, International Handbooks on Information Systems,

pages 67–92. Springer, 2004.

[7] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press, USA, 2003.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[9] GH. Bakir, T. Hofmann, B. Schölkopf, AJ. Smola, B. Taskar, and SVN. Vishwanathan. Predicting

Structured Data. Advances in neural information processing systems. MIT Press, Cambridge, MA,

USA, September 2007.

[10] Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,

USA, 2002.

[11] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic

language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[12] Idoia Berges, David Antón, Jesús Bermúdez, Alfredo Goñi, and Arantza Illarramendi. Trhont:

building an ontology to assist rehabilitation processes. Journal of Biomedical Semantics, 7:60, 2016.

[13] Amaia Bernaras, Iñaki Laresgoiti, and Jose Manuel Corera. Building and reusing ontologies for

electrical network applications. In Wolfgang Wahlster, editor, 12th European Conference on

Artificial Intelligence, Budapest, Hungary, August 11-16, 1996, Proceedings, pages 298–302. John

Wiley and Sons, Chichester, 1996.

[14] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,

284(5):34–43, May 2001.

122

123

[15] Camila Bezerra, Filipe Santana, and F. Freitas. CQChecker: A tool to check ontologies in

OWL-DL using competency questions written in controlled natural language. Learning and

Nonlinear Models, 12:115–129, 2014.

[16] Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings of the ACL

Interactive Poster and Demonstration Sessions, pages 214–217, Barcelona, Spain, July 2004.

Association for Computational Linguistics.

[17] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science

and statistics. Springer, 2007.

[18] Eva Blomqvist, Azam Seil Sepour, and Valentina Presutti. Ontology testing - methodology and

tool. In Annette ten Teije, Johanna Völker, Siegfried Handschuh, Heiner Stuckenschmidt, Mathieu

d’Aquin, Andriy Nikolov, Nathalie Aussenac-Gilles, and Nathalie Hernandez, editors, Knowledge

Engineering and Knowledge Management - 18th International Conference, EKAW 2012, Galway

City, Ireland, October 8-12, 2012. Proceedings, volume 7603 of Lecture Notes in Computer Science,

pages 216–226. Springer, 2012.

[19] Bernd Bohnet, Ryan T. McDonald, Gonçalo Simões, Daniel Andor, Emily Pitler, and Joshua

Maynez. Morphosyntactic tagging with a meta-BiLSTM model over context sensitive token

encodings. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,

2018, Volume 1: Long Papers, pages 2642–2652. Association for Computational Linguistics, 2018.

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching word vectors

with subword information. Transactions of the Association for Computational Linguistics,

5:135–146, 2017.

[21] Gemma Boleda. Distributional semantics and linguistic theory. Annual Review of Linguistics,

6(1):213–234, 2020.

[22] Dan Brickley and Ramanathan Guha. RDF schema 1.1. W3C recommendation, W3C, February

2014. https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[23] Charles George Broyden. The convergence of a class of double-rank minimization algorithms 1.

general considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

[24] Elena Cabrio, Julien Cojan, Fabien Gandon, and Amine Hallili. Querying multilingual DBpedia

with QAKiS. In Philipp Cimiano, Miriam Fernández, Vanessa López, Stefan Schlobach, and

Johanna Völker, editors, The Semantic Web: ESWC 2013 Satellite Events - ESWC 2013 Satellite

Events, Montpellier, France, May 26-30, 2013, Revised Selected Papers, volume 7955 of Lecture

Notes in Computer Science, pages 194–198. Springer, 2013.

[25] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity

retrieval. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021. OpenReview.net, 2021.

[26] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 turtle. W3C recommendation, W3C,

February 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.

[27] Eugene Charniak, Curtis Hendrickson, Neil Jacobson, and Mike Perkowitz. Equations for

part-of-speech tagging. In Proceedings of the Eleventh National Conference on Artificial

Intelligence, AAAI’93, page 784–789. AAAI Press, 1993.

[28] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder

for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans,

editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group

of the ACL, pages 1724–1734. ACL, 2014.

124

[29] Philipp Cimiano, Peter Haase, Jörg Heizmann, Matthias Mantel, and Rudi Studer. Towards

portable natural language interfaces to knowledge bases - the case of the ORAKEL system. Data

and Knowledge Engineering, 65(2):325–354, 2008.

[30] Philipp Cimiano, Vanessa Lopez, Christina Unger, Elena Cabrio, Axel-Cyrille Ngonga Ngomo, and

Sebastian Walter. Multilingual question answering over linked data (qald-3): Lab overview. In

Pamela Forner, Henning Müller, Roberto Paredes, Paolo Rosso, and Benno Stein, editors,

Information Access Evaluation. Multilinguality, Multimodality, and Visualization, pages 321–332,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[31] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, and Wei Wang.

KBQA: learning question answering over QA corpora and knowledge bases. Proceedings of the

VLDB Endowment, 10(5):565–576, 2017.

[32] Enrico Daga, Eva Blomqvist, Aldo Gangemi, Elena Mon-tiel, Nadejda Nikitina, Valentina Presutti,

and Boris Villazón-Terrazas. NeOn D2. 5.2 pattern based ontology design: Methodology and

software support. Technical Report D2. 5.2, NeOn Consortium, 2010.

[33] Danica Damljanovic, Milan Agatonovic, Hamish Cunningham, and Kalina Bontcheva. Improving

habitability of natural language interfaces for querying ontologies with feedback and clarification

dialogues. Journal of Web Semantics, 19:1–21, 2013.

[34] Kieren Davies, C. Maria Keet, and Agnieszka Lawrynowicz. More effective ontology authoring with

test-driven development and the TDDonto2 tool. International Journal on Artificial Intelligence

Tools, 28(7):1950023:1–1950023:25, 2019.

[35] Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman.

Universal Dependencies. Computational Linguistics, 47(2):255–308, 07 2021.

[36] Maŕia del Carmen Suárez-Figueroa, Eva Blomqvist, Mathieu d’Aquin, Mauricio Espinoza,

Asunción Gómez-Pérez, Holger Lewen, Igor Mozetic, Raul Palma, Maria Poveda, Margherita Sini,

Boris Villazon, Fouad Zablith, and Martin Dzbor. D5.4.2 revision and extension of the neon

methodology for building contextualized ontology networks, February 2009.

[37] Matt Dennis, Kees van Deemter, Daniele Dell’Aglio, and Jeff Z. Pan. Computing authoring tests

from competency questions: Experimental validation. In Claudia d’Amato, Miriam Fernández,

Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph

Lange, and Jeff Heflin, editors, The Semantic Web - ISWC 2017 - 16th International Semantic

Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I, volume 10587 of

Lecture Notes in Computer Science, pages 243–259. Springer, 2017.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and

Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.

Association for Computational Linguistics, 2019.

[39] Dennis Diefenbach, Vanessa López, Kamal Deep Singh, and Pierre Maret. Core techniques of

question answering systems over knowledge bases: a survey. Knowledge and Information Systems

volume, 55(3):529–569, 2018.

[40] Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading

comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1342–1352, Vancouver, Canada, July 2017. Association

for Computational Linguistics.

125

[41] Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou. Question generation for question answering.

In Martha Palmer, Rebecca Hwa, and Sebastian Riedel, editors, Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen,

Denmark, September 9-11, 2017, pages 866–874. Association for Computational Linguistics, 2017.

[42] Mohnish Dubey, Sourish Dasgupta, Ankit Sharma, Konrad Höffner, and Jens Lehmann. AskNow:

A framework for natural language query formalization in SPARQL. In Harald Sack, Eva

Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph Lange,

editors, The Semantic Web. Latest Advances and New Domains - 13th International Conference,

ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings, volume 9678 of Lecture

Notes in Computer Science, pages 300–316. Springer, 2016.

[43] M. Duerst and M. Suignard. Internationalized resource identifiers (iris). RFC 3987, RFC Editor,

January 2005. http://www.rfc-editor.org/rfc/rfc3987.txt.

[44] Mikel Egaña, Robert Stevens, and Erick Antezana. Transforming the axiomisation of ontologies:

The ontology pre-processor language. In Kendall Clark and Peter F. Patel-Schneider, editors,

Proceedings of the Fourth OWLED Workshop on OWL: Experiences and Directions, Washington,

DC, USA, 1-2 April 2008, volume 496 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[45] Paola Espinoza-Arias, Maŕıa Poveda-Villalón, Raúl Garćıa-Castro, and Oscar Corcho. Ontological

representation of smart city data: From devices to cities. Applied Sciences, 9(1), 2019.

[46] European Telecommunications Standards Institute (ETSI). SmartM2M; SAREF extension

investigation; requirements for industry and manufacturing domains. Technical report, ETSI,

October 2018.

https://www.etsi.org/deliver/etsi TR/103500 103599/103507/01.01.01 60/tr 103507v010101p.pdf.

[47] Alexander R. Fabbri, Patrick Ng, Zhiguo Wang, Ramesh Nallapati, and Bing Xiang.

Template-based question generation from retrieved sentences for improved unsupervised question

answering. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors,

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL

2020, Online, July 5-10, 2020, pages 4508–4513. Association for Computational Linguistics, 2020.

[48] Alba Fernández-Izquierdo and Raúl Garćıa-Castro. Themis: a tool for validating ontologies

through requirements. In Angelo Perkusich, editor, The 31st International Conference on Software

Engineering and Knowledge Engineering, SEKE 2019, Hotel Tivoli, Lisbon, Portugal, July 10-12,

2019, pages 573–753. KSI Research Inc. and Knowledge Systems Institute Graduate School, 2019.

[49] Alba Fernández-Izquierdo, Maŕıa Poveda-Villalón, and Raúl Garćıa-Castro. CORAL: A corpus of

ontological requirements annotated with lexico-syntactic patterns. In Pascal Hitzler, Miriam

Fernández, Krzysztof Janowicz, Amrapali Zaveri, Alasdair J. G. Gray, Vanessa López, Armin

Haller, and Karl Hammar, editors, The Semantic Web - 16th International Conference, ESWC

2019, Portorož, Slovenia, June 2-6, 2019, Proceedings, volume 11503 of Lecture Notes in Computer

Science, pages 443–458. Springer, 2019.

[50] Mariano Fernandez-Lopez, Asuncion Gomez-Perez, and Natalia Juristo. Methontology: from

ontological art towards ontological engineering. In Proceedings of the AAAI97 Spring Symposium,

pages 33–40, Stanford, USA, March 1997.

[51] J. R. Firth. A synopsis of linguistic theory 1930-55. In Studies in Linguistic Analysis (special

volume of the Philological Society), volume 1952-59, pages 1–32, Oxford, 1957. The Philological

Society.

[52] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):317–322,

1970.

http://www.rfc-editor.org/rfc/rfc3987.txt

126

[53] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Ace 6.0 construction rules. Technical

report, Attempto project, 2007.

http://attempto.ifi.uzh.ch/site/docs/ace/6.0/ace constructionrules.html.

[54] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto controlled english for knowledge

representation. In Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski, Massimo Marchiori, Axel

Polleres, and Sebastian Schaffert, editors, Reasoning Web, 4th International Summer School 2008,

Venice, Italy, September 7-11, 2008, Tutorial Lectures, volume 5224 of Lecture Notes in Computer

Science, pages 104–124. Springer, 2008.

[55] Norbert E. Fuchs, Kaarel Kaljurand, and Gerold Schneider. Attempto controlled English meets the

challenges of knowledge representation, reasoning, interoperability and user interfaces. In Geoff

Sutcliffe and Randy Goebel, editors, Proceedings of the Nineteenth International Florida Artificial

Intelligence Research Society Conference, Melbourne Beach, Florida, USA, May 11-13, 2006, pages

664–669. AAAI Press, 2006.

[56] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980.

[57] Philip Gage. A new algorithm for data compression. The C Users Journal archive, 12:23–38, 1994.

[58] Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. W3C recommendation, W3C,

February 2014. https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/.

[59] Aldo Gangemi. Ontology design patterns for semantic web content. In Yolanda Gil, Enrico Motta,

V. Richard Benjamins, and Mark A. Musen, editors, The Semantic Web - ISWC 2005, 4th

International Semantic Web Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005,

Proceedings, volume 3729 of Lecture Notes in Computer Science, pages 262–276. Springer, 2005.

[60] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in expressive description

logics. In Lin Padgham, Enrico Franconi, Manfred Gehrke, Deborah L. McGuinness, and Peter F.

Patel-Schneider, editors, Proceedings of the 1996 International Workshop on Description Logics,

November 2-4, 1996, Cambridge, MA, USA, volume WS-96-05 of AAAI Technical Report, pages

37–48. AAAI Press, 1996.

[61] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 entailment regimes. W3C recommendation,

W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/.

[62] Rudolphus Goclenius. Lexicon philosophicum, quo tanquam clave philosophiae fores aperiuntur.

Les Etudes Philosophiques, 20(1):88–88, 1965.

[63] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics

of Computation, 24:23–26, 1970.

[64] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2):199–220, 1993.

[65] M Gruninger and Mark S Fox. Methodology for the design and evaluation of ontologies. 1995. In

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-95,

Montreal, Canada, 1995.

[66] Zellig Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[67] Shizhu He, Yuanzhe Zhang, Kang Liu, and Jun Zhao. Casia@v2: A mln-based question answering

system over linked data. In Linda Cappellato, Nicola Ferro, Martin Halvey, and Wessel Kraaij,

editors, Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014, volume

1180 of CEUR Workshop Proceedings, pages 1249–1259. CEUR-WS.org, 2014.

127

[68] Benjamin Heinzerling and Michael Strube. Sequence tagging with contextual and non-contextual

subword representations: A multilingual evaluation. In Anna Korhonen, David R. Traum, and

Llúıs Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational

Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages

273–291. Association for Computational Linguistics, 2019.

[69] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

6:107–116, 04 1998.

[70] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[71] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics, 12:55–67, 1970.

[72] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal, Marc

Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust disambiguation of named

entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A

meeting of SIGDAT, a Special Interest Group of the ACL, pages 782–792. ACL, 2011.

[73] Konrad Höffner, Jens Lehmann, and Ricardo Usbeck. CubeQA - question answering on RDF data

cubes. In Paul Groth, Elena Simperl, Alasdair J. G. Gray, Marta Sabou, Markus Krötzsch, Freddy

Lécué, Fabian Flöck, and Yolanda Gil, editors, The Semantic Web - ISWC 2016 - 15th

International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I,

volume 9981 of Lecture Notes in Computer Science, pages 325–340, 2016.

[74] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy:

Industrial-strength Natural Language Processing in Python, 2020. version, 3.0.1,

https://doi.org/10.5281/zenodo.1212303.

[75] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert Stevens, and Hai

Wang. The manchester OWL syntax. In Bernardo Cuenca Grau, Pascal Hitzler, Conor Shankey,

and Evan Wallace, editors, Proceedings of the OWLED*06 Workshop on OWL: Experiences and

Directions, Athens, Georgia, USA, November 10-11, 2006, volume 216 of CEUR Workshop

Proceedings. CEUR-WS.org, 2006.

[76] Ian Horrocks, Achille Fokoue, Bernardo Cuenca Grau, Zhe Wu, and Boris Motik. OWL 2 web

ontology language profiles (second edition). W3C recommendation, W3C, December 2012.

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[77] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.

In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,

Volume 1: Long Papers, pages 328–339. Association for Computational Linguistics, 2018.

[78] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging.

CoRR, abs/1508.01991, 2015.

[79] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition).

Prentice-Hall, Inc., USA, 2009.

[80] Kaarel Kaljurand. Attempto controlled english as a semantic web language. PhD thesis, University

of Tartu, 2007.

[81] Kaarel Kaljurand and Norbert E. Fuchs. Bidirectional mapping between OWL DL and attempto

controlled english. In José Júlio Alferes, James Bailey, Wolfgang May, and Uta Schwertel, editors,

128

Principles and Practice of Semantic Web Reasoning, 4th International Workshop, PPSWR 2006,

Budva, Montenegro, June 10-11, 2006, Revised Selected Papers, volume 4187 of Lecture Notes in

Computer Science, pages 179–189. Springer, 2006.

[82] C. Maria Keet. Open world assumption. In Encyclopedia of Systems Biology, pages 1567–1567.

Springer New York, New York, NY, 2013.

[83] C. Maria Keet. A core ontology of macroscopic stuff. In Krzysztof Janowicz, Stefan Schlobach,

Patrick Lambrix, and Eero Hyvönen, editors, Knowledge Engineering and Knowledge Management

- 19th International Conference, EKAW 2014, Linköping, Sweden, November 24-28, 2014.

Proceedings, volume 8876 of Lecture Notes in Computer Science, pages 209–224. Springer, 2014.

[84] C. Maria Keet. The African wildlife ontology tutorial ontologies. Journal of Biomedical Semantics,

11(1):4, 2020.

[85] C. Maria Keet and Agnieszka Lawrynowicz. Test-driven development of ontologies. In Harald Sack,

Eva Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph Lange,

editors, The Semantic Web. Latest Advances and New Domains - 13th International Conference,

ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceedings, volume 9678 of Lecture

Notes in Computer Science, pages 642–657. Springer, 2016.

[86] C. Maria Keet, Zola Mahlaza, and Mary-Jane Antia. Claro: a data-driven CNL for specifying

competency questions. CoRR, abs/1907.07378, 2019.

[87] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and

Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,

Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[88] S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon and

John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ,

1956.

[89] Ilianna Kollia, Birte Glimm, and Ian Horrocks. SPARQL query answering over OWL ontologies. In

Grigoris Antoniou, Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris

Plexousakis, Pieter De Leenheer, and Jeff Z. Pan, editors, The Semantic Web: Research and

Applications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece,

May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture Notes in Computer Science,

pages 382–396. Springer, 2011.

[90] Sandra Kübler, Ryan T. McDonald, and Joakim Nivre. Dependency Parsing. Synthesis Lectures

on Human Language Technologies. Morgan & Claypool Publishers, 2009.

[91] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Carla E. Brodley and

Andrea Pohoreckyj Danyluk, editors, Proceedings of the Eighteenth International Conference on

Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1,

2001, pages 282–289. Morgan Kaufmann, 2001.

[92] Agnieszka Lawrynowicz, Jedrzej Potoniec, Michal Robaczyk, and Tania Tudorache. Discovery of

emerging design patterns in ontologies using tree mining. Semantic Web, 9(4):517–544, 2018.

[93] Andrew Layman, Dave Hollander, and Tim Bray. Namespaces in XML. W3C recommendation,

W3C, January 1999. https://www.w3.org/TR/1999/REC-xml-names-19990114/.

[94] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[95] Dong Bok Lee, Seanie Lee, Woo Tae Jeong, Donghwan Kim, and Sung Ju Hwang. Generating

diverse and consistent QA pairs from contexts with information-maximizing hierarchical

129

conditional vaes. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors,

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL

2020, Online, July 5-10, 2020, pages 208–224. Association for Computational Linguistics, 2020.

[96] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems; Representation and

Inference in the Cyc Project. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition,

1989.

[97] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer

Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training

for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai,

Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7871–7880.

Association for Computational Linguistics, 2020.

[98] Xiao Ling, Sameer Singh, and Daniel S. Weld. Design challenges for entity linking. Transactions of

the Association for Computational Linguistics, 3:315–328, 2015.

[99] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[100] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining

approach. CoRR, abs/1907.11692, 2019.

[101] Vanessa López, Miriam Fernández, Enrico Motta, and Nico Stieler. Poweraqua: Supporting users

in querying and exploring the semantic web. Semantic Web, 3(3):249–265, 2012.

[102] Vanessa Lopez, Michele Pasin, and Enrico Motta. Aqualog: An ontology-portable question

answering system for the semantic web. In Asunción Gómez-Pérez and Jérôme Euzenat, editors,

The Semantic Web: Research and Applications, pages 546–562, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg.

[103] Jacob Lorhard, Sara Uckelman, et al. Diagraph of metaphysic or ontology.

https://eprints.illc.uva.nl/id/eprint/668/1/X-2008-04.text.pdf, 2008.

[104] John Lyons. Semantics, volume 2. Cambridge University Press, 1977.

[105] Mads Holten Rasmussen, Pieter Pauwels, Maxime Lefrançois, Georg Ferdinand Schneider. Building

topology ontology (draft community group report).

https://w3c-lbd-cg.github.io/bot/#Requirements, 2021. Accessed: 2021-11-24.

[106] James Malone, Andy Brown, Allyson L. Lister, Jon C. Ison, Duncan Hull, Helen E. Parkinson, and

Robert Stevens. The software ontology (SWO): a resource for reproducibility in biomedical data

analysis, curation and digital preservation. Journal of Biomedical Semantics, 5:25, 2014.

[107] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information

retrieval. Cambridge University Press, 2008.

[108] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural language

processing. MIT Press, 2001.

[109] Maria Poveda-Villalón, Raúl Garćıa Castro, Fernando Serena. Vicinity project.

http://vicinity.iot.linkeddata.es/vicinity/, 2020. Accessed: 2021-11-24.

[110] Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sattler, and Bijan Parsia. A survey of

current, stand-alone OWL reasoners. In Michel Dumontier, Birte Glimm, Rafael S. Gonçalves,

Matthew Horridge, Ernesto Jiménez-Ruiz, Nicolas Matentzoglu, Bijan Parsia, Giorgos B. Stamou,

and Giorgos Stoilos, editors, Informal Proceedings of the 4th International Workshop on OWL

Reasoner Evaluation (ORE-2015) co-located with the 28th International Workshop on Description

https://w3c-lbd-cg.github.io/bot/#Requirements
http://vicinity.iot.linkeddata.es/vicinity/

130

Logics (DL 2015), Athens, Greece, June 6, 2015, volume 1387 of CEUR Workshop Proceedings,

pages 68–79. CEUR-WS.org, 2015.

[111] John McCarthy. Programs with common sense. In Proceedings of the Teddington Conference on the

Mechanization of Thought Processes, pages 75–91, London, 1959. Her Majesty’s Stationary Office.

[112] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial Intelligence,

13(1):27–39, 1980. Special Issue on Non-Monotonic Logic.

[113] Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[114] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM

language models. In 6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,

2018.

[115] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International

Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,

Workshop Track Proceedings, 2013.

[116] Eric Miller and Frank Manola. RDF primer. W3C recommendation, W3C, February 2004.

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[117] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[118] Jonathan Mortensen, Matthew Horridge, Mark A. Musen, and Natalya Fridman Noy. Modest use

of ontology design patterns in a repository of biomedical ontologies. In Eva Blomqvist, Aldo

Gangemi, Karl Hammar, and Mari Carmen Suárez-Figueroa, editors, Proceedings of the 3rd

Workshop on Ontology Patterns, Boston, USA, November 12, 2012, volume 929 of CEUR

Workshop Proceedings. CEUR-WS.org, 2012.

[119] Boris Motik, Peter Patel-Schneider, and Bijan Parsia. OWL 2 web ontology language structural

specification and functional-style syntax (second edition). W3C recommendation, W3C, December

2012. https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

[120] Boris Motik, Peter Patel-Schneider, and Bijan Parsia. OWL 2 web ontology language XML

serialization (second edition). W3C recommendation, W3C, December 2012.

https://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/.

[121] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive computation and

machine learning series. MIT Press, 2012.

[122] Nils J. Nilsson. The Quest for Artificial Intelligence. Cambridge University Press, USA, 1st

edition, 2009.

[123] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of

Computation, 35:773–782, 1980.

[124] N. Noy and Deborah Mcguinness. Ontology development 101: A guide to creating your first

ontology. Knowledge Systems Laboratory, 32, 01 2001.

[125] Chimezie Ogbuji and Birte Glimm. SPARQL 1.1 entailment regimes. W3C recommendation,

W3C, March 2013. https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/.

[126] Naoaki Okazaki. CRFsuite: a fast implementation of conditional random fields (CRFs), 2007.

version 0.12, http://www.chokkan.org/software/crfsuite/, Accessed: 2021-05-25.

[127] Pance Panov, Larisa N. Soldatova, and Saso Dzeroski. Generic ontology of datatypes. Information

Sciences, 329:900–920, 2016.

131

[128] Paola Espinoza, Miguel Angel Garcia, Oscar Corcho. btn100 ontology – requirements.

https://github.com/oeg-upm/ontology-BTN100/tree/master/requirements, 2020. Accessed:

2021-11-24.

[129] Seonyeong Park, Hyosup Shim, and Gary Geunbae Lee. ISOFT at QALD-4: semantic

similarity-based question answering system over linked data. In Linda Cappellato, Nicola Ferro,

Martin Halvey, and Wessel Kraaij, editors, Working Notes for CLEF 2014 Conference, Sheffield,

UK, September 15-18, 2014, volume 1180 of CEUR Workshop Proceedings, pages 1236–1248.

CEUR-WS.org, 2014.

[130] Bijan Parsia et al. OWL 2 web ontology language primer (second edition). Technical report, W3C,

December 2012. http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

[131] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word

representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October

25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages

1532–1543. ACL, 2014.

[132] Silvio Peroni. A simplified agile methodology for ontology development. In Mauro Dragoni, Maŕıa

Poveda-Villalón, and Ernesto Jiménez-Ruiz, editors, OWL: - Experiences and Directions -

Reasoner Evaluation - 13th International Workshop, OWLED 2016, and 5th International

Workshop, ORE 2016, Bologna, Italy, November 20, 2016, Revised Selected Papers, volume 10161

of Lecture Notes in Computer Science, pages 55–69. Springer, 2016.

[133] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn A. Walker, Heng Ji,

and Amanda Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,

New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 2227–2237.

Association for Computational Linguistics, 2018.

[134] Jedrzej Potoniec, Dawid Wisniewski, and Agnieszka Ławrynowicz. Incorporating presuppositions of

competency questions into test-driven development of ontologies. In SEKE 2021 : Proceedings of

the 33rd International Conference on Software Engineering and Knowledge Engineering, pages

437–440. KSI Research Inc. and Knowledge Systems Institute Graduate School, 2021.

[135] Jedrzej Potoniec, Dawid Wiśniewski, Agnieszka Ławrynowicz, and C. Maria Keet. Dataset of

ontology competency questions to SPARQL-OWL queries translations. Data in Brief, 29:105098,

2020.

[136] Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi. Pattern-based ontology

design. In Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo

Gangemi, editors, Ontology Engineering in a Networked World, pages 35–64. Springer, 2012.

[137] Valentina Presutti, Enrico Daga, Aldo Gangemi, and Eva Blomqvist. extreme design with content

ontology design patterns. In Eva Blomqvist, Kurt Sandkuhl, François Scharffe, and Vojtech

Svátek, editors, Proceedings of the Workshop on Ontology Patterns (WOP 2009) , collocated with

the 8th International Semantic Web Conference (ISWC-2009), Washington D.C., USA, 25

October, 2009, volume 516 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[138] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 turtle. W3C recommendation, W3C,

February 2014. https://www.w3.org/TR/2014/REC-turtle-20140225/.

[139] W. V. Quine. On what there is. In W. V. Quine, editor, From a Logical Point of View, pages 1–19.

Cambridge, Mass.: Harvard University Press, 1953.

https://github.com/oeg-upm/ontology-BTN100/tree/master/requirements

132

[140] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research

and Development, 3(2):114–125, 1959.

[141] Lance Ramshaw and Mitch Marcus. Text chunking using transformation-based learning. In Third

Workshop on Very Large Corpora, 1995.

[142] Delip Rao, Paul McNamee, and Mark Dredze. Entity linking: Finding extracted entities in a

knowledge base. In Thierry Poibeau, Horacio Saggion, Jakub Piskorski, and Roman Yangarber,

editors, Multi-source, Multilingual Information Extraction and Summarization, Theory and

Applications of Natural Language Processing, pages 93–115. Springer, 2013.

[143] Lila Rao, Han Reichgelt, and Kweku-Muata Osei-Bryson. Knowledge elicitation techniques for

deriving competency questions for ontologies. In José Cordeiro and Joaquim Filipe, editors, ICEIS

2008 - Proceedings of the Tenth International Conference on Enterprise Information Systems,

Volume ISAS-2, Barcelona, Spain, June 12-16, 2008, pages 105–110, 2008.

[144] Manoj Prabhakar Kannan Ravi, Kuldeep Singh, Isaiah Onando Mulang, Saeedeh Shekarpour,

Johannes Hoffart, and Jens Lehmann. CHOLAN: A modular approach for neural entity linking on

wikipedia and wikidata. In Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty, editors, Proceedings

of the 16th Conference of the European Chapter of the Association for Computational Linguistics:

Main Volume, EACL 2021, Online, April 19 - 23, 2021, pages 504–514. Association for

Computational Linguistics, 2021.

[145] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch, Robert

Stevens, Hai Wang, and Chris Wroe. OWL pizzas: Practical experience of teaching OWL-DL:

common errors & common patterns. In Enrico Motta, Nigel Shadbolt, Arthur Stutt, and Nicholas

Gibbins, editors, Engineering Knowledge in the Age of the Semantic Web, 14th International

Conference, EKAW 2004, Whittlebury Hall, UK, October 5-8, 2004, Proceedings, volume 3257 of

Lecture Notes in Computer Science, pages 63–81. Springer, 2004.

[146] Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors, Logic

and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de

Toulouse, France, 1977, Advances in Data Base Theory, pages 55–76, New York, 1977. Plemum

Press.

[147] Raymond Reiter. Towards a logical reconstruction of relational database theory. In On Conceptual

Modelling: Perspectives from Artificial Intelligence, Databases, and Programming Languages, pages

191–238. Springer New York, New York, NY, 1984.

[148] Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter, and Robert Stevens.

Towards competency question-driven ontology authoring. In Valentina Presutti, Claudia d’Amato,

Fabien Gandon, Mathieu d’Aquin, Steffen Staab, and Anna Tordai, editors, The Semantic Web:

Trends and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete, Greece,

May 25-29, 2014. Proceedings, volume 8465 of Lecture Notes in Computer Science, pages 752–767.

Springer, 2014.

[149] Robert Stevens. Competency questions for ontologies.

http://studentnet.cs.manchester.ac.uk/pgt/2014/COMP60421/slides/Week2-CQ.pdf, 2014.

Accessed: 2021-05-25.

[150] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by

Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[151] Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean, Svetlana Stoyanchev, and Christian

Moldovan. The first question generation shared task evaluation challenge. In Proceedings of the 6th

International Natural Language Generation Conference. Association for Computational Linguistics,

July 2010.

http://studentnet.cs.manchester.ac.uk/pgt/2014/COMP60421/slides/Week2-CQ.pdf

133

[152] Stefan Ruseti, Alexandru Mirea, Traian Rebedea, and Stefan Trausan-Matu. Qanswer - enhanced

entity matching for question answering over linked data. In Linda Cappellato, Nicola Ferro, Gareth

J. F. Jones, and Eric SanJuan, editors, Working Notes of CLEF 2015 - Conference and Labs of the

Evaluation forum, Toulouse, France, September 8-11, 2015, volume 1391 of CEUR Workshop

Proceedings. CEUR-WS.org, 2015.

[153] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach, Third

International Edition. Pearson Education, 2010.

[154] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of

Research and Development, 3(3):210–229, 1959.

[155] Michael Schneider. OWL 2 web ontology language RDF-based semantics (second edition). W3C

recommendation, W3C, December 2012.

https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/.

[156] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan,

March 25-30, 2012, pages 5149–5152. IEEE, 2012.

[157] Andy Seaborne and Gavin Carothers. RDF 1.1 n-triples. W3C recommendation, W3C, February

2014. https://www.w3.org/TR/2014/REC-n-triples-20140225/.

[158] Andy Seaborne and Steven Harris. SPARQL 1.1 query language. W3C recommendation, W3C,

March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[159] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited. IEEE Intell. Syst.,

21(3):96–101, 2006.

[160] David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics

of computation, 24(111):647–656, 1970.

[161] Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Sören Auer. SINA: semantic

interpretation of user queries for question answering on interlinked data. Journal of Web

Semantics, 30:39–51, 2015.

[162] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL query for OWL-DL. In Christine Golbreich,

Aditya Kalyanpur, and Bijan Parsia, editors, Proceedings of the OWLED 2007 Workshop on OWL:

Experiences and Directions, Innsbruck, Austria, June 6-7, 2007, volume 258 of CEUR Workshop

Proceedings. CEUR-WS.org, 2007.

[163] Barry Smith and Christopher A. Welty. FOIS introduction: Ontology - towards a new synthesis. In

2nd International Conference on Formal Ontology in Information Systems, FOIS 2001, Ogunquit,

Maine, USA, October 17-19, 2001, Proceedings, pages iii–ix. ACM, 2001.

[164] Katherine Stasaski and Marti A. Hearst. Multiple choice question generation utilizing an ontology.

In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational

Applications, pages 303–312, Copenhagen, Denmark, September 2017. Association for

Computational Linguistics.

[165] Thanos G. Stavropoulos, Georgios Meditskos, Ioannis Kompatsiaris, and Stelios Andreadis.

Dem@Care: Ambient sensing and intelligent decision support for the care of dementia. In James

Malone, Robert Stevens, Kerstin Forsberg, and Andrea Splendiani, editors, Proceedings of the 8th

Semantic Web Applications and Tools for Life Sciences International Conference, Cambridge UK,

December 7-10, 2015, volume 1546 of CEUR Workshop Proceedings, pages 229–230.

CEUR-WS.org, 2015.

[166] Simon Steyskal, Benedict Whittam Smith, and Michael Steidl. POE use cases and requirements.

W3C working draft, W3C, February 2017. https://www.w3.org/TR/2017/WD-poe-ucr-20170223/.

https://www.w3.org/TR/2017/WD-poe-ucr-20170223/

134

[167] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López. The NeOn

methodology framework: A scenario-based methodology for ontology development. Appl. Ontology,

10(2):107–145, 2015.

[168] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Boris Villazón-Terrazas. How to write

and use the ontology requirements specification document. In Robert Meersman, Tharam S.

Dillon, and Pilar Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2009,

Confederated International Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura,

Portugal, November 1-6, 2009, Proceedings, Part II, volume 5871 of Lecture Notes in Computer

Science, pages 966–982. Springer, 2009.

[169] York Sure, Steffen Staab, and Rudi Studer. On-to-knowledge methodology (otkm). In Handbook on

Ontologies, pages 117–132. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[170] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Proceedings of the 27th International Conference on Neural Information Processing

Systems - Volume 2, NIPS’14, page 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

[171] Charles Sutton and Andrew McCallum. An introduction to conditional random fields. Foundations

and Trends in Machine Learning, 4(4):267–373, 2012.

[172] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society (Series B), 58:267–288, 1996.

[173] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,

and Philipp Cimiano. Template-based question answering over RDF data. In Alain Mille, Fabien

Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab, editors, Proceedings of the 21st

World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages 639–648.

ACM, 2012.

[174] Ricardo Usbeck, Ria Hari Gusmita, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem. 9th

challenge on question answering over linked data (QALD-9) (invited paper). In Key-Sun Choi,

Luis Espinosa Anke, Thierry Declerck, Dagmar Gromann, Jin-Dong Kim, Axel-Cyrille Ngonga

Ngomo, Muhammad Saleem, and Ricardo Usbeck, editors, Joint proceedings of the 4th Workshop

on Semantic Deep Learning (SemDeep-4) and NLIWoD4: Natural Language Interfaces for the Web

of Data (NLIWOD-4) and 9th Question Answering over Linked Data challenge (QALD-9)

co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, California,

United States of America, October 8th - 9th, 2018, volume 2241 of CEUR Workshop Proceedings,

pages 58–64. CEUR-WS.org, 2018.

[175] Mike Uschold and Michael Gruninger. Ontologies: principles, methods and applications.

Knowledge Engineering Review, 11(2):93–136, 1996.

[176] Mike Uschold and Martin King. Towards a methodology for building ontologies. In In Workshop

on Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI-95, 1995.

[177] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von

Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman

Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages

5998–6008, 2017.

[178] Denny Vrandecic and Aldo Gangemi. Unit tests for ontologies. In Robert Meersman, Zahir Tari,

and Pilar Herrero, editors, On the Move to Meaningful Internet Systems 2006: OTM 2006

Workshops, OTM Confederated International Workshops and Posters, AWeSOMe, CAMS,

COMINF, IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys, OTM Academy

135

Doctoral Consortium, RDDS, SWWS, and SeBGIS 2006, Montpellier, France, October 29 -

November 3, 2006. Proceedings, Part II, volume 4278 of Lecture Notes in Computer Science, pages

1012–1020. Springer, 2006.

[179] Taowei David Wang, Bijan Parsia, and James A. Hendler. A survey of the web ontology landscape.

In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika,

Michael Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC 2006, 5th International

Semantic Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings,

volume 4273 of Lecture Notes in Computer Science, pages 682–694. Springer, 2006.

[180] Xinyu Wang and Kewei Tu. Second-order neural dependency parsing with message passing and

end-to-end training. In Kam-Fai Wong, Kevin Knight, and Hua Wu, editors, Proceedings of the 1st

Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the

10th International Joint Conference on Natural Language Processing, AACL/IJCNLP 2020,

Suzhou, China, December 4-7, 2020, pages 93–99. Association for Computational Linguistics, 2020.

[181] Ralph Weischedel, Eduard Hovy, Mitchell Marcus, Martha Palmer, Robert Belvin, Sameer

Pradhan, Lance Ramshaw, and Nianwen Xue. Ontonotes: A large training corpus for enhanced

processing. Handbook of Natural Language Processing and Machine Translation. Springer, 3(3):3–4,

2011.

[182] Christopher Welty and Deborah McGuinness. OWL web ontology language guide. W3C

recommendation, W3C, February 2004. https://www.w3.org/TR/2004/REC-owl-guide-20040210/.

[183] Patricia L. Whetzel, Natalya Fridman Noy, Nigam H. Shah, Paul R. Alexander, Csongor Nyulas,

Tania Tudorache, and Mark A. Musen. Bioportal: enhanced functionality via new web services

from the national center for biomedical ontology to access and use ontologies in software

applications. Nucleic Acids Research, 39(Web-Server-Issue):541–545, 2011.

[184] Niklaus Wirth. What can we do about the unnecessary diversity of notation for syntactic

definitions? Communications of the ACM, 20(11):822–823, nov 1977.

[185] Dawid Wisniewski. Automatic translation of competency questions into SPARQL-OWL queries. In

Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors,

Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon ,

France, April 23-27, 2018, pages 855–859. ACM, 2018.

[186] Dawid Wisniewski and Agnieszka Lawrynowicz. A tagger for glossary of terms extraction from

ontology competency questions. In Pascal Hitzler, Sabrina Kirrane, Olaf Hartig, Victor de Boer,

Maria-Esther Vidal, Maria Maleshkova, Stefan Schlobach, Karl Hammar, Nelia Lasierra, Steffen

Stadtmüller, Katja Hose, and Ruben Verborgh, editors, The Semantic Web: ESWC 2019 Satellite

Events - ESWC 2019 Satellite Events, Portorož, Slovenia, June 2-6, 2019, Revised Selected Papers,

volume 11762 of Lecture Notes in Computer Science, pages 181–185. Springer, 2019.

[187] Dawid Wisniewski, Jedrzej Potoniec, and Agnieszka Lawrynowicz. BigCQ: A large-scale synthetic

dataset of competency question patterns formalized into SPARQL-OWL query templates. CoRR,

abs/2105.09574, 2021.

[188] Dawid Wisniewski, Jedrzej Potoniec, and Agnieszka Lawrynowicz. SeeQuery: An automatic

method for recommending translations of ontology competency questions into SPARQL-OWL. In

Proceedings of the 30th ACM International Conference on Information & Knowledge Management,

CIKM ’21, page 2119–2128, New York, NY, USA, 2021. Association for Computing Machinery.

[189] Dawid Wiśniewski, Jedrzej Potoniec, Agnieszka Ławrynowicz, and C. Maria Keet. Analysis of

ontology competency questions and their formalizations in SPARQL-OWL. Journal of Web

Semantics, 59:100534, 2019.

136

[190] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable

zero-shot entity linking with dense entity retrieval. In Bonnie Webber, Trevor Cohn, Yulan He, and

Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6397–6407. Association for

Computational Linguistics, 2020.

[191] Dongling Xiao, Han Zhang, Yu-Kun Li, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang.

ERNIE-GEN: an enhanced multi-flow pre-training and fine-tuning framework for natural language

generation. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI 2020, pages 3997–4003. ijcai.org, 2020.

[192] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard Weikum. Robust question

answering over the web of linked data. In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and

Rajeev Rastogi, editors, 22nd ACM International Conference on Information and Knowledge

Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, pages

1107–1116. ACM, 2013.

[193] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. LUKE: deep

contextualized entity representations with entity-aware self-attention. In Bonnie Webber, Trevor

Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6442–6454.

Association for Computational Linguistics, 2020.

[194] Mohammed Javeed Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta

Informaticae, 66(1-2):33–52, 2005.

[195] Leila Zemmouchi-Ghomari and Abdessamed Réda Ghomari. Translating natural language

competency questions into sparqlqueries: a case study. In The First International Conference on

Building and Exploring Web Based Environments, pages 81–86. sn, 2013.

[196] Ruqing Zhang, Jiafeng Guo, Lu Chen, Yixing Fan, and Xueqi Cheng. A review on question

generation from natural language text. ACM Transactions on Information Systems, 40(1), sep

2021.

[197] Yu Zhang, Zhenghua Li, and Min Zhang. Efficient second-order TreeCRF for neural dependency

parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 3295–3305, Online, July 2020. Association for Computational Linguistics.

[198] Weiguo Zheng, Lei Zou, Xiang Lian, Jeffrey Xu Yu, Shaoxu Song, and Dongyan Zhao. How to

build templates for RDF question/answering: An uncertain graph similarity join approach. In

Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May

31 - June 4, 2015, pages 1809–1824. ACM, 2015.

[199] Junru Zhou, Zuchao Li, and Hai Zhao. Parsing all: Syntax and semantics, dependencies and spans.

In Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November

2020, volume EMNLP 2020 of Findings of ACL, pages 4438–4449. Association for Computational

Linguistics, 2020.

[200] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society, Series B, 67:301–320, 2005.

[201] Arnold M. Zwicky. Heads. Journal of Linguistics, 21(1):1–29, 1985.

Appendix A

Algorithms used to group and analyze

CQ2SPARQLOWL

A.1 Extraction of a CQ pattern candidate from a given CQ

The following pseudo-codes describe the main algorithm (Algorithm 3) along with helper proce-

dures that are used to transform CQs into CQ pattern candidates.

Input: A competency question cq
Output: A pattern extracted from cq

1 cq ← normalizeCQ(cq)
2 pattern← markPlaceholders(cq)
3 pattern← extractEcChunks(pattern)
4 pattern← extractPcChunks(pattern)
5 return pattern
Algorithm 3: An algorithm defining the pattern candidate generation procedure out of a given
CQ cq. Reprint from [189].

1 function normalizeCQ(cq)
2 cq ← lowercase(cq)
3 foreach regex ∈ {[-"’‘], (.*?)}
4 cq ← cq.regexReplace(regex, ””)
5 cq ← cq.regexReplace(” \?”, ”?”)
6 cq ← cq.regexReplace(”[\t]+”, ” ”)
7 return cq

8 end
Algorithm 4: An algorithm defining the CQ normalization procedure involving CQ lower-
casing, removing redundant spaces and removing dashes as well as texts in brackets. Reprint
from [189].

1 function markChunk(cq, startEndPositions, typeID, counter)
2 chunkID = typeID + string(counter)
3 cq = cq.spanReplace(startEndPositions, chunkID)
4 return cq

5 end
Algorithm 5: An algorithm defining the procedure substituting a given span of charac-
ters with a given chunk identifier (e.g. PC1 representing the first predicate chunk). Reprint
from [189].

137

A.1. Extraction of a CQ pattern candidate from a given CQ 138

1 function normalizeNounChunk(nounChunkTokens)
2 if nounChunkTokens.firstToken ∈ {any, some,many,well, its,much, few}
3 nounChunkTokens← nounChunkTokens.removeFirstToken()
4 return nounChunkTokens

5 end
Algorithm 6: An algorithm rejecting a predefined list of tokens from noun chunks extracted
by spaCy. Reprint from [189].

1 function extractEcChunks(cq)
2 tokens← tokenize(cq)
3 counter ← 1
4 disallowedPhrases = {type,types,kind,kinds,category,categories}
5 disallowedPhrases+ = {difference,differences,extent,i,we,there}
6 disallowedPhrases+ = {respect,the main types,the possible types}
7 disallowedPhrases+ = {the types,the difference,the differences}
8 disallowedPhrases+ = {the main categories}
9 if tokens.first = ”how” ∧ postag(tokens.second) = ”ADJ” ∧ postag(tokens.third =

”VERB”
10 cq = markChunk(cq, getSpan(token.second), ”EC”, counter)
11 counter = counter + 1

12 foreach nounChunk ∈ getNounChunks(tokens)
13 chunkTokens← normalizeNounChunk(nounChunk)
14 if chunkTokens ∈ disallowedPhrases
15 continue
16 cq ← markChunk(cq, getSpan(chunkTokens), ”EC”, counter)
17 counter = counter + 1

18 tokensNum = length(tokens)
19 if tokens[tokensNum− 1] = ”?” ∧ postag(tokens[tokensNum− 2] =

”VERB” ∧ postag(tokens[tokenNum− 3]) ∈ {are, is, were, was, will}
20 cq ← markChunk(cq, getSpan(tokens[tokensNum− 2]), ”EC”, counter)
21 counter = counter + 1

22 if tokens[tokensNum− 1] = ”?” ∧ postag(tokens[tokensNum− 2] ∈ {ADJ, ADV}
23 cq ← markChunk(cq, getSpan(tokens[tokensNum− 2]), ”EC”, counter)
24 counter = counter + 1

25 return cq

26 end
Algorithm 7: An algorithm providing entity chunks (EC) extraction from the CQ cq. Reprint
from [189].

1 function extractPcChunks(cq)
2 tokens = tokenize(cq)
3 counter = 1
4 rejectingPhrases = {is,’s,are,was,do,does,did,were,have,had,can}
5 rejectingPhrases+ = {could,categorise,regarding,is of,are of}
6 rejectingPhrases+ = {are in,given,is there}
7 rules = {(PART|VERB)*VERB}
8 rules+ = {(PART|VERB)+ (ADJ|ADV)+ADP}
9 rules+ = {(PART|VERB)+ADP}
10 foreach chunkTokens ∈ getMatches(tokens, rules)
11 chunkTokens = chunkTokens+ addAuxilary(tokens, chunkTokens)
12 if chunkTokens ∈ rejectingPhrases
13 continue
14 cq ← markChunk(cq, getSpan(chunkTokens), ”PC”, counter)
15 counter = counter + 1

16 return cq

17 end
Algorithm 8: An algorithm providing predicate chunks (PC) extraction from the CQ cq.

A.2. Extraction of a SPARQL-OWL signature from a given SPARQL-OWL query 139

1 function addAuxilary(cqTokens, pcTokens)
2 auxilaries = {}
3 foreach token ∈ cqTokens
4 if token.head ∈ pcTokens ∧ token.depLabel = ”aux” ∧ token /∈ pcTokens”
5 auxilaries+ = token

6 return auxilaries

7 end
Algorithm 9: An algorithm providing the procedure to attach auxiliary verbs to PC chunks.
It allows to include modal verbs to predicates so that discontinuous PC chunks can be provided
(e.g. Do animals eat impalas? contains a discontinuous PC chunk do . . . eat). Reprint from [189].

Function name Description

tokenize(text) Transform text into a sequence of tokens.
postag(token) Obtain the part-of-speech token assigned to a given token.
string(variable) Return the string representing variable.
getSpan(x) Find at which positions phrase x begins and ends.
text.regexReplace(re, filler) Use filler to replace matches of re in text.
text.spanReplace(span, filler) Replace text at a given span with filler in given text.
length(tokens) Calculate the number of tokens in tokens sequence.
tokens.removeFirstToken() Remove the first token in tokens sequence.
getMatches(tokens, rules) Return tokens matching one or more rules from rules.

Table A.1: A list of popular natural language processing methods that are used in
CQ pattern extraction algorithms provided. Reprint from [189].

Rule expression Meaning

ADJ,ADV,VERB,PART,ADP POS-tags: adjective, adverb, verb, particle and adposition, respectively.
| Elements alternative.
() Grouping operator, used together with + or ∗ operators.
+ Operator requiring at least one occurrence of preceding group/POS-tag.
∗ Operator requiring at least one occurrence of preceding group/POS-tag.

Table A.2: Rule language components. Reprint from [189].

A.2 Extraction of a SPARQL-OWL signature from a given

SPARQL-OWL query

Input: A SPARQL query query
Output: A signature of the query

1 root← SPARQLToAlgebra(query)
2 root← ExtractSignature(root)
3 return AlgebraToSPARQL(root)
Algorithm 10: An algorithm extracting a signature of a given SPARQL query query . Reprint
from [189].

A.2. Extraction of a SPARQL-OWL signature from a given SPARQL-OWL query 140

1 function ExtractSignature(op)
2 newsubops← empty vector
3 foreach subop ∈ root.subops
4 newsubops.append(ExtractSignature(subop))
5 op.subops = newsubops
6 return Process(op)
7 end
Algorithm 11: A function traversing a SPARQL algebra tree rooted in op and recursively
processing it. Reprint from [189].

1 function Process(op)
2 SolutionModifiers← {ToList, OrderBy, Project, Distinct, Reduced, Slice,

ToMultiSet}
3 if op.name ∈ SolutionModifiers
4 return op.subop
5 if op.name = BGP

// op.args is a list of triple patterns
6 tps← ∅
7 foreach s, p, o ∈ op.args
8 if ¬ (p = rdf:type ∧ o ∈ {owl:Restriction, owl:Class})
9 tps← tps ∪ {(Rename(s), Rename(p), Rename(o)}
10 return BGP(tps)
11 if op.name = Filter
12 op.filterexpr = ProcessFilter(op.filterexpr)
13 return op

14 if op.name = Path
15 op.p← DropStarFromTransitive(op.p)
16 if op.p.name = seq ∧ op.p.args[0] = rdf:type ∧ op.p.args[1] = rdfs:subClassOf
17 op.p← rdf:type
18 return op

19 if op.name = Group
20 triplepatterns← empty vector
21 other ← empty vector
22 foreach subop ∈ op.subops
23 if subop.name = BGP
24 triplepatterns.append(subop.args)
25 else
26 others.append(subop)

// triplepatterns contains all triple patterns that occured in the BGPs
in this group

27 bgp← BGP(triplepatterns)
28 if others is empty
29 return bgp
30 else
31 return Group(others, bgp)
32 return op

33 end
Algorithm 12: A function processing a single node of a SPARQL algebra tree. Reprint
from [189].

A.2. Extraction of a SPARQL-OWL signature from a given SPARQL-OWL query 141

1 function DropStarFromTransitive(path)
2 if path.name ∈ {ZeroOrMorePath, OneOrMorePath} ∧ path.subpath ∈

{rdfs:subClassOf, rdfs:subPropertyOf}
3 return path.subpath
4 subpaths← empty vector
5 foreach p ∈ path.subpaths
6 subpaths.append(DropStarFromTransitive(p))
7 p.subpaths = subpaths
8 return p

9 end
Algorithm 13: A function to remove * and + from property paths containing known transitive
properties. Reprint from [189]

1 function ProcessFilter(filterexpr)
2 if filterexpr.name ∈ {logical-and, logical-or
3 {
4 filterexpr.left← ProcessFilter(filterexpr)
5 filterexpr.right← ProcessFilter(filterexpr)
6 if filterexpr.left is None return filterexpr.right
7 if filterexpr.right is None return filterexpr.left
8 return filterexpr
9 } if filterexpr.name = RDFterm-equal
10 if filterexpr.left = owl:Nothing ∨ filterexpr.right = owl:Nothing
11 return None
12 return filterexpr

13 end
Algorithm 14: A function to remove comparison with owl:Nothing in filter expressions.
Reprint from [189]

1 function Rename(node)
2 if node is an IRI ∧namespace(node) 6∈ {RDF,RDFS,OWL,XSD}
3 id← SafeBase64(node)
4 return BlankNode(id)
5 return node
6 end
Algorithm 15: A function to consistently replace all IRIs from namespaces other than RDF,
RDFS, OWL and XSD with blank nodes. Reprint from [189]

Appendix B

CQ patterns in CQ2SPARQLOWL

B.1 CQ patterns

What is EC1 PC1 EC2

What are EC1 to EC2

What EC1 to EC2 are there

Which of EC1 PC1 EC2 PC1

Are there any EC1 to EC2 EC3 PC1

PC1 EC1 PC1 EC2

What type of EC1 is EC2

What EC1 PC1 EC2

Is EC1 EC2 for EC3

What are EC1 and EC2 of EC3

Which EC1 is there for EC2 and what PC1 EC1 PC1

Which EC1 PC1 EC2

What EC1 PC1 I PC1 EC2 PC1 EC3

What are EC1 and EC2 for EC3

What EC1 from EC2 PC1 EC3, EC4

What are EC1 for EC2

What is EC1 for EC2

PC1 EC1 PC1 EC2 to EC3

PC1 EC1 PC1 EC2 that are EC3 from EC4

To what extent PC1 EC1 PC1 EC2

What EC1 PC1 I PC1 EC2 in EC3

Is EC1 of EC2 EC3

PC1 I PC1 EC1 if EC2 PC2 EC3

Given EC1, what are EC2 for EC3 of EC4

Where PC1 I PC1 EC1

Is there EC1 for EC2

How PC1 I PC1 EC1

How PC1 I PC1 EC1 with EC2

How PC1 I PC1 EC1 with EC2 PC1

Are there any EC1 PC1 EC2 PC1

Where PC1 I PC1 EC1 for EC2

Who PC1 EC1

142

B.1. CQ patterns 143

What is EC1 of EC2

PC1 we PC1 EC1 of EC2

Where PC1 I PC1 EC1 PC1

Which EC1 PC1 I PC1 EC2 PC1

Which is EC1 PC1 EC2

Do I know EC1 who PC1 EC2 or PC2 EC3

How and where PC1 EC1 PC1 in the past

How long PC1 EC1 PC1

How EC1 is EC2

What do EC1 PC1 EC2 EC3

What EC1 PC1 EC2 given EC3

Who are EC1 of EC2

Who else PC1 EC1 EC2

How many EC1 PC1 I PC1 EC2

What EC1 are in EC2 of EC3

What are the differences between EC1 of EC2

When PC1 EC1 of EC2 PC1

Is EC1 EC2

What EC1 does EC2 have, and what is its EC3

Is EC1 EC2 or not

At what EC1 PC1 EC2 of EC3 PC1

Who PC1 EC1 for EC2

How many EC1 PC1 we PC1 EC2 EC3

PC1 I PC1 EC1 PC1 EC2

Does EC1 of EC2 PC1 EC3

Are there any EC1 for EC2

Is there any EC1 for EC2 and where PC1 I PC1 EC3

Does EC1 have EC2

Where is EC1 of EC2

Where’s EC1 of EC2

How well PC1 is EC1 for EC2

Is there EC1 with EC2

How PC1 I PC1 EC1 PC1 EC2

PC1 I PC1 some EC1 of EC2 for EC3

What EC1 PC1 I PC1 EC2

What EC1 PC1 EC2 PC1

In what EC1 PC1 EC2 PC1

PC1 I PC1 EC1 on EC2

What EC1 PC1 I PC1 EC2 on EC3

Is EC1 EC2 or EC3

What is the difference between EC1 and EC2

In which EC1 are EC2 in EC3

Which kind of EC1 are EC2

What kind of EC1 is EC2

Where do I categorise EC1 like EC2

Which EC1 PC1 EC2 PC1

Which EC1 are EC2 of EC3

B.2. Higher-level CQ patterns 144

Are there EC1 in EC2

Which EC1 PC1 I PC1 PC2 EC2

In what kind of EC1 PC1 EC2 PC1

Which EC1 are EC2

PC1 EC1 and EC2 PC1 EC3

What types of EC1 are EC2

What are the main types of EC1

What are the types of EC1

Which are EC1

What PC1 EC1

What PC1 EC1 of EC2

What EC1 are of EC2 with respect to EC3

What EC1 is of EC2 regarding EC3

What EC1 PC1 EC2 or EC3 that PC2 EC4

What EC1 is of EC2 regarding EC3 and EC4

What are the main categories of EC1

What EC1 are EC2

What are the main types of EC1 EC2 PC1

What types of EC1 PC1 EC2

What are the possible types of EC1

What is EC1 of EC2 for EC3

What is EC1 of EC2 that have EC3

What is EC1 of EC2 that have EC3 and EC4

What are EC1 that have EC2

What is EC1 of EC2 that have EC3 as EC4

What is EC1 of EC2 that PC1 EC3

What EC1 of EC2 PC1 EC3

B.2 Higher-level CQ patterns

What is EC1 PC1 EC2

What is EC1 to EC2

What EC1 to EC2 is there

What of EC1 PC1 EC2 PC1

Is there any EC1 to EC2 EC3 PC1

PC1 EC1 PC1 EC2

What type of EC1 is EC2

What EC1 PC1 EC2

Is EC1 EC2

What is EC1 and EC2

What EC1 is there for EC2 and what PC1 EC1 PC1

What EC1 PC1 I PC1 EC2 PC1 EC3

What is EC1

PC1 EC1 PC1 EC2 to EC3

PC1 EC1 PC1 EC2 that is EC3 from EC4

To what extent PC1 EC1 PC1 EC2

What EC1 PC1 I PC1 EC2

B.2. Higher-level CQ patterns 145

PC1 I PC1 EC1 if EC2 PC2 EC3

Given EC1, what is EC2

Where PC1 I PC1 EC1

Is there EC1

How PC1 I PC1 EC1

How PC1 I PC1 EC1 PC1

Is there any EC1 PC1 EC2 PC1

Who PC1 EC1

PC1 I PC1 EC1

Where PC1 I PC1 EC1 PC1

What EC1 PC1 I PC1 EC2 PC1

Which is EC1

Do I know EC1 who PC1 EC2 or PC2 EC3

How and where PC1 EC1 PC1 in the past

How long PC1 EC1 PC1

How EC1 is EC2

What do EC1 PC1 EC2

What EC1 PC1 EC2 given EC3

Who is EC1

Who else PC1 EC1 EC2

How many EC1 PC1 I PC1 EC2

What EC1 is in EC2

What is the difference between EC1

When PC1 EC1 PC1

What EC1 do EC2 have, and what is its EC3

Is EC1 EC2 or not

At what EC1 PC1 EC2 PC1

How many EC1 PC1 I PC1 EC2 EC3

PC1 I PC1 EC1 PC1 EC2

Do EC1 PC1 EC2

Is there any EC1

Is there any EC1 and where PC1 PC1 EC2

Do EC1 have EC2

Where is EC1

Where’s EC1

How EC1 PC1 is EC2

How PC1 I PC1 EC2

How PC1 I PC1 EC1 PC1 EC2

PC1 I PC1 some EC1

What EC1 PC1 EC2 PC1

In what EC1 PC1 EC2 PC1

PC1 I PC1 EC1

Is EC1 EC2 or EC3

What is the difference between EC1 and EC2

In which EC1 is EC2

Where do I categorise EC1 like EC2

What EC1 is EC2

B.2. Higher-level CQ patterns 146

In what type of EC1 PC1 EC2 PC1

PC1 EC1 and EC2 PC1 EC3

What is the main type of EC1

What is the type of EC1

What EC1 PC1 EC2 and EC3

What PC1 EC1

What EC1 is of EC2 with respect to EC3

What EC1 is of EC2 regarding EC3

What EC1 PC1 EC2 or EC3 that PC2 EC4

What EC1 is of EC2 regarding EC3 and EC4

What is the main type of EC1 EC2 PC1

What type of EC1 PC1 EC2

What is the possible type of EC1

What is EC1 that have EC2

What is EC1 that have EC2 and EC3

What is EC1 that PC1 EC2

How well PC1 is EC1

Appendix C

Phrases rejected by ReqTagger

C.1 Entities

• a kind

• the kind

• kind

• kinds

• the kinds

• category

• a category

• the category

• categories

• the categories

• type

• a type

• the type

• types

• the types

147

C.2. Relations 148

C.2 Relations

• is

• ’s

• are

• was

• do

• does

• did

• were

• have

• had

• has

• can

• could

• regarding

• is of

• are of

• are in

• given

• is there

Appendix D

Verbalized axiom shapes used in BigCQ

Every c1 dp1 dt1.

Every c1 is a c2 that dp1 dt1 or that dp2 dt2. Every c2 that dp1 dt1 or

that dp2 dt2 is a c1.

Every c1 is a c2 that dp1 dt1. Every c2 that dp1 dt1 is a c1.

Every c1 is a c2 that is a c3. Every c2 that is a c3 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 a c4 and that op3 a c5.

Every c2 that op1 a c3 and that op2 a c4 and that op3 a c5 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 a c4 and that op3 i1.

Every c2 that op1 a c3 and that op2 a c4 and that op3 i1 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 a c4 and that op3 nothing but c5 and

that op4 nothing but c6.

Every c2 that op1 a c3 and that op2 a c4 and that op3 nothing but c5 and

that op4 nothing but c6 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 a c4.

Every c2 that op1 a c3 and that op2 a c4 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 i1

and that op3 something that op4 a c4.

Every c2 that op1 a c3 and that op2 i1

and that op3 something that op4 a c4 is a c1.

Every c1 is a c2 that op1 a c3 and that op2 nothing but c4.

Every c2 that op1 a c3 and that op2 nothing but c4 is a c1.

Every c1 is a c2 that op1 a c3 that op2 a c4.

Every c2 that op1 a c3 that op2 a c4 is a c1.

149

Verbalized axiom shapes used in BigCQ 150

Every c1 is a c2 that op1 a c3.

Every c1 is a c2 that op1 a c3. Every c2 that op1 a c3 is a c1.

Every c1 is a c2 that op1 at least {NUM} c3.

Every c2 that op1 at least {NUM} c3 is a c1.

Every c1 is a c2 that op1 at most {NUM} thing and that

op2 at least {NUM} thing.

Every c1 is a c2 that op1 at most {NUM} thing.

Every c1 is a c2 that op1 exactly 2 c3 and that op2

a c4 that op3 a c5 that op4 something that op5 a c6.

Every c2 that op1 exactly 2 c3 and that op2

a c4 that op3 a c5 that op4 something that op5 a c6 is a c1.

Every c1 is a c2 that op1 exactly 2 c3 and that op2

a c4 that op3 something that op4 a c5 that op5 a c6.

Every c2 that op1 exactly 2 c3 and that op2

a c4 that op3 something that op4 a c5 that op5 a c6 is a c1.

Every c1 is a c2 that op1 nothing but c3 and that op2 exactly {NUM} c4.

Every c2 that op1 nothing but c3 and that op2 exactly {NUM} c4 is a c1.

Every c1 is a c2 that op1 nothing but c3.

Every c1 is a c2 that op1 nothing but c3.

Every c2 that op1 nothing but c3 is a c1.

Every c1 is a c2 that op1 something and that op2 a c3 and that op3 a c4.

Every c2 that op1 something and that op2 a c3 and that op3 a c4 is a c1.

Every c1 is a c2 that op1 something and that op2 a c3.

Every c2 that op1 something and that op2 a c3 is a c1.

Every c1 is a c2 that op1 something and that op2 something that op3 a c3.

Every c2 that op1 something and that op2 something that op3 a c3 is a c1.

Every c1 is a c2 that op1 something that op2 a c3.

Every c2 that op1 something that op2 a c3 is a c1.

Every c1 is a c2. Every c2 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that dp1 dt1.

Verbalized axiom shapes used in BigCQ 151

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

a c4 and that op4 a c5 and that op5 a c6.

Everything that op1 a c2 and that op2 a c3 and that op3

a c4 and that op4 a c5 and that op5 a c6 is a c1.

Every c1 is something that op1 a c2 and that op2

a c3 and that op3 a c4 and that op4 a c5.

Everything that op1 a c2 and that op2

a c3 and that op3 a c4 and that op4 a c5 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

a c4 and that op4 c5 and that op5 c6.

Everything that op1 a c2 and that op2 a c3 and that op3 a c4 and

that op4 c5 and that op5 c6 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

a c4 and that op4 c5.

Everything that op1 a c2 and that op2 a c3 and that op3 a c4 and

that op4 c5 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3 a c4.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3 a c4.

Everything that op1 a c2 and that op2 a c3 and that op3 a c4 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

c4 and that op4 something that op5 a c5.

Everything that op1 a c2 and that op2 a c3 and that op3 c4 and

that op4 something that op5 a c5 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

c4 and that op4 something that op5 i1.

Everything that op1 a c2 and that op2 a c3 and that op3 c4 and

that op4 something that op5 i1 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3 c4.

Every c1 is something that op1 a c2 and that op2 a c3 and that op3

something that op4 a c4.

Everything that op1 a c2 and that op2 a c3 and that op3 something

that op4 a c4 is a c1.

Every c1 is something that op1 a c2 and that op2 a c3.

Every c1 is something that op1 a c2 and that op2 a c3.

Everything that op1 a c2 and that op2 a c3 is a c1.

Verbalized axiom shapes used in BigCQ 152

Every c1 is something that op1 a c2 and that op2 nothing but c3.

Everything that op1 a c2 and that op2 nothing but c3 is a c1.

Every c1 is something that op1 a c2 and that op2 something that is a c3

or that is a c4.

Everything that op1 a c2 and that op2 something that is a c3

or that is a c4 is a c1.

Every c1 is something that op1 a c2 and that op2 something that op3 a c3.

Every c1 is something that op1 a c2 and that op2 something that op3 a c3.

Everything that op1 a c2 and that op2 something that op3 a c3 is a c1.

Every c1 is something that op1 a c2 or that is something and that op2 a c3.

Everything that op1 a c2 or that is something and that op2 a c3 is a c1.

Every c1 is something that op1 a c2 or that op2 a c3.

Every c1 is something that op1 at least 2 things and that op2 a c2.

Every c1 is something that op1 at least {NUM} things and that op2

at least {NUM} things and that op3 at least {NUM} things and

that op4 at least {NUM} things.

Every c1 is something that op1 c2 and that op2 c3 and

that op3 c4 and that op4 c5.

Every c1 is something that op1 c2 or that op2 c3 or that op3 c4 or that op4 c5.

Everything that op1 c2 or that op2 c3 or that op3 c4 or that op4 c5 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 1

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 1

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Verbalized axiom shapes used in BigCQ 153

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 1

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 1

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 1

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly {NUM} c6 and

that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

Verbalized axiom shapes used in BigCQ 154

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and

that op3 exactly {NUM} c4 and that op4 exactly {NUM} c5 and that op5 exactly 999

c6 and that op6 exactly {NUM} c7.

Everything that op1 exactly {NUM} c2 and that op2 exactly {NUM} c3 and that op3

exactly {NUM} c4 and that op4 exactly {NUM} c5 and that

op5 exactly {NUM} c6 and that op6 exactly {NUM} c7 is a c1.

Every c1 is something that op1 exactly 2 c2 and that op2 a c3 that op3 a c4

that op4 something that op5 a c5. Everything that op1 exactly 2 c2 and that op2

a c3 that op3 a c4 that op4 something that op5 a c5 is a c1.

Every c1 is something that op1 exactly 2 c2 and that op2 a c3 that op3 something

that op4 a c4 that op5 a c5.

Everything that op1 exactly 2 c2 and that op2 a c3 that op3 something

that op4 a c4 that op5 a c5 is a c1.

Every c1 is something that op1 exactly {NUM} things and that op2 a c2

and that op3 a c3 and that op4 a c4.

Everything that op1 exactly {NUM} things and that op2 a c2

and that op3 a c3 and that op4 a c4 is a c1.

Every c1 is something that op1 i1 and that op2 something that op3 i2.

Everything that op1 i1 and that op2 something

that op3 i2 is a c1.

Every c1 is something that op1 nothing but c2 and that is not a c3

and that op2 at least 2 c4.

Everything that op1 nothing but c2 and that is not a c3

and that op2 at least 2 c4 is a c1.

Every c1 is something that op1 nothing but c2 and that op2 nothing but c3.

Every c1 is something that op1 something and that op2 a c2 and that op3 a c3.

Everything that op1 something and that op2 a c2 and that op3 a c3 is a c1.

Every c1 is something that op1 something and that op2 a c2 and that op3 c3.

Everything that op1 something and that op2 a c2 and that op3 c3 is a c1.

Every c1 is something that op1 something and that op2 a c2.

Everything that op1 something and that op2 a c2 is a c1.

Verbalized axiom shapes used in BigCQ 155

Every c1 is something.

Every c1 is something. Everything is a c1.

Every c1 op1 a c2 that dp1 dt1.

Every c1 op1 a c2 that is not a c3 and that is not a c4.

Every c1 op1 a c2 that op2 a c3 and that op3 a c4.

Everything that op1 a c2 that op2 a c3 and that op3 a c4 is a c1.

Every c1 op1 a c2 that op2 a c3 and that op3 something that op4 a c4.

Everything that op1 a c2 that op2 a c3 and that op3 something that op4

a c4 is a c1.

Every c1 op1 a c2 that op2 a c3 that op3 a c4 and that op4 a c5.

Every c1 op1 a c2 that op2 a c3 that op3 a c4.

Every c1 op1 a c2 that op2 a c3.

Every c1 op1 a c2 that op2 a c3. Everything that op1 a c2 that op2 a c3 is a c1.

Every c1 op1 a c2 that op2 nothing but c3.

Every c1 op1 a c2.

Every c1 op1 a c2. Everything that op1 a c2 is a c1.

Every c1 op1 at least {NUM} c2.

Every c1 op1 at least {NUM} thing.

Every c1 op1 at least 2 c2.

Every c1 op1 at least 2 things.

Every c1 op1 at least {NUM} things.

Every c1 op1 at least {NUM} things.

Everything that op1 at least {NUM} things is a c1.

Every c1 op1 at most {NUM} c2.

Every c1 op1 at most {NUM} thing.

Every c1 op1 c2.

Verbalized axiom shapes used in BigCQ 156

Every c1 op1 exactly {NUM} c2.

Every c1 op1 exactly {NUM} c2. Everything that op1 exactly {NUM} c2 is a c1.

Every c1 op1 exactly {NUM} thing.

Every c1 op1 exactly 2 c2.

Every c1 op1 exactly {NUM} c2.

Every c1 op1 exactly {NUM} c2. Everything that op1 exactly {NUM} c2 is a c1.

Every c1 op1 exactly {NUM} things.

Every c1 op1 i1.

Every c1 op1 something that is a c2 or that is a c3.

Every c1 op1 something that op2 a c2 and that op3 a c3 and that op4 a c4.

Everything that op1 something that op2 a c2 and that op3 a c3 and that op4

a c4 is a c1.

Every c1 op1 something that op2 a c2 and that op3 a c3.

Everything that op1 something that op2 a c2 and that op3 a c3 is a c1.

Every c1 op1 something that op2 a c2 and that op3 something that op4 a c3.

Everything that op1 something that op2 a c2 and that op3 something that op4

a c3 is a c1.

Every c1 op1 something that op2 a c2.

Every c1 op1 something that op2 a c2.

Everything that op1 something that op2 a c2 is a c1.

Every c1 op1 something that op2 c2.

Every c1 op1 something that op2 nothing but c2.

Every c1 op1 something that op2 something that op3 a c2.

Everything that op1 something that op2 something that op3 a c2 is a c1.

Every c1 op1 something that op2 something.

Every c1 op1 something.

Every c1 op1 something. Everything that op1 something is a c1.

Verbalized axiom shapes used in BigCQ 157

Every c2 is a c2.

Everything that is dp1 by a c1 is something that is not something.

Everything that is op1 by a c1 is a c2.

Everything that is op1 by a c1 is a c2.

Everything that op1 nothing but c2 is a c1.

Everything that is op1 by a c1 is something that is a c2 or that is a c3.

Everything that is op1 by a c1 is something that is a c2 or that is a c3.

Everything that op1 nothing but things that are a c2 or that are a c3 is a c1.

Everything that is op1 by a c1 is something that is not something.

Everything that is op1 by a c1 is something.

Everything that op1 a c1 and that does not op2 a c2 op3 a c3.

Everything that op3 a c3 is something that op1 a c1 and that does not op2 a c2.

No c1 is a c2. Everything that is not a c2 is a c1.

No c1 op1 a c2.

No c1 op1 something.

Nothing is a c1. Everything that is not something is a c1.

Appendix E

Presupposition tests for query templates

Query template 1: SELECT ?x WHERE {

?x rdfs:subClassOf <EC1>, [a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom <EC2>]}

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1> [a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom <EC2>])] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction; owl:onProperty <PC1>; owl:allValuesFrom [a owl:Class; owl:complementOf <EC2>]])]

rdfs:subClassOf owl:Nothing }

Query template 2: SELECT DISTINCT * WHERE {

<E3> rdfs:subClassOf [a owl:Restriction; owl:onProperty <IS_EC2>; owl:someValuesFrom ?x].

?x rdfs:subClassOf <EC1>. filter(?x != <EC1>) }

ASK WHERE {

[a owl:Restriction; owl:onProperty <IS_EC2>; owl:someValuesFrom <EC1>] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Restriction; owl:onProperty <IS_EC2>; owl:allValuesFrom [a owl:Class; owl:complementOf <EC1>]]

rdfs:subClassOf owl:Nothing }

Query template 3: SELECT DISTINCT * WHERE {

<EC1> rdfs:subClassOf [a owl:Restriction ; owl:onProperty <PC1> ; owl:hasValue ?x] }

ASK WHERE {[a owl:Restriction ; owl:onProperty <PC1> ; owl:hasValue owl:Thing] rdfs:subClassOf owl:Nothing}

Query template 4: SELECT DISTINCT * WHERE {

<EC1> rdfs:subClassOf [a owl:Restriction ; owl:onProperty <PC1> ; owl:someValuesFrom ?x]

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom owl:Thing] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:allValuesFrom owl:Nothing] rdfs:subClassOf owl:Nothing }

158

Presupposition tests for query templates 159

Query template 5: SELECT DISTINCT * WHERE {

<EC2> rdfs:subClassOf [a owl:Restriction ; owl:onProperty <HAS_EC1> ; owl:hasValue ?x] }

ASK WHERE {

[a owl:Restriction ; owl:onProperty <HAS_EC1> ; owl:hasValue owl:Thing] rdfs:subClassOf owl:Nothing}

Query template 6: SELECT DISTINCT * WHERE {

<EC2> rdfs:subClassOf [a owl:Restriction ; owl:onProperty <PC1> ; owl:someValuesFrom ?x]

. ?x rdfs:subClassOf <EC1> . filter(?x != <EC1>) }

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom <EC1>] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:allValuesFrom [a owl:Class; owl:complementOf <EC1>]]

rdfs:subClassOf owl:Nothing }

Query template 7: SELECT DISTINCT * WHERE {

<EC2> rdfs:subClassOf [a owl:Restriction ; owl:onProperty <PC1> ; owl:someValuesFrom ?x]

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom owl:Thing] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Restriction; owl:onProperty <PC1>; owl:allValuesFrom owl:Nothing] rdfs:subClassOf owl:Nothing }

Query template 8: SELECT DISTINCT * WHERE {

?x rdfs:subClassOf <EC1>, [a owl:Restriction ; owl:onProperty <IS_EC2>; owl:someValuesFrom <EC3>] .

filter(?x != owl:Nothing) }

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction; owl:onProperty <IS_EC2>; owl:someValuesFrom <EC3>])] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction; owl:onProperty <IS_EC2>; owl:allValuesFrom [a owl:Class; owl:complementOf <EC3>]])]

rdfs:subClassOf owl:Nothing }

Query template 9: SELECT DISTINCT ?x WHERE {

?x rdfs:subClassOf <EC1>, [a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom <EC2>]}

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction; owl:onProperty <PC1>; owl:someValuesFrom <EC2>])] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Class; owl:intersectionOf(

<EC1>

[a owl:Restriction; owl:onProperty <PC1>; owl:allValuesFrom [a owl:Class; owl:complementOf <EC2>]])]

rdfs:subClassOf owl:Nothing }

Presupposition tests for query templates 160

Query template 10: SELECT DISTINCT * WHERE {

?x rdfs:subClassOf

[rdf:type owl:Restriction; owl:onProperty <HAS_EC4>; owl:someValuesFrom <EC4>].

?x rdfs:subClassOf

[rdf:type owl:Restriction ; owl:onProperty <HAS_EC3> ; owl:someValuesFrom <EC3>] }

ASK WHERE { owl:intersectionOf(

[rdf:type owl:Restriction; owl:onProperty <HAS_EC4>; owl:someValuesFrom <EC4>]

[rdf:type owl:Restriction; owl:onProperty <HAS_EC3>; owl:someValuesFrom <EC3>]

) rdfs:subClassOf owl:Nothing}

ASK WHERE { owl:intersectionOf(

[rdf:type owl:Restriction; owl:onProperty <HAS_EC4>; owl:someValuesFrom <EC4>]

[rdf:type owl:Restriction; owl:onProperty <HAS_EC3>; owl:allValuesFrom [

a owl:Class; owl:complementOf <EC3>]]

) rdfs:subClassOf owl:Nothing}

ASK WHERE { owl:intersectionOf(

[rdf:type owl:Restriction; owl:onProperty <HAS_EC3>; owl:someValuesFrom <EC3>]

[rdf:type owl:Restriction; owl:onProperty <HAS_EC4>; owl:allValuesFrom [

a owl:Class; owl:complementOf <EC4>]]

) rdfs:subClassOf owl:Nothing}

Query template 11: SELECT DISTINCT * WHERE {?x rdfs:subClassOf <EC1> . ?x rdfs:subClassOf <EC2>}

ASK WHERE {[a owl:Class; owl:intersectionOf(<EC1> <EC2>] rdfs:subClassOf owl:Nothing }

ASK WHERE {

[a owl:Class; owl:intersectionOf(<EC1> [a owl:Class; owl:complementOf <EC2>]] rdfs:subClassOf owl:Nothing }

Appendix F

BigCQ synonym sets

The following lines present how synonym sets are expanded to produce multiple CQ patterns.

Each line consists of a synonym set id enclosed in square brackets, which is followed by a colon

and a list of phrases that are used to materialize synonym set ids.

[WHAT]: [what, which],

[THE SAME AS]: [equal to, identical with, the same as],

[REGARD]: [regard, count, classify, categorize, consider],

[CATEGORY]: [category, class, type, group],

[DOES]: [does, did, do],

[EVERY]: [every, all, each],

[CAN]: [can, could, may],

[REGARDED]: [regarded, counted, classified, categorized, considered],

[IS THERE]: [is there, is there any],

[IT]: [it, that],

[THINGS]: [things, objects, entities, categories],

[IS]: [is, are],

[A KIND]: [a kind, a type, a subset, an example, a sample, a sort, a form,

a category, a specialization],

[KIND]: [kind, type, subset, example, sort, form, specialization],

[KINDS]: [kinds, types, subsets, examples, sorts, forms, specializations],

[I]: [i, one, we],

[CATEGORIES]: [categories, classes, types],

[THING]: [thing, object, entity],

[THE TYPES]: [the types, the kinds, examples, the forms, the categories,

the specializations],

[TYPES]: [types, kinds, examples, forms, categories, specializations],

[CLASSIFIED]: [classified, categorized, assigned],

[ARE THERE]: [are there, are available, are proposed, are described, exist]

161

Appendix G

CQ templates used to construct BigCQ

G.1 SPO + Subsumption

List of CQ templates used to generate questions related to the SPO type and class subsumption.

ASK

• [DOES] {LHS} {VERB} {RHS}?

• [DOES] [EVERY] {LHS} {VERB} {RHS}?

• [CAN] {LHS} {VERB} {RHS}?

• [CAN] [EVERY] {LHS} {VERB} {RHS}?

• [CAN] {LHS} be [REGARDED] as something that {VERB} {RHS}?

• [IS THERE] {LHS} that [CAN] {VERB} {RHS}?

• [IS THERE] {LHS} that {VERB} {RHS}?

• [IS THERE] {LHS} that [CAN] be [REGARDED] as {VERB} {RHS}?

• Is [IT] true that {LHS} {VERB} {RHS}?

SELECT LHS

• [WHAT] {VERB} {RHS}?

• [WHAT] [THINGS] {VERB} {RHS}?

• [WHAT] [KIND] of [THINGS] {VERB} {RHS}?

SELECT COUNT LHS

• How many [CATEGORIES] of [THINGS] {VERB} {RHS}?

SELECT VERB

• What {LHS} [CAN] do with {RHS}?

• What {RHS} [CAN] do with {LHS}?

162

G.2. SS + Subsumption 163

• What {LHS} [DOES] with {RHS}?

• What {RHS} [DOES] with {LHS}?

• What relates {LHS} and {RHS}?

• What can {LHS} do to {RHS}?

• What relation between {LHS} and {RHS} exists?

• [WHAT] is the relation between {LHS} and {RHS}?

SELECT COUNT VERB

• How many relations [ARE THERE] between {LHS} and {RHS}?

• How many things [CAN] {LHS} do with {RHS}?

SELECT RHS

• [WHAT] [DOES] {LHS} {VERB}?

• [WHAT] {LHS} [CAN] [I] {VERB}?

• [WHAT] [THINGS] [DOES] {LHS} {VERB}?

• [WHAT] [KIND] of [THINGS] [DOES] {LHS} {VERB}?

• [WHAT] is {VERB} by {LHS}?

SELECT COUNT RHS

• How many [CATEGORIES] of [THINGS] [DOES] {LHS} {VERB}?

G.2 SS + Subsumption

List of CQ templates used to generate questions related to the SS type and class subsumption.

ASK

• [IS] [EVERY] {LHS} [A KIND] of {RHS}?

• [IS] [EVERY] {LHS} {RHS}?

• [CAN] {LHS} be [A KIND] of {RHS}?

• [CAN] {LHS} be {RHS}?

• [CAN] {LHS} be [REGARDED] as {RHS}?

• [CAN] {LHS} be [REGARDED] as [A KIND] of {RHS}?

• [CAN] [I] [REGARD] {LHS} as {RHS}?

• [IS THERE] {LHS} that [CAN] be [A KIND] of {RHS}?

• [IS THERE] {LHS} that [CAN] be {RHS}?

G.2. SS + Subsumption 164

• [IS THERE] {LHS} that [CAN] be [REGARDED] as [A KIND] of {RHS}?

• [IS THERE] {LHS} that [CAN] be [REGARDED] as {RHS}?

• [DOES] {LHS} being [A KIND] of {RHS} exist?

• [DOES] {LHS} being {RHS} exist?

• Is [IT] true that {LHS} is [A KIND] of {RHS}?

• Is [IT] true that {LHS} is {RHS}?

SELECT LHS

• [WHAT] [THINGS] are {RHS}?

• [WHAT] are [CATEGORIES] of {RHS}?

• [WHAT] are the [CATEGORIES] of {RHS}?

• [WHAT] are the main [CATEGORIES] of {RHS}?

• [WHAT] are the main [TYPES] of {RHS}?

• [WHAT] [IS] {RHS}?

• [WHAT] [CATEGORIES] of {RHS} [ARE THERE]?

• [WHAT] main [CATEGORIES] of {RHS} [ARE THERE]?

• [WHAT] [KINDS] of {RHS} [ARE THERE]?

• [WHAT] {RHS} [ARE THERE]?

• [WHAT] main [KINDS] of {RHS} [ARE THERE]?

SELECT COUNT LHS

• How many [KINDS] [DOES] {RHS} have?

• How many [KINDS] of {RHS} [ARE THERE]?

SELECT RHS

• [WHAT] [KIND] of [THING] [IS] [EVERY] {LHS}?

• [WHAT] [THING] [IS] [EVERY] {LHS}?

• [WHAT] is the supertype of {LHS}?

• To [WHAT] [CATEGORY] [CAN] {LHS} be [CLASSIFIED] to?

• [WHAT] [CATEGORY] [DOES] {LHS} belong to?

• [WHAT] [IS] {LHS}?

G.3. SPO + Equivalence 165

SELECT COUNT RHS

• How many supertypes does {LHS} belong to?

• How many supertypes does {LHS} have?

• How many supertypes of of {LHS} exists?

• To how many [CATEGORIES] [CAN] {LHS} be [CLASSIFIED] to?

G.3 SPO + Equivalence

List of CQ templates used to generate questions related to the SPO type and class equivalence.

ASK

• [CAN] [EVERY] {LHS} be considered [THE SAME AS] a thing that {VERB} {RHS}?

• [DOES] [EVERY] {LHS} equal a thing that {VERB} {RHS}?

• [CAN] {LHS} be [THE SAME AS] something that {VERB} {RHS}?

• [IS THERE] {LHS} that [CAN] be [THE SAME AS] things that can {VERB} {RHS}?

• [IS THERE] {LHS} that is [THE SAME AS] things that {VERB} {RHS}?

• [IS THERE] {LHS} that [CAN] be [REGARDED] as [THE SAME AS]
things that {VERB} {RHS}?

• Is [IT] true that {LHS} [IS] [THE SAME AS] things that {VERB} {RHS}?

SELECT LHS

• [WHAT] is [THE SAME AS] things that {VERB} {RHS}?

• [WHAT] [THINGS] are [THE SAME AS] things that {VERB} {RHS}?

• [WHAT] [KIND] of [THINGS] are [THE SAME AS] to things that {VERB} {RHS}?

SELECT COUNT LHS

• How many [CATEGORIES] of [THINGS] are [THE SAME AS]
things that {VERB} {RHS}?

SELECT VERB

• What {LHS} [CAN] do with {RHS}?

• What {RHS} [CAN] do with {LHS}?

• What {LHS} [DOES] with {RHS}?

• What {RHS} [DOES] with {LHS}?

• What relates {LHS} and {RHS}?

• What can {LHS} do to {RHS}?

G.4. SS + Equivalence 166

• What relation between {LHS} and {RHS} exists?

• [WHAT] is the relation between {LHS} and {RHS}?

SELECT COUNT VERB

• How many relations [ARE THERE] between {LHS} and {RHS}?

• How many things [CAN] {LHS} do with {RHS}?

SELECT RHS

• [WHAT] is [THE SAME AS] things that {LHS} {VERB}?"

• [WHAT] [THINGS] are [THE SAME AS] things that {LHS} {VERB}?

SELECT COUNT RHS

• How many [CATEGORIES] of [THINGS] are [THE SAME AS]
things that {LHS} {VERB}?

G.4 SS + Equivalence

List of CQ templates used to generate questions related to the SS type and class equivalence.

ASK

• [IS] [EVERY] {LHS} [THE SAME AS] {RHS}?

• [CAN] {LHS} be [THE SAME AS] {RHS}?

• [CAN] {LHS} be [REGARDED] [THE SAME AS] {RHS}?

• [CAN] [I] [REGARD] {LHS} [THE SAME AS] {RHS}?

• [IS THERE] {LHS} that [IS] [THE SAME AS] {RHS}?

• [DOES] {LHS} being [THE SAME AS] {RHS} exist?

• Is [IT] true that {LHS} is [THE SAME AS] {RHS}?

• Is [IT] true that {LHS} is {RHS}?

SELECT LHS

• [WHAT] [THINGS] are [THE SAME AS] {RHS}?

• [WHAT] [IS] [THE SAME AS] {RHS}?

SELECT COUNT LHS

• How many [KINDS] of {RHS} are equivalent to it?

G.4. SS + Equivalence 167

SELECT RHS

• [WHAT] [KIND] of [THING] [IS] [THE SAME AS] {LHS}?

• [WHAT] [THING] [IS] [THE SAME AS] {LHS}?

• [WHAT] [IS] [THE SAME AS] {LHS}?

SELECT COUNT RHS

• How many [KINDS] of {RHS} are equivalent to it?

List of Figures

2.1 An RDF graph representation of the sentence: Mark works at a startup that is located

in Poznan. 8

2.2 Visualization of a sample RDF graph. Solid ovals and lines represent explicit knowledge.

Dashed ovals and lines represent inferred knowledge. 15

3.1 Sigmoid function. 20

3.2 Two hypotheses that are fit to the same training data (represented with × shapes).

The one presented on the left side overfits because it fits perfectly the training data

but generates a large error for an unseen example, visualized using a rotated square.

The function presented on the right side better captures the general trend in data.

Even though it provides less accurate predictions on the training data, it generates a

prediction closer to the expected value for a previously unseen example. 23

3.3 A neuron model with n inputs assigned with a weight each. The dot product between

the weights and inputs processed by an activation function f(·) is the output. 23

3.4 OR and XOR gates represented as their truth tables and visualizations in their feature

space. Black circles represent coordinates assigned with the outputs set to 1. Grey

circles represent coordinates assigned with the outputs set to 0. As can be seen, it is

possible to separate black and grey circles with a line (represented as a dotted line) in

the case of OR gate, but it is not possible for XOR. 24

3.5 AND and OR gates are linearly separable problems. If the input values are processed

by AND and OR gates and their outputs are fed to XOR gate, the XOR problem also

becomes linearly separable in this new feature space. If we introduce two neurons,

solving both AND and OR, and use their outputs as inputs of an additional neuron,

we can train a network that predicts XOR labels correctly. 25

3.6 An example RNN cell unfolded to 3 time steps. Red arrows represent recurrent con-

nections between the previous and the current hidden state. The input layer does not

introduce any activation function – the purpose of this layer is only to broadcast each

input to each neuron in the hidden layer. 26

3.7 A sample sentence tagged with IOB tags. A single-token CITY and a multi-token

COUNTRY are marked. 28

4.1 Part-of-speech tags assigned to each token using Universal and OntoNotes tagsets.

Here, DT and DET represent a determiner, JJ and ADJ represent an adjective, NOUN – a

noun, NN – a noun, singular or mass, VERB – a verb, VBD – a verb in past tense ”.” and

PUNCT – a punctuation mark, IN – a preposition, and ADP – an adposition. 33

4.2 Dependency parse tree constructed for a sample sentence. 33

4.3 The abc+d? regex translated into DFA. 34

4.4 The abc+d? regex translated into NFA. 35

168

6.1 The number of tokens among CQs. The boxplot named as ’Aggregated’ is related

to the whole CQ2SPARQLOWL. In this figure, heights of the rectangles represent

interquartile ranges (IQR) defined as differences between third and first quartiles (Q3

and Q1, respectively). Each whisker represents a range from Q1 - 1.5 IQR to Q3 + 1.5

IQR. The circles represent outliers. 47

6.2 Average number of CQs covered by a pattern. Reprint from [189]. 52

6.3 Average number of CQs covered by a higher-level pattern. Reprint from [189]. 54

7.1 The process of marking phrases with chunks followed by the materialization of place-

holders to generate multiple training examples from CQ2SPARQLOWL automati-

cally. 69

7.2 Example CQ tokenized and tagged with IOB tags. Here, Microsoft Excel 2003 is adjacent

to FOSS. 70

7.3 The workflow of ReqTagger. Suggested entities relate to classes and instances, while

suggested relations relate to data and object properties. 74

7.4 The dependency parse tree constructed over a sample CQ. 80

8.1 The workflow of the method generating CQ and SPARQL-OWL forms that was used

to construct BigCQ. 85

8.2 Relations between fragments of verbalizations and fragments of axiom shapes. Reprint

from [187] . 89

8.3 Verbalizations generated from example axiom shapes that are split into LHS, VERB

and RHS. Reprint from [187] . 91

8.4 Number of CQ patterns generated for each of the 7 categories. Reprint from [187] . . 97

9.1 CQ pattern to SPARQL-OWL template mapping example. Relations between phrases

and IRIs are marked in the upper part of the Figure. In the lower part of the Figure,

a pair of a CQ pattern and a SPARQL-OWL query template is presented. Reprint

from [188]. 102

9.2 The workflow of SeeQuery. The outputs of the current step serve as the inputs of

the subsequent step in a processing pipeline, the flow of which is represented with the

grey arrow. Multiplicated boxes visualized in the background of steps 4-6 indicate that

SeeQuery can select and process more than one query template at once to produce

multiple query recommendations. If that is the case, SeeQuery processes all these

templates independently. 104

9.3 The spans identified in a sample CQ using direct matching and domain phrases extraction.106

10.1 A presupposition query and the two possible interpretations of the result. 115

10.2 The TDD workflow with presupposition tests included. The white shapes represent the

simplified, preexisting steps and the grey ones represent our contribution. 118

169

170

List of Tables

1 Table of symbols . X

2 Table of abbreviations and proper names . XIII

2.1 An excerpt of some academic database. 13

2.2 A sample knowledge base represented using Functional-style Syntax. 17

6.1 Per ontology summary of the number of CQs translated into SPARQL-OWL queries. . 45

6.2 Number of materialized and dematerialized CQs per ontology. 49

6.3 Per ontology summary of the number of CQs covered by pattern candidates and pat-

terns as well as the number of distinct patterns and the percentage of CQs covered by

patterns. 51

6.4 The list of patterns shared among multiple ontologies. Reprint from [189]. 52

6.5 The transformations used to normalize similar CQ patterns. The special token ”—”

represents situations where a given text is removed from the pattern during normaliza-

tion. Reprint from [189]. 53

6.6 Higher-level patterns shared among multiple ontologies. Multiple occurences of PC1 in

a single pattern are due to auxiliary verbs that we consider parts of predicate chunks

(e.g., does support in What formats does Weka support? represent a single predicate

chunk even if does and support are separated with another word. Reprint from [189]. . 53

6.7 Comparison of the number of patterns and higher-level patterns per ontology. 54

6.8 Prefixes used in SPARQL-OWL queries. Reprint from [135]. 55

6.9 Number of ASK and SELECT queries per ontology. 55

6.10 Keywords/functions used in SPARQL-OWL queries collected in CQ2SPARQLOWL.

Reprint from [189]. 58

6.11 The list of signatures that are shared by more than 2 queries in CQ2SPARQLOWL.

The number of occurrences of a given signature in a given ontology is provided in the

column Ontologies. Reprint from [189]. 61

6.12 The list of signatures shared among more than one ontology. The number of occurrences

of a given signature in a given ontology is provided in the column Ontologies. Reprint

from [189]. 62

6.13 The list of frequent signal phrases mapped to frequent SPARQL-OWL queries they are

observed with. Each :IRI in the table may represent a different IRI. Reprint from [189]. 63

6.14 The list of words and parts of SPARQL-OWL queries they co-occur with. Reprint

from [189]. 63

7.1 The number of materialized CQs per ontology in CQ2SPARQLOWL. 69

171

7.2 Number of labels in materialized CQ2SPARQLOWL. Column Label represents a

given label, column Occurrences couns how many times a given label occurs, and col-

umn Relative occurrences summarizes what percentage of tokens inCQ2SPARQLOWL

are tagged with a given label. 70

7.3 Evaluation set extracted from CORAL. 71

7.4 The summary of the gold standard phrases tagged manually in the evaluation set by

an expert. 71

7.5 Rules for entities and relations extraction based on Universal POS tags. The identifiers

are described in Table 7.7. 75

7.6 Rules for entities and relations extraction based on OntoNotes POS tags. The identifiers

are described in Table 7.8. 76

7.7 Descriptions of identifiers used in rules based on Universal POS tags. 76

7.8 Descriptions of identifiers used in rules based on OntoNotes POS tags. 76

7.9 Methods scored using precision, recall, and F1, calculated over evaluation questions.

The scores are calculated separately over entities and relations. The highest scores are

marked in bold. 78

7.10 Methods scored using precision, recall, and F1, calculated over evaluation statements.

The scores are calculated separately over entities and relations. The highest scores are

marked in bold. 78

7.11 Aggregated F1 scores. Each score is the arithmetic mean of F1 scores calculated for

entities extracted from questions, entities extracted from statements, relations extracted

from questions, and relations extracted from statements. 79

8.1 The number of axioms per ontology in CQ2SPARQLOWL. 84

8.2 Artifical IRIs used in axiom shapes. Reprint from [187]. 86

8.3 The size of requirement datasets involved in BigCQ construction and evaluation.

Reprint from [187]. 87

8.4 All supported forms of query templates generated from <C1> rdfs:subClassOf [a

owl:Restriction; owl:onProperty <OP1>; owl:someValuesFrom <C2>] axiom shape.

Reprint from [187]. 93

8.5 Examples of CQ templates used to transform verbalized axiom shapes following the

SPO type and expressing subsumption. Here, {VERB} stands for a property label.

{LHS} and {RHS} stand for LHS and RHS, respectively. Reprint from [187]. 93

8.6 Overall summary of BigCQ. Reprint from [187]. 96

8.7 The number of the most frequent (present in more than 5% of BigCQ query templates)

OWL and RDFS-related IRIs. Reprint from [187]. 96

8.8 The coverage of CQ patterns and SPARQL-OWL templates on real-world cases. Reprint

from [187]. 98

9.1 Differences between phrases stated in CQs and ontological entity labels. Reprint

from [188]. 105

9.2 Evaluation scores on different ontologies. The columns denote (i) the fraction of gener-

ated outputs considered correct, (ii) the fraction of correctly identified untranslatable

questions. 111

A.1 A list of popular natural language processing methods that are used in CQ pattern

extraction algorithms provided. Reprint from [189]. 139

A.2 Rule language components. Reprint from [189]. 139

Index

ABox, 17, 38

Approximated query, 62, 64, 101

Artificial Intelligence (AI), 1

Attempto Controlled English (ACE), 14, 84,

87, 88

AWO, 44, 45, 49, 51–55, 57, 58, 61, 69, 72,

84, 97

Axiom, 11–14, 17, 18, 37, 40, 84, 86, 108, 109,

116, 119, 121

Axiom shape, 86–91, 93, 95, 97

Basic Graph Pattern (BGP), 14–16, 55–57,

59, 91, 92, 96, 121

BERT, 32, 33, 36, 41, 108, 110, 112, 121

BigCQ, 83–85, 87, 95–99, 101, 102, 107, 111,

119, 120

Blank node, 8, 10, 59, 60

Class, 2, 10–12, 16, 17, 38–40, 52, 57, 64, 67,

68, 70, 71, 73–75, 79, 82, 84, 86–88,

92, 94, 102, 103, 105, 108, 109, 111,

115, 116, 119

Class expression, 11, 13, 39, 84, 88, 89, 92,

94, 96, 98, 115, 116, 121

Closed World Assumption (CWA), 13, 18

Conditional Random Fields (CRFs), 26, 27,

71, 78, 79, 81, 119

CORAL, 71, 83, 84, 87, 95, 97, 98

CQ pattern, 49–54, 59, 64–67, 73, 83, 90, 93–

99, 119, 120

CQ pattern candidate, 50, 51, 68, 103, 106,

107, 111

CQ template, 93–96, 99

CQ2SPARQLOWL, 43, 45–50, 54–58, 60–62,

64, 66, 68, 70, 78, 79, 83, 84, 87, 90,

95–98, 114, 117, 119–121

Dematerialized CQ, 48–51

DemCare, 44, 45, 49, 51–55, 57, 58, 60, 61,

69, 72, 84, 97

Description Logics, 1, 12

Direct matching, 105, 106, 108

Domain phrases extraction, 105, 106, 108

Entailment regime, 16, 17, 59

Entity chunk, 50, 52, 68, 70, 102, 105–108,

110, 111

Entity label, 3, 10, 44–46, 49, 64, 68, 70, 77,

83, 95, 99, 103, 105, 108, 110–112,

119

First-Order Logic, 1, 14, 37

Functional-style Syntax, 12, 17

Glossary of terms, 2–4, 37, 38, 67, 70, 71, 74,

80, 81, 99, 119–121

Higher-level CQ pattern, 53, 54, 64–66, 83,

119

IOB tags, 27, 28, 68, 70, 73

IRI, 2, 7–10, 13–16, 40, 45, 59, 62–64, 83, 86,

88, 90, 92, 96, 97, 99, 101–103, 105,

108, 110, 113, 119, 120

L-BFGS, 21, 72, 73

Local name, 9, 86, 105

Manchester Syntax, 12

Materialized CQ, 48, 49, 60, 64, 68–70, 75,

78, 98, 99

N-gram, 31, 35, 42, 106, 107

N-Triples, 8, 9

Named class, 57, 86, 91, 92, 112, 115

Negative presupposition, 115, 116

Negative presupposition query, 115, 117

Negative presupposition test, 116

172

173

NLTK, 31, 46

OntoDT, 44, 45, 49, 51–55, 58, 61, 69, 72, 84

Ontology, 2, 3, 13, 14, 17, 37, 44, 46, 49, 50,

53, 58, 60, 61, 66–69, 71, 78, 83, 84,

115, 119, 120

OntoNotes POS-tags, 32, 33, 74–76, 78, 79

Open World Assumption (OWA), 13, 18

OWL-BGP, 17, 45

OWL/XML, 12, 103

Pizza Ontology, 103, 111

Placeholder, 45, 46, 49, 50, 64, 68, 75, 101,

102, 106, 117

POS-tagging, 32, 42, 50, 72–74, 80, 81

Positive presupposition, 115, 116

Positive presupposition query, 117

Positive presupposition test, 116

Predicate chunk, 50, 52, 53, 68, 70, 102, 107,

108, 110

Presupposition, 114, 115, 117

Presupposition query, 115

Presupposition test, 115, 117, 120

Property, 10–12, 16–18, 57, 59, 67, 68, 70, 71,

73–75, 84, 86, 88–94, 102, 103, 105,

108, 109, 112, 121

Query approximation, 61, 121

RDF, 7, 10, 12, 14, 16, 42, 58, 59

RDF graph, 7–11, 14–16, 54

RDF/XML, 9, 10

RDFS, 7, 10–12, 16, 58, 59, 96

Regular expressions, 34, 75

ReqTagger, 73, 74, 78–82, 105, 106, 110

Satisfiability, 115–117

SeeQuery, 4, 101–104, 108, 110–113, 116, 117,

119–121

Semantic Web, 1, 4, 7

Signal word, 61, 63

spaCy, 31, 32, 79–81

SPARQL, 7, 14–18, 38, 42, 46, 54, 55, 58, 59,

91

SPARQL-OWL, 2–5, 17, 18, 42–46, 54, 55,

58–64, 66, 83, 85, 87, 90, 95–98, 101–

103, 107, 110, 112–117, 119, 120

SPARQL-OWL query signature, 59–61, 64–

66, 119

SPARQL-OWL query template, 83, 84, 101–

104, 107, 108, 110–112, 117, 119,

120

Stuff Ontology, 44, 45, 49, 51, 53–56, 58, 60,

61, 69, 72, 84, 97

SWO, 17, 44, 45, 49, 51–55, 58, 61, 68, 69,

72, 78, 79, 84, 101

Taxonomy, 10, 17

TBox, 17, 38

Test-Driven Development of Ontologies, 3, 4,

114, 116–118, 120

Tokenization, 30, 31, 46, 50, 62, 68, 70, 73

TrhOnt, 103, 111, 112

Turtle, 9, 10, 14, 59, 86

Unique Name Assumption (UNA), 13

Universal POS-tags, 32, 33, 72, 74, 75, 78, 79

Vocabulary, 2, 8, 10–12, 16, 39, 44–46, 49, 61,

62, 67, 68, 75, 95–97, 99, 103, 105,

106, 108, 111, 113, 116, 117, 120

Web Ontology Language (OWL), 1, 7, 11–14,

16, 38, 43, 58, 59, 84, 115

Word embeddings, 35, 36, 41, 108–110, 112

World Wide Web Consortium (W3C), 9, 11

	 Abstract
	 Streszczenie
	 Podziękowania
	1 Introduction
	1.1 Historical context
	1.2 Motivation
	1.3 Aim and scope of the dissertation
	1.4 Organization of the dissertation
	1.5 Author's publications
	1.5.1 Papers related to the dissertation
	1.5.2 Other papers coauthored by the author

	1.6 Research grants participation

	2 Selected aspects of Semantic Web
	2.1 RDF: Resource Description Framework
	2.1.1 RDF graphs
	2.1.2 RDF serialization formats

	2.2 RDFS: RDF Schema
	2.3 OWL: Web Ontology Language
	2.4 Ontology verbalization
	2.5 Querying RDF with SPARQL
	2.6 The need for SPARQL-OWL

	3 Selected aspects of machine learning
	3.1 The idea of machine learning
	3.2 Supervised learning
	3.2.1 Optimization methods
	3.2.2 Loss functions
	3.2.3 Regularization

	3.3 Neural networks
	3.3.1 Neuron
	3.3.2 Feedforward neural networks
	3.3.3 Recurrent neural networks
	3.3.4 Attention-based neural networks

	3.4 Structured prediction problems
	3.5 Encoding labels in sequences
	3.6 Evaluating machine learning models

	4 Selected aspects of natural language processing
	4.1 Tokenization
	4.2 Part-of-speech tagging
	4.3 Dependency parsing
	4.4 Regular expressions
	4.5 Distributional semantics and word embeddings

	5 Related work
	5.1 Ontology engineering methodologies
	5.2 Collections of CQs and their analyses
	5.3 Ontology modeling styles
	5.4 Entity linking
	5.5 Question generation
	5.6 Translating text to structured queries

	6 CQ2SPARQLOWL: a dataset of CQs translated into SPARQL-OWL queries
	6.1 Dataset collection process
	6.2 CQs analysis
	6.2.1 Lengths of CQs
	6.2.2 Words at the beginnings of CQs
	6.2.3 Materialized vs dematerialized CQs

	6.3 CQ patterns analysis
	6.3.1 Domain-dependent and domain-independent tokens
	6.3.2 Domain-independent CQ patterns
	6.3.3 Domain-independent higher-level CQ patterns

	6.4 SPARQL-OWL queries analysis
	6.4.1 Query forms used in CQ2SPARQLOWL
	6.4.2 Solution modifiers
	6.4.3 Basic graph patterns

	6.5 SPARQL-OWL query signatures
	6.6 Relationship between CQs and SPARQL-OWL queries
	6.7 Relationship between CQ patterns and query signatures
	6.8 Summary

	7 Automatic glossary of terms extraction
	7.1 Materials
	7.1.1 Training set
	7.1.2 Evaluation set

	7.2 Machine learning-based tagger
	7.3 ReqTagger: a rule-based tagger
	7.3.1 Rule-based extractor
	7.3.2 Overlap resolver
	7.3.3 Phrase rejector

	7.4 Evaluation
	7.5 Discussion
	7.5.1 Methods comparison
	7.5.2 Error Analysis

	7.6 Summary

	8 BigCQ: a synthetic dataset of CQ patterns formalized into SPARQL-OWL templates
	8.1 Materials
	8.1.1 Modeling patterns shared among ontological axioms
	Frequent axiom patterns
	Axiom shapes

	8.1.2 ACE verbalizer
	8.1.3 Requirements collections

	8.2 Analysis of axiom shapes and their verbalizations
	8.2.1 Axiom shape verbalization groups
	8.2.2 Mapping between fragments of axiom shapes and fragments of their verbalizations

	8.3 Method of translating axiom shapes into CQ patterns and query templates
	8.3.1 Motivation
	8.3.2 Step 1: Query templates generation
	8.3.3 Step 2: CQ patterns generation
	8.3.4 Step 3: Linking CQ patterns to SPARQL-OWL templates

	8.4 BigCQ: a dataset of CQ patterns mapped to SPARQL-OWL templates
	8.5 Coverage of BigCQ measured on existing datasets
	8.6 Summary
	8.6.1 Filling BigCQ with domain-related vocabulary
	8.6.2 Potential applications of BigCQ
	8.6.3 Examples of CQ patterns and SPARQL-OWL query templates

	9 SeeQuery: a recommender of SPARQL-OWL queries for CQs
	9.1 Materials
	9.1.1 CQs translated into SPARQL-OWL
	9.1.2 Evaluation set

	9.2 Method description
	9.2.1 Step 1: Vocabulary detection
	9.2.2 Step 2: CQ pattern candidate extraction
	9.2.3 Step 3: Closest known CQ pattern selection
	9.2.4 Step 4: SPARQL-OWL template(s) selection
	9.2.5 Step 5: Phrase linking
	9.2.6 Step 6: Query (queries) filling

	9.3 Evaluation
	9.3.1 Evaluation procedure
	9.3.2 Error analysis

	9.4 Discussion
	9.5 Summary

	10 Presuppositions and Test-Driven Development of ontologies
	10.1 Presuppositions among CQs
	10.2 Ontology testing using presuppositions
	10.3 Integration of presupposition tests into TDD
	10.4 Conclusions

	11 Summary
	11.1 Answers to the research questions
	11.2 Conclusions
	11.3 Future work

	Bibliography
	Appendices
	A Algorithms used to group and analyze CQ2SPARQLOWL
	A.1 Extraction of a CQ pattern candidate from a given CQ
	A.2 Extraction of a SPARQL-OWL signature from a given SPARQL-OWL query

	B CQ patterns in CQ2SPARQLOWL
	B.1 CQ patterns
	B.2 Higher-level CQ patterns

	C Phrases rejected by ReqTagger
	C.1 Entities
	C.2 Relations

	D Verbalized axiom shapes used in BigCQ
	E Presupposition tests for query templates
	F BigCQ synonym sets
	G CQ templates used to construct BigCQ
	G.1 SPO + Subsumption
	G.2 SS + Subsumption
	G.3 SPO + Equivalence
	G.4 SS + Equivalence

	List of Figures
	List of Tables
	Index

